/S

Reprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES . Vol. 32, No. 2, April 1986
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Automata-Theoretic Techniques for
Modal Logics of Prog_rams*

MosHE Y. VarpI'™

IBM Research Laboratory, San Jose, Caltfdrm’a
AND

PIERRE WOLPER?

AT&T Bell Laboratories, Murray Hill, New Jersey
Received September 11, 1984; revised May 23, 1985

We present a new technique for obtaining decision procedures for modal logics of
programs. The technique centers around a new class of finite automata on infinite trees for
which the emptiness problem can be solved in polynomial time. The decision procedures then
consist of constructing an automaton A, for a given formula f, such that A4, accepts some trec
if and only if f is satisfiable. We illustrate our technique. by giving exponential decision
procedures for several variants of deterministic propositional dynamic logic.  © 1986 Academic

Press. Inc.
1. INTRODUCTION

Propositional modal logics of programs are formal systems for reasoning about
the behavior of program schemes. They are of two different types: dynamic logics, a
la Pratt [19], are used for reasoning about the input/output behavior of program
schemes, while temporal logics, a la Pnueli [18] are used for reasoning about their
ongoing behavior. Most of the propositional program logics studied in the
literature are known to have a decidable satisfiability problem. A general technique
to show their decidability is by reduction to SnS, the second-order theory of n suc-
cessor functions [7]. Rabin has shown that SnS is decidable [24], but the upper
bound established by that reduction is, unfortunately, nonelementary [15].

For several of these logics exponential time upper bounds have been established
using the so-called small model property. This property, established first for
propositional dynamic logic [6], says that if a formula of length n is satisfiable, i.c.,
if it has a model, then it also has a “small model,” i.e., a model whose cardinality is
at most exponential in n. While this property by itself gives only a nondeterministic

*This article is significantly different from its preliminary version that appeared in “Proc. 16th ACM
Sympos. on Theory of Computing,” Washington, 1984, pp. 446-456.

tAddress: IBM Research K55/281, 5600 Cottle Rd., San Jose, CA 95193.

tAddress: AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.

183
0022-0000/86 $3.00

Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

e



AUTOMATA-THEORETIC TECHNIQUES 185

While Biichi automata are indeed powerful enough for the reduction from
satisfiability to emptiness to work, the reduction turns out to be quite cumbersome.
To simplify things we introduce a new type of automata, which we call subtree
automata. Subtree automata are automata that check that under every node in the
tree there exists a certain finite subtree. With subtree automata, the reduction of
satisfiability to emptiness is quite straightforward. Moreover, we show that subtree
automata can be translated into Biichi automata, with only a quadratic increase in
size. Thus emptiness of subtree automata can be checked in polynomial time, and
the reduction establishes the desired exponential upper bound for satisfiability.

The resulting technique turns out to be powerful and unifying. It enables us to
supply simpler proofs for known results and to obtain many new exponential upper
bounds. The power of the technique lies in the fact that it abstracts the logical
issues into an automata theoretic framework. Once this abstraction is done, we can
prove results for several distinct logics by a single automata theoretic argument.
For example, the proof that. emptiness of Biichi automata can be checked in
polynomial time relies on an unwinding argument. This unwinding corresponds to
the unwinding of pseudo-models to models. It is done here, however, in an
automata-theoretic framework, with no need to take the intricacies of the logic into
account, and it is done once and for all, with no need to repeat it for every logic.

Another advantage is that this technique does not depend on the small model
property (or small pseudo-model property). This property is usually established by
the filtration technique. The essence of this technique is the identification of nodes
in a Kripke structure that satisfy the same formulas. While the filtration technique
works for several logic, it fails for several others [7, 28, 29]. The tree model
property, on the other hand, seems to be much more basic, and it holds in cases
where the filtration technique fails [5, 7, 28, 29]. Thus automata based decision
procedures have a wider applicability.

We demonstrate our technique with three proofs. We first prove an exponential
upper bound for ADPDL (deterministic PDL of flowcharts). Our proof is
significantly simpler than the original proof in [1]. We then prove an exponential
upper bound for loop-ADPDL, which is the extension of ADPDL by the loop con-
struct. (Intuitively, Joop(«) means that the program o may loop.) Again, the proof is
significantly simpler than the proof in [23] for the nodeterministic version of loop-
ADPDL. Finally, we prove an exponential upper bound for converse-ADPDL,
which is the extension of ADPDL with the converse construct. (Intuitively, the con-
verse of a program « is a program that runs the computation of « backwards.) The
converse construct poses special problems for our technique, and unlike the first
two proofs the last proof is quite involved.

The automata-theoretic techniques presented here are closely related to, but
significantly different from, the techniques in the preliminary version of this paper
[32]. We discuss these differences in the Appendix. .



186 - VARDI AND WOLPER
2. AUTOMATA ON INFINITE TREES

Before defining the classes of automata on infinite trees we are interested in and
examining their emptiness problem, we will, to make our notation clear, define
classical sequential automata and some technical notions concerning infinite trees.

2.1. Sequential Automata

A sequential automaton is a tuple A=(Z, S, p, 5o, F)

. Z is the alphabet.

. S is a set of states.

« p:SxZ—25is the transition function. For each state and letter it gives the
possible successors. :

. o is the initial state.

. Fc<Sis a set of accepting states.

We extend p to Z* in the following way: p(s, 1) = {5} (4 is the empty string), and
p(s,wa)={t:te p(s’,a) for some s ep(s,w)}. A accepts a word weZ* if
p(sg, W)NF#£ .
Given an automation 4 = (Z, S, p, s¢, F), for each s€ S, we define 45, to be the
automaton (Z, S, p, 5, F), i.e., the automaton 4 where the state s replaces s, as the
initial state. Similarly, for states s,reS, we define 4, to be the automaton

(£, S, p, 5, {1}).

2.2. Infinite Trees

We need to define some technical notions concerning n-ary trees. Let [#] denote
the set {1,..,n}. An n-ary tree T is a labeling of the set [n]* by letters from an
alphabet X, that is T: [n]* - Z. If x, ye [n]*, then

o If x=24 then x is called the root of the tree.
« x is the predecessor of y and y is the successor of x, if y=xi for some

ie[n].
e x precedes y and y succeeds x, denoted x < y, if there is ze [n]* such that
y=2Xxz.

« x properly precedes y and y properly succeeds x, denoted x < y, if x precedes
y and x # ).
A parth starting at a node x € [n]* is an infinite set xg, Xy,... such that x, = x and
x;,, is a successor of x; for all i>0. For a tree T: [n]* — Z and a path p, inf(7, p)
is the set of labels that appear infinitely often on p. That is,

inf(T, p) = {o: for all xe p there is ye p such that x< y and T(y)=0}.

2.3. Biichi Automata
A Biichi automaton on n-ary trees is a tuple 4=(Z, S, p, So, F), where

o X is the alphabet.
« S is a set of states.



AUTOMATA-THEOI'!ETIC TECHNIQUES 187

« p:SxZ—2% is the transition function. For each state and letter it gives

the possible sets of n successors.
« Spc S is the set of initial states.
. FcSis a set of designated states. As we will see later, F defines the accep-

tance condition.

In the sequel we assume that our automata run on n-ary trees without mention-
ing it explicitly. .

A run of an automaton A4 over a tree T: [n]* — X is an n-ary tree ¢:[n1*—S,
where ¢(1) € S, and for every x€ [n]*, we have (#(x1),..., $(xn)) € p(¢(x), T(x)). A
run ¢ of A over T is accepting if and only if, for all infinite paths p starting at 1 we
have inf(¢, p) N F# . A accepts T if it has an accepting run on T. T(4) is the set
of trees accepted by 4.

This kind of automaton was defined in [25] under the name special automata.
We call them Biichi automata in honor of Biichi, since the acceptance condition is
similar to the one used by Biichi [3] for automata on infinite words.

Other kinds of automata on infinite trees have been defined by changing the
acceptance condition [24, 28, 29]. In Muller automata, rather then having a set ¥
of designated states, we have a collection F =25 of designated sets. A run ¢ of 4
over T is accepting if and only if, for all infinite paths p starting at 4 we have
inf(¢, p)e F. Miiller used the notion of designated sets to define acceptance of
automata on infinite words [16]. Rabin was the first to use it for trees [24].

In Rabin automata [26], rather then having designated sets, we have a collection
F < 25 x 25 of designated pairs of sets. A run ¢ of 4 over T'is accepting if and only
if for all infinite paths p starting at A we have that inf(¢, p)NX= and
inf(¢, p)n Y # & for some (X, Y)€eF. :

_In Streett automata, called complemented pair automata in [28, 29], we again
have a collection of designated pairs, but the definition of acceptance is different. A
run ¢ of 4 over T is accepting if and only if for all infinite paths p starting at 1 we
have that if inf(¢, p) " X # & then inf(¢, p)n Y # & for all (X, Y)eF.

It is easy to see that the definition of acceptance in Biichi automata is a special
case of all the other definitions. Indeed, it follows from the results in [25] that
Biichi automata are weaker than the other kinds of automata. That is, there exist a
set ¥ of n-ary trees, a Miiller automaton 4,, a Rabin automation 4,, and a Streett
automaton A,, such that ¥=T(4,)=T(4,)= T(4,), but such that for no Biichi
automaton 4 we have ¥ = T(A4).

The essential difference between Biichi acceptance and the other types of accep-
tance conditions is that in Biichi acceptance we only care about the states that
appear infinitely often, while in the other conditions we also care about the states
that do not appear infinitely often. The usefulness of Biichi acceptance in our con-
text comes from the way that eventualities behave in modal program logics. An -
eventuality is a formula that requires that some other formula will eventually hold
(e.g., Fp in temporal logic). In automata terms, it can be viewed as stating that if
one goes through a given state (where the eventually is required) then one will go



188 ’ VARDI AND WOLPER

through a state where it is satisfied. Given that for an eventuality the union of the
set of states where it is required and the set of states where it is satisfied (or no
longer required) is the whole set of states, this acceptance condition can be
expressed as a Biichi acceptance condition.

2.4. The Emptiness Problem

The emptiness problem for a class of automata is to determine, given an
automaton A4 in that class, whether there is any tree accepted by A. Algorithms for
solving the emptiness problem for the different classes of tree automata were given
in [24, 25, 10, 26]. For Rabin automata the best time upper bound is exponential
[26], and for Miiller and Streett automata it is doubly exponential [10, 28, 29].2
The difficulty of the problem stems from having to care .not only about the states
that repeat infinitely often but also about the states that do not repeat infinitely
often. On the other hand, for Biichi automata on binary trees, Rabin gave a
polynomial time algorithm [257]. Here we consider Biichi automata on n-ary trees.
We measure the complexity in the size of the automata, which is the length of the
string describing them in some standard encoding. We first need some technical
results.

A subtree rooted at a node x € [n]* is a finite nonempty subset W, = [n]* such
that:

« if ye W, then y succeeds x,

- if ye W, and yie W for some ie [n], then yje W, for all je [n], and

« if yie W, and yi# x, then ye W_.
Note that in particular we must have xe W_. If ye W, and there is some i€ [n]
such that yie W, then we say that y is an internal node, otherwise, y is a leaf.

We now prove a lemma that relates labels appearing infinitely often on the paths
of a tree to the existence of some subtrees within that tree, As we will see, this will
be useful to deal with acceptance conditions of automata on infinite trees.

LEMMA 2.1. Let T: [n]}* — S be an n-ary infinite tree, and let S’ be a subset of S.
The following two conditions are equivalent:
(1) For every path p starting at . we have inf(T, p)n S’ # &.
(2) For every xe [n]* there exists a finite subtree W < [n]*, |W] > 1, rooted
at x such that if ye W is a leaf of W, then T(y)e S'.

Proof. (1)=>(2). Suppose that for every path p starting at 1 we have
inf(T, p)n S’ # . For a given node x, let X be the set of minimal nodes y properly
preceded by x such that 7(y)e S’; that is,

X={yix<y, T(y)eS,andif x<z< yand T(z)eS’thenz=y}.

2We assume some standard encoding for the automata. The size of an automaton is the lengrh of its
encoding.



AUTOMATA-THEORETIC TECHNIQUES 189

By the conditions of the lemma, every path starting at x intersects X. Let W be the
set of nodes between x and the nodes in X, that is,

W={z:x<z< yforsome yeY}.

We leave it to the reader to verify that by Konig’s infinity lemma, W is the desired
subtree. Clearly, |W]| > 1.

(2)=(1). Let p be a path starting at 1 and let x € p. By assumption there exists a
finite subtree W < [n]* rooted at x such that if ye W is a leaf, then T(y) e S". Since
W is finite, there is a leaf y of W such that y e p. But then T(y)e S". |

THEOREM 2.2. The emptiness problem for Biichi automata is logspace complete
for PTIME.

Proof. In PTIME. The algorithm is analogous to the algorithm in [25] for
Biichi automata on binary trees. Rather then repeat it, we give an informal descrip-
tion.

Since we deal with nondeterministic automata, we can assume that the alphabet
Z consists of a single letter a. Let us define a good subtree embedded in an
automaton 4 =(Z, S, p, So, F) and rooted at a state s as a subtree W< [n]*,
|W]>1, rooted at A and a mapping ¢: W — S, where ¢(1)=s, for every internal
node x e W, we have (¢(x1),..., #(xn)) € p(¢(x), a), and for every leaf xe W we have
¢(x)eF. : C

The algorithm for testing emptiness works by repeatedly eliminating states of the
automaton that are not roots of good subtrees embedded in the automaton. Note
that after a state is eliminated, both the transition function p, and the set F of
designated states have to be updated accordingly. The algorithm stops when no
more states can be eliminated. The automaton accepts some tree iff some initial
state is not eliminated.

To test for the existence of good subtrees we use the algorithm in [30] for testing
emptiness of automata on finite trees, which runs in time polynomial in the size of
the automata. Clearly, our algorithm runs in time polynomial in the size of the
automata (in fact, it can be made to run in quadratic time). It remains to prove
that the initial state is not eliminated iff the automaton accepts some tree.

By Lemma 2.1, if a state is eliminated then it cannot participate in any accepting
run. Thus, if all initial states are eliminated, then the automaton does not accept
any tree. It remains to show that if some initial state is not eliminated, then the
automaton accepts some tree. We prove this by constructing an accepting run.

Since the algorithm has eliminated all eliminable states, we know that for all
states s there is a good subtree of positive depth embedded in the automaton, which
is labeled by non-eliminable states whose frontier is labeled by states in F. We con-
struct the run in stages, where at each stage we have a finite subtree of an accepting
run. At stage 0 we have ¢(i)e S,. At stage i, 0 <i<w, we append to each leaf of
the finite tree constructed in stage i — 1 a finite tree of positive depth whose frontier
is labeled by states in F. By Lemma 2.1, the constructing run is an accepting one.



190 . VARDI AND WOLPER

Hard for PTIME. We show that the problem is hard for PTIME by reduction
from the path system problem in [13]. An instance of the path system problem
consists of a set U of nodes, a set X of initial nodes, a set Y of final nodes, and a
ternary relation R< U?. The problem is to determine if some node in Y is
accessible, where the set of accessible nodes is the smallest set that contains X, and
includes an element z whenever there are acessible nodes x and y and a triple
(x, y, z)e R. Given an instance of the problem, we construct a Biichi automaton
A= (Z, S, p, Sy, F) as follows: £= {a} consists of a single letter, S=U, S,=7,
F=X, and (x, y)€ p(z, a) iff either (x, y,z)e R or x= y=ze X. We leave it to the
reader to verify that there is an accessible node in Y iff 4 accepts some tree. ||

In the above proof of the correctness of the aléorithm, we have unwound what
remained of the transition function after the elimination of eliminable states into an
accepting run. This is the automata-theoretic analogue of the unwinding process

that converts pseudo-models to models.

In the process of reducing satisfiability to emptiness we shall find it useful to
describe a set of trees by several automata rather than a single one. That is, we
describe a set of trees as T(A4,) N --* N T(A,_,). We now show that we can describe
such a set of trees by a single Biichi automaton with only a polynomial increase in
size. Let |4} denote the number of states of the automaton A. "

THEOREM 2.3. Let A,,..., A, _ be Biichi automata. There is a Biichi automaton A
with k [1¢24 | A lstates such that T(A)=T(Ag) N -+ " T(A,_,).

Proof. Rabin [25] has proved the claim for k=2. We extend his proof to an
arbitrary number of automata.

Let 4,=(Z, S, p', S, F'). Define 4= (X, S, p, Sy, F) as follows:
S=8%% -+ xS 'x {0,..,k—1},
So=S9x ---Sk—1x {0},
F=F'xS'x---8'x {0},
and

((So""9 Sk_ ! * j)"'" (soi"'Q sﬁ— ! ? j)) E p((s()’"” sk_ l’ i)’ a)
1 1 n .

iff (s%,..., s{)ep(s’, 0), for 0<i<k—1, and either s'¢ Fand i=jor s'’e Fland j=
i+ 1 (mod k).
We leave it to the reader to show that T(A)=T(Ag)N - "T(A_,). |

COROLLARY 2.4. For every fixed k, we can test in polynomial time, for given
Biichi automata A,,..., A, _,, whether T(Ag) N --- N T(A,_,) is nonempty.

2.5. Subtree Automata

We are now going to define a new class of automata on infinite n-ary trees, which
we call subtree automata. Intuitively, a subtree automaton is an automaton that



AUTOMATA-THEORETIC TECHNIQUES 191

verifies that if a node in the tree is labeled by a certain symbol, then this node is the
root of a subtree accepted by some finite automaton on finite trees. Formally, a

subtree automaton 4 is a tuple (Z, S, p, £, F), where

e X is the alphabet,

e S is the state set,

o p:SxZ—2% is the transition function,

e §: X2 — S is the labeling function, and

« Fc S is the nonempty set of accepting states.

A tree T: [n]* — Z is accepted by A if the following two conditions hold:

e (&(T(x1)),..., {(T(xn))) € p({(T(x)), T(x)) for every xe& [n]*, and

« for every xe [n]* there exists a finite subtree W< [n]* rooted at x and a
mapping ¢: W — S such that ¢(x) = &(T(x)), if ye W is a leaf then ¢(y)e F, and if
z€ W is an internal node then (¢(z1),..., ¢(zn)) € p(é(2), T(2)).

The first acceptance condition requires that the labeling £ of the tree is compatible
with the transition function of 4. The second condition, requires that below each
node x of the tree, there is a subtree accepted by 4 viewed as an automaton on
finite trees with initial state &(7(x)). We call the first condition the Iabelmg con-
dition and we call the second condition the subtree condition.

By the results in [25], a subtree automaton, even without the labelmg condition,
can be converted to a Biichi automaton with an exponential increase in size. We
show now that because of the labeling condition we can do this conversion with
only a quadratic increase in size. Before proving this we need a technical lemma.

LEMMA 2.5. Let A=(Z, S, p, &, F) be a subtree automaton. Then A accepts a tree

T:[n]* = Z iff

e (&(T(x1)),..., &(T(xn))) € p(&(T(x)) for every xe€ [n]*, and

o for every xe [n]* there exists a finite subtree W < [n]*, |W] > 1 rooted at x
and a mapping ¢: W — S such that ¢(x)=E(T(x)), if ye W is a leaf then ¢(y)€ F,
and if ze€ W is an internal node then (¢(z1),..., §(zn)) € p(4(2), T(z)).

Proof. The only difference between the condition in the lemma and the standard
condition of acceptance is the requirement that the subtrees consist of more than
one node. Thus the “if” direction is trivial. For the “only if” direction assume that 4
accepts T. The labeling condition clearly holds, so it remains to show the existence
of the “right” subtrees.

Let x € [n]*. Then there exists a finite subtree W, < [#n]* rooted at x and a map-
ping ¢.: W, — S such that ¢.(x) =&(T(x)), if ye W, is a leaf then ¢.(y)€ F, and if
ze W_ is an internal node then (¢,.(z1),..., §.(2n)) € p(d.(2), T(2)). If |W, | > 1, we
are done, so suppose that W, = {x}. For every successor y of x there exists a finite
subtree W, < [n]* rooted at x and a mapping ¢,: W,—S such that ¢,(y)=



192 ' VARDI AND WOLPER

E(T(y)), if ze W, is a leaf then ¢,(z)€F, and if ze W, is an internal node then
(9,(21),.... B, (zn))Ep(¢ (z), T(z)). Define

=U{W.:ze {x, x1,.., xn}},

and

¢=U{4.: Ze{x,xl, - xn}}.

Clearly, |W] > 1, and it is easy to verify that ¢ satisfies the desired properties.

THEOREM 2.6. Every subtree automaton with m states is equivalent to a Buchi
automaton with m? states. :

Proof. Let A=(S, Z, p, &, F) be a subtree automaton. We now define two new

transition functions p,, p,: Sx X =25 _

e pi(s, a)=p(s, a) if s=E&(a), and p,(s, a) = J otherwise.

e pys,a)=p(&(a), a) if se F, and p,(s, a) = p(s, a) otherwise.
These transition functions let us define two Biichi automata: B, =(Z, S, p, S, S)
and B, =(Z, S, p,, S, F). Basically, B, will take care of checking the labelling con-
dition and B, of checking the subtree condition. Let us thus show that a tree
T:[n]* - S is accepted by A iff it is accepted by both B, and B,.

Suppose first that T is accepted by B, and B,. This means there are accepting
runs ¥,,¥,:[n]*—> S of B, and B, (resp.) on T. We verify first the labeling
property holds. Clearly, p,(¥,(x), T(x))= for every xe[n]*. Thus, ¥,(x)=
&(T(x)). Consequently, for every xe [n]*,

(&(T(x1),..., &(T(xn))) = (Y1 (x1),.., ¥ 1 (xn)) € p1(¥1(x), T(x)) = p(S(T(x)), T(x)).

It remains to verify the subtree condition.

Let xe [n]* by Lemma 2.1, there exists a finite subtree W < [n]* rooted at x
such that if ye W, is a leaf then y¥,(y)eF. Let now z be a leaf of W,. By
Lemma 2.1, there exists a finite subtree W_c [n]* rooted at z such that if ye W is
a leaf then y,(y)e F. Assume without loss of generality that for all internal nodes
ye W_.— {z} we have that y,(y)¢ F. Let

W=W.,u{yeW_:zis a leaf of W_}.

We claim that W satisfies the subtree condition for the node x. Indeed, a suitable
mapping ¢: W — S can be defined in the following way: ¢(y) = &( T( y)) for ye W,
and ¢(y)=y,(y) for ye W_— {z}, where z is a leaf of W .

Clearly ¢( y) € F for any leaf y of W. We show that for all internal nodes y e W we
have (¢(y1),..., #(yn)) € p(é(y), T(y))

Let y be an internal node of W .. Then ¢(y)=&(7(y)), and by the labeling con-
dition (¢(y1),..., ¢(yn)) € p(é(y), T(y)).



AUTOMATA-THEORETIC TECHNIQUES 193

Let z be a leaf of W,. Then ¥, (z)€ F. Consequently,

($(21),, $(z1)) = (Y 2(z1 ), Y2(zn)) € 2(¥2(2), T(2))
= p(&(T(2)), T(2)) = p(¢(2), T(2))-

Let y be an internal node, different form z, of W,. Then ¢(y) =¥ (y) ¢ F. Con-
sequently, ’ -

($(21)n $(z1)) = (P 2(21 s Wa(z1)) € p2(W2(2), T(2)) = P($(), T(1)).

We now have to show that if T is accepted by 4 then it is accepted by both B,
and B,. We first define a mapping ¥,: [n1* = S by ¥,(x) = &T(x)). By the labeling
condition, ¥, is an accepting run of B, on T. ’

We now define a mapping ¥,: [n]* — S by defining it on a sequence W, W,,..,,
of subtrees rooted in 4 in such that a way that if xis a leaf of one of these subtrees
then ,(x) € F. The first subtree is W, = {4}, and we define ¥(1) =s, where s is an
arbitrary member of F. Suppose that ¥, is defined on a subtree W, and let xe W,
be a leaf. By induction, ¥,(x)e F. By Lemma 2.5, there exists a finite subtree
W.c[n]* |W,.>1, rooted at x and a mapping ¢: W,— S such that ¢(x)=
E(T(x)), ¢(y) € F for each ye W that is a leaf, and (¢(z1),..., #(zn)) € p(¢(2), T(2))
for each z e W that is an internal node. We can assume that if y is an internal node
of W, different from x then ¢(y) ¢ F. Fora node ye W, — {x}, define ¥,(y) =@(»)-
We show now that for every internal node yeW, we have that
(W 2(P1)yrr Waym)) € p2(¥2(p), T(p)). Indeed, if y=x, then ¢(y)=¢(T(y)) and
¥,(y) e F. Consequently,

W2 (31)yoms Ua(yn)) = (Y 1)seers B(ym)) € p(E(T()), T()) = p2(¥2(¥)s T(y))-
If, on the other hand, y # x, then ¥>(y)=¢( y) ¢ F. Consequently,

(Y231 ) Y2 yn)) = ((Y1),..., B(yn)) € p($(3), T(¥)) = p2(¥2(y), T(y)-

Let
W, .=W,u{yeW, xisaleafof w,}

Clearly, U=, W;=[n]*, so y,isarun of B, on T. Furthermore, for every x& [n]*
there exists a finite subtree W< [n]*, |W]> 1, rooted at x such that if ye Wis a
leaf then Y.(y)eF. Thus by Lemma 2.1, for every path p starting at A,
inf(y,, p)n F# &. Thus, §, is an accepting run.

We have shown that T is accepted by both B, and B,. Finally, by Theorem 2.3,
we can construct an automaton B such that a tree T is accepted by B iff it is
accepted by both B, and B,. It follows that the subtree automaton A is equivalent
to the Biichi automaton B. 1 -

Subtree automata are more adequate than Biichi automata for the purpose of
reducing satisfiability to emptiness. Nevertheless, to facilitate our task in the rest of



194 ) VARDI AND WOLPER

the paper, we now specialize the notion of subtree automata even further. The trees
that we shall deal with are going to be labeled by sets of formulas, and the states of
the automata that will accept these trees are also going to be sets of formulas. Thus,
we consider automata where the alphabet and the set of states are the same set and
have the structure of a power-set. We will call these automata set-subtree automata.
Formally, a set-subtree automaton 4 is a pair (¥, p), where
. Wis a finite set of basic symbols (in fact these symbols will be just formulas
of the logic). The power set 2¥ serves both as the alphabet Z and as the state set S.
The empty set serves as a single accepting state. We will denote elements of 2¥ by
a, b,.., when viewed as letters from the alphabet Z, and by s, sy,..., when viewed as
elements of the state set S.
o p:SxZX—25is a transition function such that
(1) p(s,a)#Jiff sca,
2) (J,-.. D)ep(D,a),
(3) if scs’, s,csi,..8, <58, and (S;,..,S,)€p(S), a), then (si,..,s,)€
p(s, a).
(4) if (Sy5,-- S1n) EP(S1,a) and (Szy,.., $2,) € P(S2, a), then (s,;uUsy,.,
$,,\US,,) € p(s; Us,, a).

A tree T: [n]* — Z is accepted by A if for every xe [n]* and every f € T(x) there
exists a finite subtree W< [n]* rooted at x and a mapping ¢: W — S such that

- dx)={f}
« if ye Wis a leaf then ¢(y)=(J, and
« if ze W is an internal node then (¢(z1),..., #(zn)) € p(#(z), T(2)).

The acceptance condition requires that for each node x of the tree and for each
each formula fin T(x), the “right” formulas appear in the labels of the nodes under
x. Intuitively, the transition of the automaton are meant to capture the fact that if a
certain formula appears in the label of a node x, then certain formulas must appear
in the labels of the successors of x. The four conditions imposed on the transition
relation p can be explained as follows:

(1) The formulas in the state of the automaton are formulas that the
automaton is trying to verify. A minimal requirement is that these formulas appear
in the label of the scanned node of the tree. As we will see, this condition is related
to the labeling condition defined for subtree automata.

(2-3) These are what we call monotonicity conditions. A transition of the
automaton is a minimum requirement on the formulas that holds of x1...., xn given
the formulas that the automaton is trying to verify at x. Clearly if there is nothing
to verify at x, then nothing is required at x1,..., xn (condition 2)). Also, the transi-
tion is still legal if we try to verify fewer formulas at x or more formulas at x1,..., xn.

(4) This is an additivity condition. It says that there is no interaction between
different formulas that the automaton is trying to verify at node x. Thus the union
of two transitions is a legal transition.



AUTOMATA-THEORETIC TECHNIQUES 195

The acceptance condition requires that for each node of the tree, if we start the
automaton in each of the singleton sets corresponding to the members of the label
of that node, it accepts a finite subtree. We will now prove that, given conditions
(2), (3), and (4), it is equivalent to require that the automaton accepts when started
in the state identical to the label of the node. '

LemMa 2.7. Let A=(, p) ke a set-subtree automaton, let T:[n]* —2¥ be a
tree, and let x € [n]*. The following: are equivalent:

(1) There exist a finite subtree W = [n]* rooted at x and a mapping ¢: W — S
such that ¢(x)=T(x), if ye W is a leaf then ¢(y) =, and if ze W is an internal
node then (§(z1),..., #(zn)) € p(#(z), T(z)).

(2) For every f € T(x) there exists a finite subtree W,= [n]* rooted at x and a
mapping ¢,: Wy— S such that ${x)={f}, if yeW,isa leaf then ¢ (y) =, and if
ze W, is an internal node then (¢/z1),..., {zn)) e p($Az), T(2)).

Proof. (1)=(2). Let feT(x). We take W,=W, and define ¢, as follows:
¢Ax)={f} and g{y)=¢(y) for y#x. We only have to show that (¢[x1),...,
¢/(xn)) € p(¢/(x), T(x)). But this follows, by the monotonicity condition (3) in the
definition of set-subtree automata, given that ¢{x) < ¢(x).

(2)=(1). If T(x) =& take W= {x}, otherwise take W= ¢ 1yx) W. It is easy
to verify that W is a subtree rooted at x. Also, if y is a leaf of W, then for each
feT(x), cither y is a leaf of W, or y¢ W,. For every fe T(x) extend ¢,to W by
defining ¢{y) = for ye W—W,. If T(x)= & we define ¢(x) =, otherwise we
define ¢(y) = U e rix) $7(») for each ye W. By the above observation concerning
leaves, if y is a leaf of W then ¢(y)=F. Furthermore, by condition (4) in the
definition of the set-subtree automata, if ze W is an internal node then

(#(21),..., #(zn)) € p(¢(2), T(2)). §

We can now prove that set-subtree automata can be converted to subtree
automata without any increase in size. Thus, by Theorem 2.6, a set-subtree
automaton can be converted to an equivalent Biichi automaton with only a
quadratic increase in size.

THEOREM 2.8. The set-subtree automaton A= (¥, p) is equivalent to the subtree
automaton A' = (2%, 2%, p, &, {D}), where & is the identity function.

Proof. By Lemma 2.7, it is immediate that if a tree T is accepted by the
automaton A’, then it is also accepted by 4. Also by Lemma 2.7, if the tree T is
accepted by the set-subtree automaton A, the subtree condition of the subtree
automaton A’ is satisfied. It remains to show that ¢ satisfied the labeling condition.
In other words, since £ is the identity mapping, we have to show that for every.
xe[n]* (T(x1),.., T(xn))e p(T(x), T(x)). Since A4 accepts T, there exists a finite
subtree W< [n]* rooted at x and a mapping ¢: W —S such that ¢(x)= T(x), if
yeW is a leafl then ¢(y)=¢, and if zeW is an internal node then



196 VARDI AND WOLPER

(#(z1),..., p(zn)) € p((2), T(2))- If W={x}, then T(x)=, and by the
monotonicity conditions we have (T(x1),..., T(xn)) € p(T(x), T(x)). Otherwise,
{x1,.., xn} = W, so ($(x1),. ¢(xn)) € p(T(x), T(x)). Consider now each xi, ie [(n].
If ¢(xi) = J, then clearly ¢(xi) < T(xi). Otherwise, p(#(xi), T(xi)) # &, so, by con-
dition (1) in the definition of set-subtree automata, @(xi)< T(xi). Thus by the
monotonicity condition (T(x1),.., T(xn)) € p(T(x), T(x))- |

3. DETERMINISTIC PROPOSITIONAL DYNAMIC Loaic

We assume familiarity with dynamic logic [19] and with propositional dynamic
logic (PDL) [6]. .

Deterministic propositional dynamic logic (DPDL) is a propositional dynamic
logic with deterministic atomic programs. It was studied in [1], where an exponen-
tial decision procedure was given. The proof of the decision procedure given there is
quite complicated. Here, we show how it can be substantially simplified using the
automata theoretic result established in the previous section. We will consider a
variant of DPDL, in which programs are described by finite automata rather than
by regular expressions (c.f [12, 221). This variant is called ADPDL. ADPDL is
more succinct than DPDL and also has the advantage of fitting nicely with our
automata theoretic techniques. As the translation from regular expressions to
automata is linear, our results for ADPDL apply easily to DPDL.

Formulas of ADPDL are built from a set of atomic propositions Prop and a set
Prog of atomic programs. The sets of formulas, tests, and programs are defined
inductively as follows:

every proposition pe Prop is a formula.
if f, and f, are formulas, then = f, and f; A f are formulas.
If fis a formula, then f? is a test.
if a is a program and fis a formula, then (a)f is a formula
« If a is a sequential automaton over an alphabet Z, where 2 is a finite set of
atomic programs and tests, then « is a program. '

ADPDL formulas are interpreted over structures M= (W, R, IT), where W is a
set of states, R: Prog — 2" is a deterministic transition relation (for each state u
and atomic program a there is at most one pair (u, u')€ R(a)), and II: W — 2P
assigns truth values to the proposition in Prop for each state in W. We now extend
R to all programs and define satisfaction of a formula f in a state u of a structure
M, denoted M, ul=f, inductively: : :

e R(M={(u,u): M, u=f}.

e R(a)={(u, u’): there exists a word w=w, ---w, accepted by a and states
Ug, Uy, U, Of W such that u=uo, w=u,and forall 1<i<n we have (u;_,, U;) €
R(w)}.

. For a proposition p € Prop, M, ul=p iff pe Il(u).

e« M,ul=f, A fo iff M,u=f, and M, ukEf,.



AUTOMATA-THEORETIC TECHNIQUES 197

e M,ul=f,; iff not M, ul=f1,.

e M, ul={a) fiff there exists a state ' such that (u, u') e R(«) and M, u=f.
Note that only atomic programs are required to be dctermm1st1c, while non-atomic
programs can be nondeterministic.

A formula f is satisfiable if there is a structure M and a state 4 in the structure
such that M, ul=f. The satisfiability problem is to determine, given a formula f,
whether f is satisfiable. Before giving the decision procedure for satsifiability of
ADPDL formulas, we need to define a notion of closure of ADPDL formulas
similar to the closure defined for PDL in [6]. From now on we identify a formula g
with =11 g. The closure of a formula f, denoted ci(f ) is defined as follows:

o fec(f)
o If g, A g,ecl(f) then g,, g;€cl(f).
o If mgecl(f) then gecl(f).
o If gecl(f) then = gecl(f).
o If (a) gecl(f) then gecl(f).
o If (a) gecl(f), where a=(Z, S, p, so, F), then g’ ecl(f) for all g'?7e Z.
o If Ca) gecl(f), where a=(Z, S, p, S0, F), then {a,) gecl(f) for all se S.’
It is not hard to verify that the size of ci(f) is linear in the length of f.
For our techniques to be usable, we first have to prove that ADPDL has the tree
model property. A tree structure for a formula fis a structure M = (W, R, IT) such

that:
(1) W< [n]*, where n is linear in the length of f and W% .
(2) xie Wonly if xe W.

(3) (x, y)e R(a) for an atomic program a only if x is the predecessor or the
successor of y and (x, y) ¢ R(b) for any other atomic program b.

If in addition we have that (x, y)e R(a) for an atomic program a only if x is the
predecessor of y, then M is a one-way tree structure. The reason we consider two-
way tree structures is that they will be necessary when we extend the logic with the
converse construct. A tree structure M = (W, R, IT) is a tree model for [ if M, A=/
(note that since W# J, Ale W).

We now show that ADPDL has the one-way tree model property, i.e., if an
ADPDL formula f is satisfiable, then it has a one-way tree model

ProrosiTION 3.1. Let f be a satisfiable ADPDL formula with atomic programs
a,,..., a,. Then f has an n-ary one-way tree model.

Proof. Suppose that M, ul=f, for some structure M = (W, R, IT) and some state
ue W. To show that fhas a one-way tree model, we first define a partial mapping ¢:
[n]* = W by induction on the length of the words in [n]* To start, we take
#(/.) =u. Suppose now that ¢ is known for every xe [n]*, and let xie [n]**". If

34, is defined in Section 2.1.



198 VARDI AND WOLPER

#(x) is undefined, then so is ¢(xi). If #(x) =s€ W but s has no a,successor in M
(ie., there is no state te W such that (s, t)eR(a;)), then again #(xi) is left
undefined. If ¢(x)=s and ¢ is the a,-successor of s (if there is such a successor then
it must be unique), then ¢(xi)=1. 4

We now define a structure M’'=(W’, R',IT') as follows. W' = {x:¢(x) is
defined }, R(a;) = {(x, xi): xie W'}, and IT'(x)=II(¢(x)). We claim now that M’ is
a one-way tree structure and that if xe W’ and g is any ADPDL formula with
atomic programs among a,,.., a,, then M’, xl=g iff M, §(x)l=g. The proof is
straightforward and is left to the reader. In particular we have that M’, Al=1. 1

Intuitively, what we have done is to unravel M into a tree with u as its root.
Furthermore, as all atomic programs are deterministic, the branching factor of the
tree is at most the number of atomic programs that occur in f. Note that the tree
model can have infinitely many states, even if the original model was finite.

To establish a.decision procedure for ADPDL, we reduce the satisfiability
problem to the emptiness problem for Biichi automata (via set-subtree automata).
To this end we associate an infinite n-ary tree over 2¢)V {1} with the tree model
M’ = (W', R', IT') constructed above in a natural way: every node in W’ is labeled
by the formulas in cl(f) that are satisfied at that node, and the other nodes are
labeled by the special symbol L. Trees that correspond to tree models satisfy some
special properties.

A Hintikka tree for an ADPDL formula f with atomic programs a, ..., @, is an n-
ary tree T: [n]* —» 297V {L] that satisfies the following conditions:

(1) feT(4),
and, for all elements x of [n]*: _

(2) either T(x)={L} or L ¢ T(x) and ge T(x) iff 7g¢ T(x),

(3) 81 A g:€T(x)iff g,e T(x) and g, € T(x),

(4) if (a) geT(x), where a=(Z, S, p, o, F), then there exists a word
w=w,,.,w, over X, k>0, states s5,,.., 5, of S, and nodes u,..., u, of [n]* such
that:

(a) u0=x,
(b) geT(u,) and s, €F,
and, for all 1 i<k,
(c) s;ep(si—y, w))
(d) if w;is f?, then fe T(u;,_,) and u;=u;_,, and
(e) ifw;isa;, then u;=u,_,j.
(Note that if k =0 in condition (4), then so€ F and ge T(x).)

(5) if 7 {a) ge T(x), where a = (Z, S, p, So, F), then sq € F entails g€ T(x),
and for all se S and we X such that se p(sq, w):

(a) if wis g’?, then either 11g’ e T(x) or —1{a,> ge T(x).
(b) if wis a; then 1 <a,) ge T(xj) or T(xj)={L}.



AUTOMATA-THEORETIC TECHNIQUES 199

PROPOSITION 3.2. An ADPDL formula f has a one-way tree model iff it has a
Hintikka tree.

Proof. Only if. Let f be an ADPDL formula with atomic programs a,,.., a,,
and let M = (W, R, IT) be a one-way tree model of /. We define a Hintikka tree T
for f as follows: for an element xe [n]* — W, T(x)= {1} and for an element xe W,
T(x)= {gecl(f): M, x}=g}. We now have to show that T is indeed a Hintikka
tree. By definition of a tree model-M, A|=f; this implies condition (1). That con-
ditions (2), (3), (4), and (5) hold follows immediately from the semantic definition
of ADPDL.

If. Let fbe an ADPDL formula with atomxc programs a, ..., d,, and let T be a
Hintikka tree for /. We construct a one-way tree model for f as follows. The struc-
ture is M = (W, R, IT), where W= {xe [n]*: T(x)# {L}}, R(a,)= {(x, xi): ie [n]
and xie W), and for all xe W, II(x)={pe Prop: pe T(x)}. It now remains to
show that M, Al=f. For this, we show by induction that for all gecl(f) and
x€[n]*, we have that ge T(x) iff M, x}=g. For the base case (ge Prop), this is
immediate by construction. The inductive step for formulas of the form g, A g,,
—1g, and {a) g, follows directly from the Hintikka conditions (2), (3) and (4), (5)
respectively. |

The next step is to build a Biichi automaton on n-ary trees over the alphabet
24NV L} that accepts precisely the Hintikka trees for £ Rather than do that, we
build two automata, 4, and 4, such that T(4,)n T(4,) is the set of Hintikka
trees for f. The first automaton A4,, called the local automaton, checks the tree
locally, i.e., it checks Hintikka conditions (1)-(3) and (5). This automaton is a
Biichi automaton. The second automaton A4, called the { )-automaton, is a set-
subtree automaton that checks condition (4). This automaton ensures that for all
eventualities (i.e., formulas of the form {a) f, for some program a) there is some
finite word for which condition (4) is satisfied. Finally, we convert the ¢ )-
automaton to a Biichi automaton and combine it with the local automaton.

The Local Automaton
The local automaton is 4, = (29VV {1} 28N id) o N, 2¢UIV L)) The state
set is the collection of all sets of formulas in cl(f)u {1 }. For the transition relation
p., we have that (s,,..,s,)€p.(s, a) iff a=s and:
o eithers={l}or Lé¢sand gesiff g¢s,
e g, Agesiff g, esand g;€s, -
e if " {a) ges, where a=(Z, S, p, so,F), then sy € F entails "1ges, and for
all se S and we X such that se p(sq, w):
o if wis g'?, then either g’ es or 1 {a,) ges, and
o if wis a; then 1 {a,) ges;or s;={L}.

The set of starting states N, consists of all sets s such that fes. Clearly, 4,
accepts precisely the trees that satisfy Hintikka conditions (1)-(3) and (5).



200 VARDI AND WOLPER

The { »>-Automaton

Before describing the construction of 45, we express Hintikka condition (4) in a
form that will be easier to handle.

LEMMA 3.3. Let f be an ADPDL formula with atomic programs a,,..., ,, and let
T: [n]* - 29V (L} be an n-ary tree. Then satisfies Hintikka condition (4) iff for all
x € [n]* we have that if {a) ge T(x), where « = (Z, S, p, s, F), then there are nodes
Uy, Ui Of [n]*, states so, Losems Sk» Lk of 'S, and atomic programs a;, ..., G such that

(a) up=x, so=5, € F, u;=u,_1Ji, and s,-ep(,t,_l,aj,-),fof 1<i<gk,
(b) for 0<i<k there exists a word w=g,?7-"-g,1, m=0, such that
{g15s gm} < T(w;) and t,€p(s;, w), '
(c) geT(u)
Proof. Left to the reader. |

We can now describe the ¢ )-automaton. It is a set-subtree automaton A=
(cl(f)u {L}, p¢,) For the transition relation p ,, we have that (s,,..., 8,)€E
p¢>(s, a) ifl: T

e« sca, and

« If (a) ges, where a=(Z, S, p, 5o, F), then there isa word w=g,?-- g, 7,
m>0, and a state s€ S such that se p(so, W), {£15-8&m) <2 and either se F and
gea or there is an atomic program a; and a state s’ € p(s, a;) such that {a, ) g€s;.

It is immediate to check that conditions (1)~(4) of the definition of set-subtree
automata are satisfied for 4. Furthermore, by Lemma 3.3, A, accepts precisely
the trees that satisfy Hintikka condition (4). Thus we have

PROPOSITION 3.4. Let f be an ADPDL formula with atomic programs a,,..., a,,
and let T: [n]* — 29V {+} be an n-ary tree. Then T is a Hintikka tree for fiff Te
T(A )N T(A>)

At this point, we can give an algorithm and complexity bounds for the
satisfiability problem for 4DPDL. Given a formula f, we construct the automata
A, and A4 ,. By Propositions 3.1, 3.2, and 34, f is satisfiable iff T(4.)n
T(A ) # &. The size of these automata is exponential in the length of f. By the
results in Section 2, we can construct a Biichi automaton 4, whose size is exponen-
tial in the length of £, such that T(A)=T(A4,.)NT(A4;)- Note that 4 can be con-
structed in time exponential in the length of /. Since we can check emptiness of 4 in
time polynomial in the size of 4, we have proven

THEOREM 3.5. The satisfiability problem for ADPDL can be solved in exponential
time.

The size of the automata we construct in the process of testing satisfiability is
O(c™) for some constant ¢, where n is the length of the given formula. Nevertheless,
there is a way to implement the algorithm to run in time O(c").



_ AUTOMATA-THEORETIC TECHNIQUES 201

Parikh has shown [17] that the satisfiability problem for PDL is logspace
reducible to the satisfiability problem for DPDL, since a nondeterministic atomic
program a can be encoded as the composite program b; c*, where b.and c are
deterministic atomic programs. Thus we have also reestablished an exponential
upper bound for the satisfiability problem for PDL. Furthermore, Fisher and Lad-
ner have proven an exponential lower bound for PDL [6]. Since Parikh’s reduction
is a logspace reduction, the same lower bound holds for ADPDL.

4. DETERMINISTIC PROPOSITIONAL DynaMiC LoGic WITH LOOPING

In [11], the construct loop is added to PDL. Intuitively, the formula loop(a)
holds in a state if there is an infinite computation of « from that state. The loop con-
struct should be distinguished from the repeat construct, denoted 4 in [28, 29].
The formula repeat(a) holds in a state if « can be repeated infinitely often from that
state. In [11], it is shown that the repeat construct is strictly more expressive than
the loop construct when incorporated. into PDL. Loop-PDL was shown in [23] to
have an exponential decision procedure, while the best known upper bound for
repeat-PDL is nondeterministic exponential [31]. Here, we consider DPDL, or
rather, as in the previous section ADPDL, augmented with the loop construct. We
will show that our automata-theoretic techniques enable us to very easily obtain an
exponential decision procedure for loop-ADPDL.

Syntactically, the definition of loop-ADPDL is identical to that of ADPDL except
for the addition of the following clause:

e Ifa=(Z,S,p,s, F)is a program, then loop(a) is a formula.
Semantically, loop-ADPDL is also defined exacty as ADPDL, with the addition of
e M, ul=loop(x), where a=(Z, S, p, So, F), iff there exists an infinite word
w=w,w, -, over 2, an infinite sequence Sq, Sy e of states of S, and an infinite
sequence ug, Uy .., of nodes of W such that:
o Uy=U, So=05, and
e forallix1, s,ep(si_y,w;) and (u,—1, u;) € R(w)).

Again, the closure of a loop-ADPDL formula is defined exactly as for ADPDL

with the addition of the two following clauses:

« If loop(z)ecl(f), where a= (Z, S, p, So, F), then g ecl(f) for all g'7€ 2.

. If loop(a)ecl(f), where a= (Z, S, p, So, F), then loop(a,)ecl(f) for all
SES.
The proof that loop-ADPDL has the one-way tree model property is almost iden-
tical to the proof of Proposition 3.1. :

PropPOSITION 4.1. Let f be a satisfiable loop-ADPDL formula with atomic
programs a,,..., a,. Then f has an n-ary one way tree model.

Before defining Hintikka trees for loop-ADPDL, we will prove two results about
loop formulas



202 VARDI AND WOLPER

PROPOSITION 4.2. Let M = (W, R, IT) be a tree structure, let xe W, and let o =
(Z, S, p, So, F) be a program. Then M, x|=loop(a) if and only if there exists an s€ S
and a we X such that s€ p(sq, w) and

e ifwisg? then M, xl=g and M, x|=loop(a,).
o if wis a; then M, xjl=loop(a,).

Proof. Left to the reader. |}

PROPOSITION 4.3. Let M= (W, R, IT) be a tree structure, let xe W, and let
a= (X, S, p, So, F) be a program. Then M, x}=—iloop(a) if an only if there is a finite
subset W =W with xe W' and a mapping ¢: W' — 2{7lecr@)reSt  quch  that
—1loop(a) € #(x), and if ye W’ and —loop(e,) € #(y), then

e there is no word w=g,7g,?--- g7, m=1, such that M, yl=g;, 1 <i<m,
and p € p(p, w),
e for all seS and we X such that se p(p, w):
(a) if wisg?, then either M, yl="1g or loop(a,) € §(y),
(b) if wis a; then either yje W' and —loop(a,)€ ¢(yj) or yj¢ W.

Proof. If. We claim that M, yl="1loop(a,) for all ye W’ and "loop(x,) € ¢( ).
In particular M, x}="1loop(ax).

We now prove the claim. Let y e W’ be such that it has no successors in W’ and
let —loop(a,) € ¢(y). Suppose that M, yl=loop(x,). Then there exists an infinite
word w=w,w,--- over Z, an infinite sequence g, 5y,... Of states of S, and an
infinite sequence yq, y,,... of nodes of W such that:

s Yo=J, So=p and :

e foralliz1, s;ep(s;,_,,w;) and (y,_,, y:)€ R(w;).
Let k> 1 be the minimal one such that w, is not a test. Then for 1 <i<k, we have
=1loop(a,) € #(y). In particular, —1loop(a,, ) € #(y)- Since w, is not a test, it must
be some program a,. But then we must have yje W’, in contradiction to the
assumption that y has no successors in W'. It follows that all the w/s are test, ie.,
w=g,7g,?, M, ye=g,for i>1, and —1loop(a,,) € ¢(y) for i> 1. Since S is finite,
there are k>j>1 such that s;=s,. But then -—loop(a,)ed(y), s;€
p(s;, &7 " 8-17), and M, yl=g; for j<i<k—1 - a contradiction. It follows that
M, ,yl="loop(a,).

Suppose now that we have already proven the claim for all successors of a node
ye W'. It is easy to verify that the claim holds for y. Since W’ is finite, the claim
holds for all ye W".

Only if. We define W’ and ¢ inductively in such a way that M, y=¢(y) for all
ye W'. Initially, we have W' ={x} and ¢(x)={"loop(x)}. By assumption
M, x=¢(x). Let now ye W’ and —loop(a,)ed(y). If there is a word w=
2.78,7 g, m=1, such that M, ykEg,, 1<i<m, and pep(p,w), then
M, yk=loop(a,), so this cannot be the case. Suppose now that seS, weZ and
sep(p,w). If wis g? and M, yl=g then it must be the case that M, y|=1loop(a,),



" AUTOMATA-THEORETIC TECHNIQUES 203

so we put —1loop(a;) in ¢(y), If w is a; and yje W, then it must be the case that

M, yjk=—1loop(a,), so we add yj to W', and put —1loop(e,) in @¢(yy). It is easy to see
that if this process did not terminate then we would have that M, x}=loop(x),
therefore the process must terminate and W is finite. [

Our next step is to define Hintikka trees for loop-ADPDL. A Hintikka tree for an
ADPDL formula f with atomic programs a,,..,a, is an n-ary tree T:[n]*—
2¢Nv{L]) that satisfies the following conditions:

(1) feT(A)
and, for all elements x of [n]*:

(2) either T(x)={L} or L ¢T(x) and ge T(x) iff 7g ¢ T(x).

(3) £ A g2€T(x)iff g, € T(x) and g€ T(x).

(4) If (a) geT(x), where a=(Z,S,p, So, F), then there exists a word
W=W,,.., W, over X, k=0, states 5,,..., Sk of S, and nodes ug,..., u, of [n]* such
that:

(a) u0=x,
(b) geT(u,) and s, €F,
and, for all 1 <i<k,
(c) sieplsi_swi);
(d) if w,is g’? then g'e T(u;_,) and u,=u;_,; and
(e) if w,is a; then w;=u; _J.
(Note that if k=0 in condition (4), then so€F and ge T(x).)

(5) If —¢a) geT(x), where a=(Z,S,p,so, F), then so€F entails

—ge T(x), and for all se S and we X such that se p(so, w):
(a) if wis g'? then either 1g’ e T(x) or —1<a,) g€ T(x),
(b) if wis of the form a; then 1 {a,) ge T(xj) or T(xj)={L1}.

(6) 1If loop(=) € T(x), where a=(Z, S, p, So, F), then there exists an s’ € S and
a we X such that s’ € p(s, w) and

(a) if wis g? then ge T(x) and loop(x,) € T(x);
(b) if w is a; then loop(a,) € T(xj).

(7) If —loop(a)€ T(x) then, there is a finite subset W’ < [n]* with xe W’
and a mapping ¢: W’ —29 such that —loop(a)ed(x), and if ye W’ and
—loop(2,) € 4(y), then

. thereisnoword w=g,?g,? - g% m=1,such that g;e T(y), 1 <i<m,

and p € p(p, w),
« for all se S and we Z such that se p(p, w):

(a) if wis g? then either —ige T(y) or =1loop(a,) € ¢(»),
(b) if w is a; then either yje W’ and —1loop(a,) € #(yj) or L e T(yj).



204 VARDI AND WOLPER

PROPOSITION 4.4 A loop-ADPDL formula f has a one-way tree model iff it has a
Hintikka tree. -

Proof. The proof is similar to the proof of Lemma 3.2. The only difference are
the cases corresponding to Hintikka conditions (6) and (7) which are easily han-
dled given Propositions 4.2 and 4.3. ||

The next step is to build a Biichi automaton on n-ary trees over the alphabet
29V {L} that accepts precisely the Hintikka trees for f. Rather than do that, we
build three automata: the local automaton 4,, the { )-automaton 4,, and the
loop automaton A,,,, such that T(A4, )N T(A4 ;)N T(Ap,,) is the set of Hintikka
trees for f. The local automaton checks Hintikka conditions (1)-(3), (S), and (6). It
is built analogously to the local automaton for ADPDL. The { >-automaton
checks Hintikka condition (4) and is identical to the { )-automaton for ADPDL.
The loop-automaton checks Hintikka condition (7). It is a set-subtree automaton.
Finally, we convert the { )-automaton and the loop automaton to Biichi automata
and combine them with the local automaton. "

The Loop Automaton

The loop automaton is a set-subtree automaton A, = (cl(f)uw {1}, p,o,;,). For
the transition relation p,,,,, we have that (s;,..., S,) € pj,,(S, 2) iff:

» sca, and :

o if —loop(x)es, where a=(Z, S, p, so, F) then there is no word w=
2.78,7 - g, m=1, such that g;ea, 1 <i<m, and s, € p(so, W), and for all se€ S
and we X2 such that se p(p, w):

(a) if wis g? then either "gea or —loop(a,)€s,
(b) if wis a, then either "/oop(a,)es/(yj) or Les;.

It is immediate to check that conditions (1)-(4) of the definition of set-subtree
automata are satisfied for 4,,,,. Furthermore, it is easy to check that 4,,, accepts
precisely the trees that satisfy Hintikka condition (7) (note that if s= {1}, then
(D s D) € Proop(s, {L}). Thus we have ,

PROPOSITION 4.5. Let f be a loop-ADPDL formula with atomic programs
a,..a,, and let T: [n]* = 2°/)° {1} be an n-ary tree. Then T is a Hintikka tree for

fif TeT(A)NnT(A )N T(Ap,) |
As for ADPDL, we thus have

THEOREM 4.6. The satisfiability problem for loop-ADPDL can be solved in
exponential time.

Again, the satisfiability problem for loop-PDL is reducible to the satisfiability
problem for loop-ADPDL.* Thus we have also reestablished an exponential upper

*The reduction is similar to the one in [17] but the proof that the reduction is correct is somewhat
more involved in the presence of loop.



_ AUTOMATA-THEORETIC TECHNIQUES 205

bound for the satisfiability problem for loop-PDL.® The reader is urged, however, to
compare our proof to the proof in [23]. Note that since loop-ADPDL extends
ADPDL, it has the same exponential lower bound as ADPDL.

5. DETERMINISTIC PROPOSITIONAL DYNAMIC Locgic WITH CONVERSE

Pratt’s original formulation of dynamic logic included the construct converse
[19]. For every atomic program a € Prog, there is another atomic program in Prog,
denoted a— (the converse of a), whose semantics is running a backwards, i.c., undo-
ing the computation performed by a. Formally, if M= (W, R, IT) is a structure,
then R(a~)={(v,u): (x,v)eR(a)}. We distinguish between positive atomic
programs a, and negative atomic programs a~, and we identify @~ ~ with a. We use
b as a generic name for either positive or negative atomic programs.

Converse-PDL, the extension of PDL to include the converse construct, satisfies
the same finite model property as PDL, and the known decision procedures for
PDL extend without difficulty to converse-PDL [6, 20]. The situation is different
with converse-DPDL, the extension of DPDL to include converse construct. In con-
verse-DPDL the positive atomic programs are deterministic while the negative
atomic programs may be nondeterministic.

PROPOSITION 5.1 [9]. Converse-DPDL does not have the finite model property.

Proof. Consider the formula P A[a=*]<a~ > P. It is easy to verify that this
formula is satisfiable in an infinite model, but is not satisfiable in any finite

model. |

Since the finite model property fails for converse-DPDL, the decision procedure
for DPDL given in [1] does not apply to converse-DPDL. Nevertheless, converse-
DPDL has the tree model property. While DPDL has the one-way tree model
property, the tree models that we construct for converse-DPDL are not one-way. In
the tree models constructed in the previous sections, programs always connected
nodes to their successors in the tree. Here we shall also have programs connecting
nodes to their predecessors in the tree. Again we consider the variant converse-
ADPDL, in which program are described by finite automata rather than by regular

expressions.

PROPOSITION 5.2. Let f be a satisfiable converse-ADPDL formula. Then f has an
n-ary tree model, where n< |cl(f )¢

Proof. Suppose that M, ul=f, for some structure M= (W,R,IT) and ue W.
Before going further, let us give some definitions.

sSince the termporal logics UB [2] and CTL [4] are expressible in loop-PDL [27], this upper

bounds holds also for these logics.
8|cl(f)| is defined for converse-ADPDL exactly as it is for ADPDL.



206 VARDI AND WOLPER

An execution sequence is a word over an alphabet of atomic programs and tests.
Consider an eventuality formula {(a) g, where a =(Z, S, p, So, F). If M, ul={a) g,
then there is an execution sequence w=w, ---w,, states So,.., 5, of S and nodes
Ug, Uy, in W such that u=u,, for all 1<i<qg we have (u,_ 1> ¥;) € R(w);),
(si_1,s:)ep(wy), M,ul=<a,> g, s,€F, and M, u =g In this case we say that w
accomplishes {a) g at u. Let <€ be some fixed linear order on execution sequences,
such that if |w| <|w’| then w<w’ and if w' <w” then ww’ <ww’. Note that this
definition lmphes that if the minimum execution sequence accomplishing and even-
tually {a) g in state u is w,,..., w, then w,,..., w, is the minimum execution sequence
accomplishing {a, > g in u,. Let €1y €, bE an enumeration of all eventually for-
mulas in cl(f). Clearly n<|cl(f)|, so it is linear in the length of f.

In the previous section we showed that by simply unraveling M with u as a root
we get a tree model for f. This is not sufficient in the presence of converse. Rather
we have to unravel M, while ensuring that all eventualities are satisfied. Thus we
construct an n-ary tree model (n is the number of eventualities), where the ith suc-
cessor of a node is intended to satisfy the eventuality e,. The technique is related to
the selective fi Itration technlque in [7].

We define a partial mapping ¢: [n]* - W by induction. The tree model will be
the structure M’ = (W", R’,II"), where W’ = {x: §(x) is defined}, and IT'(x)=
II(¢(x)). The relation R’ will be defined by induction simultaneously with ¢. First,
we take #(i)=u and R’ = . Suppose now that we have already considered every
member of [n]*, and we have already considered xil,..., xi(j — 1), where xie [n]*
and 1 <j<n. Let e; be (&) g. If M, ¢(xi)l={a) g, where a=(Z, S, p, 5o, F), then
let w=w,---w, be an execution sequence that is minimal according to < and
accomplishes {(a) g at ¢(xi) (note that there is a unique such w and that it is of
minimal length). If w, is a,, then ¢(xi) has a unique a,successor, that is, there is a
unique ¢ W such that (¢(xi), t) € R(a,). If (xi, x) ¢ R'(a;) and (xi, xih) ¢ R'(a,) for
1<h<j—1, then we define #(xif)=1 and we put (xi, xij) in R'(a,) (these con-
ditions are necessary to ensure that g, is deterministic). If w, is a;”, then there are
se S and te W such that se p(so, w,), (¢, #(xi)) € R(a,). and w, - -- w, accomplishes
(a,> g at t. We define ¢(xij) =1, and put (xij, xi) in R'(a,). If w, is a test, we leave
#(xij) undefined.

We now claim that if xe W’ and g is any formula in cl(f), then M’, xl=g iff
M, ¢(x)E=g. In particular we have M’, Al=f. The claim is proven by induction on
the structure of the formulas. The claim is clearly true for atomic propositions, and
it is straightforward to carry the induction for formulas of the form g, A g, or —g.
It remains to consider formulas of the form {a) g.

Suppose first that M’, x}=Ca) g. Let w=w,---w, accomplish {a)> g at x. Then
there are nodes x, X,,.., x, in W’ such that x=x,, for all 1<i<q we have
(x;_y,x;)eR'(w;), and M, x =g. By construction, for all 0<i<gq, we have
(#(x;_,), d(xi))e R(w;)}, and by the induction hypothesis, M, ¢(x,)l=g. Thus
M, p(x)E=<a) g.

Suppose now that M, ¢(x)= (az) g, where a=(Z, S, p, 5o, F). Let w=w,---w,
be an execution sequence that is minimal according to < and accomplishes {a) g



AUTOMATA-THEORETIC TECHNIQUES 207

at ¢(x). We prove that M’, x={a) g, by induction on q. If g=0, then so€ F and
M, ¢(x)=g. But then, by the induction on the structure of the formulas, we have
M, xj=g and consequently M’, xl={a) g. If ¢>1, then there are s€ S and te W
such that s€ p(so, w;), (#(x), 1) € R(w,), and w, - - w, accomplishes {a,) g. in ¢ If
w, is a test g'?, then 7= ¢(x), by the induction on the structure of the formula we
have that M’, x)=¢g’, and by induction on ¢ we have that M’, x[=({a,> g. Con-
sequently we have M’, x|=<a) g. If w, is either a; or a;", then the construction
guarantees that there is some y € W’ such that (x, y)e R'(w,), (¢(x) #(»)) € R(w,),
and w, ---w, accomplishes <a,) g at ¢(y). Furthermore, w, ---w, is minimal
according to <. By the induction on g we have M’, yl={a,) g, and consequently

we have M', xE=<a) g. 1}

In the tree models for ADPDL eventualities are accomplished by “downward”
paths. That is, if {a) g is satisfied in a state x, then the sequence of states that leads
to a state that satisfies g is of the form x, xi,, xi, iy, Xi;i,i3,... Thus the automata
that checked for satisfaction of eventualities only needed to go down the tree (we
view the trees as growing downwards). In the presence of the converse construct,
however, eventualities may require “two-way paths.” Indeed, in [29] two-way
automata are defined in order to deal with converse. Unfortunately, the way the
emptiness problem is solved for these automata is to convert them to one-way
automata with a fourfold exponential increase in the number of states. To avoid
this difficulty we extend the logic by adding formulas that deal with “cycling” com-
putations. If « is a program, then cycle(a) is a formula. Let M= (W, R, IT) and
ue W, then M, ul=cycle() if (u, u) e R(a). That is, cycle(a) holds in the state u if
there is a computation of « that starts and terminates at u. Note that we do not
consider cycle formulas as formulas of converse-ADPDL, but they will be helpful in

- the decision procedure, because they enable us to check eventualities using “one-
way” automata.

Let M = (W, R, IT) be a tree structure, and let « be a program. If M, x|=cycle(a),
for xe W, then there is an execution sequence w=w, ---w,, accepted by a and
nodes xq, X, ;... X,, of W such that x=x,, x=Xx,,, and for all 0<i<m— 1, we have
(xi» X;»1)€R(W; ). If x, and x,,_, are successors of x then we say that w accom-
plishes cycle(a) at x downwardly. If x, and x,,_, are the predecessor of x then we
say that w accomplishes cycle(a) at x upwardly.

The distinction between upward accomplishment and downward accomplishment
turns out to be very useful. We therefore introduce two new types of formulas,
whose semantics is defined only on tree structures. If « is a program, then both
cycle (a) and cycle, («) are formulas. We call these formulas directed cycle formulas.
Formulas of the first type are called downward cycle formulas, and formulas of the
second type are called upward cycle formulas. We now define the semantics of these
formulas. '

Let M = (W, R, IT) be a tree structure, and let xe W. M, xf=cycle (a) if there is
an execution sequence w=w, **-w,,, m= 1, accepted by a and nodes x,, x,,..., X,,
of W such that ,



208 ' VARDI AND WOLPER

e x=x¢and x=x,,
e (% Xi41)€R(W;, ) for all 0<i<m—1, and either

« m=1 (so wis a test), or
o m>1 and x; properly succeeds x for l<i<m—1.

That is, cycley(a) is satisfied at x if there is an accepting computation that con-
sists only of a test or if it is accomplished downwardly by a computation that does
not go through x except at the beginning and at the end.

Let M= (W, R, IT) be a tree structire, and let xe W. M, x|=cycle (a) if there is
an execution sequence w=w, - w,,, m= 1, accepted by a and nodes Xg, X{,eeey Xom
of W such that :

e X=Xx¢and x=x,,,

e (x;,Xis1)€ER(W; ;) forall 0<i<m—1, and

e X;=X,_, is the predecessor of x.
That is, cycle (a) is satisfied at x if it is accomplished upwardly. Note that cycle (@)
can be satisfied at a node x even if the computation goes through x at some other
points than its beginning and end. This implies that the definitions of downward
cycle formulas and upward cycle formulas are not symmetric. e

The relationship between the various cycle formulas is expressed in the following
proposition. As we shall see later, when dealing with cycle formulas it suffices to
consider programs of the form (Z, S, p, 5o, {t}) (ie., a single accepting state).

PROPOSITION 5.3. Let M= (W, R, IT) be a tree structure, let xe W, and let
a=(Z, S, p, s, {t}) be a program. Then M, x}=cycle(a) if and only if there are states
Sj s S I S, where 1 <k <|S|, such that s; =5, sp =1, andfor 1 <i<k-1,ifp=s,

then M, x[=cycle (a?) or M, xl=cycle,,(a‘;).7 '

and 9=75j .

Proof. The “if” direction is immediate. For the “only if” direction, assume that
M, xk=cycle(a). Then there is an execution sequence w=w, - ** W,,, States So,-., S in
S, and nodes xg, X;,..., X,, in W such that x=x,, X=X,,, So=35, S =1, and for all
0<i<m—1, we have that s,,,€p(s;, w,,,) and (x;, X;4 ;)€ R(w; ). Let jy,s Ji
be the enumeration of all the points j; such that x,=x. It is easy to show that for
all 1<i<k—1, if p=s;, and g=s,,, then either M, xk=cycle(a?) or M, x|=
cycle (2%). (Note that in the degenerate case we have k=1 and s=1.)

It remains to show that we can assume that k < |S|. Consider the directed graph
G = (S, E), with the states in S as nodes and an edge from p to ¢ iff M, xE
cycle {a3) or M, x=cycle (a}). We have shown that M, x|=cycle(a) iff either s =t or
there is a directed path in G from s to ¢. Clearly, if there is such a path, then there is
such a path whose length is at most |S|. The claim follows. [

The crucial property of eventuality formulas that was used in constructing the
automata in Section 3 is that they propagate. This means, that the truth of an even-

724 is defined in Section 2.1.



AUTOMATA-THEORETIC TECHNIQUES 209

tuality in a state of a structure only depends on the truth of formulas in that state
and on the truth of an eventualily in a successor state. Directed cycle formulas also
propagate, but in a somewhat more complicated manner.

PrOPOSITION 54. Let M= (W, R, IT) be a tree structure, let xe W, and let
a=(Z, S, p, s, {t}) be a program. Then M, x|=cycle ) if and only if either there is
a test g? such that M, xl=g and tep(s, g?), or there are states s,,..,s, in S,
1 <k <|S|, an atomic program b, and a successor y of x such that

e (x y)eR(b), '
e forall1<i<k—\, if p=s; and q=s,, then M, yl=cycle (a?).
e s,€p(s,b) and tep(s;,,b™).

Proof. The “if” direction is immediate. For the “ony if” direction assume that
M, xl=cycle (a). Then there is an execution sequence w=w, ***, w,,, m> 1, states
$0s-s Sy i S, and nodes x,, X, ,..., X,, Of W such that x=x,, x=x,,, So=35, S, =1,
and for all 0<i<m—1 we have that (x,, x;,,)eR(w,,,) and s,,,€p(s;, w; ;)
Moreover, we have that either m=1, or m>1 and x; properly succeeds x for
1<ism-—1.

In the first case, w, must be a test g? such that M, x|=g and t€ p(s, g?). In the
latter case, since x, properly succeeds x, it must be a successor of x and w, must be
some atomic program b such that (x, x,)e R(b). We have to show that each time
the path x,,..., x,, leaves x,, it leaves it downwardly. Let j, ,..., j; be an enumeration
of all the points j, such that x;,=x,. Clearly, j,=1 and s, €p(s, b). Also, since
xm=x,and x;#xfor 1<j<m—1, j,=m—1 and tep(s,, b™).

We show now that if 1<i<k—1, p=s, and g=y5,, , then M, x,}=cycle (a?).
There are two cases. If j;, , = j;+ 1 then w;,_ , must be a test. Consequently, M, x,}=
cycle,(x?). If, on the other hand, j;+1<j;,,, then x, properly succeeds x, for
Ji<h<jiiy, 50 M, x,|=cycle (a3).

The argument showing that we can assume that k< |S| is as in the proof of
Proposition 5.3. |]

COROLLARY 5.5. Let M=(W, R, II) be a tree structure, let xe W, and let
a=(ZX, S, p, s, {t}) be a program. Then M, x|=cycle (o) if and only if there is a finite
subset W' < W with xe W' and a mapping ¢: W' — 2icveled=}ypacS}  guch thay
cycle(a) € ¢(x), and if ye W’ and cycle (a?) € §(y), then either there is a test g? such
that M, yl=g and qe€p(p, g?), or there are states s,,..,s, in S, 1 <k<|S|, an
atomic program b and a successor ze W’ of y such that

« (¥ 2)eR(b),
o cycle(a;) e @(z) for all u,v such that u=s;, v=s;,  and 1 <i<k-—1,
o s,€p(p,b)and qep(s;,b™).
Proof. If. We claim that M, y|=cycle,(«}) for all ye W’ and cycle (af) € ¢(y). In

particular M, xl=cycle («).
We now prove the claim. Let y € W’ be such that it has no successors in W’ and



210 ' VARDI AND WOLPER

let cycle(a?)€ #(y). Then there is a test g? such that M, yl=g and g€ p(p, g?), so
by Proposmon 5.4, M, yl=cycle(a}). Suppose now that we have already proven the
claim for all successors of a node y e W’. It is easy to verify that the claim holds for
y. Since W is finite, the claim holds for all ye W'.

Only if. We define W and ¢ inductively in such a way that M, yl=¢(y) for all
ye W Initially, we put xe W and ¢(x) = {cycle{a)}. By assumption M, x|=¢(x).
Let now ye W’ and cycle(x?)€ ¢(y).- Then there is an execution sequence w =
Wy W, m>1, accepted by «? and nodes yo, y,,--, Ym Of W such that y=y,,
V=Ym (YisVis1)ER(wW;,,) for all 0<i<m—1, and either m=1 or m>1 and y,
properly succeeds y for 1 <i<m—1. We say that cycle,(«?) has rank m at y.

In the first case w, must be a test g? such that M, yl=g and t€p(s, g?). In that
case we do not need to extend W". In the second case there are states s,,..., 5, in S,
1 <k <|S], an atomic program b and a successor z of y such that

« (» 2)eR(b),

e M, zl=cycle (a2), for all u, v such that u=s;, v=ys;,,and 1 <i<k-1,

e s,€p(p,b)and gep(s;, b™).
Furthermore the proof of Proposmon 5.4 shows that the rank of cycle («?), where
u=s;, v=s;, ,and 1<i<k—1, in z is smaller than m. We add z to W’ and add
cyc[e,,(ozﬂ), where u=s;, v=s,,,,and 1<i<k-—1, to ¢§(z).

Since, only formulas whose rank is greater than one cause addition of new nodes
to W', the above process terminates, and the result satisfies the conditions of the
corollary. |

Corollary 5.5 is very significant, since it reduces the satisfaction of downward
cycle formulas to satisfaction of subformulas in a way that can be easily checked by
an automaton.

We now state the propagation property of upward cycle formulas. The proof is
straightforward and left to the reader.

PROPOSITION 5.6. Let M=(W,R,II) be a tree structure, let xe€ W with
predecessor y, and let a = (X, S, p, s, {t}) be a program. Then M, x}=cycle () if and
only if there are states p, q€ S and an atomic program b such that

hd (x’ }’) € R(b)’
- M, yl=cycle(a3),
» pep(s,b)and tep(q,b™).

Note that upward cycle formulas propagate undirected cycle formulas. Upward
propagation, however, differs from downward propagation in a crucial way: it stops
at the root of the tree, since by Proposition 5.6 no upward cycle formulas is satisfied
at A.

Having characterized satisfaction of cycle formulas, we can go back to examining
eventualities. As with cycle formulas, we distinguish between downward and
upward accomplishment of eventualities. We therefore introduce two new types of
formulas, whose semantics is defined only on tree structures. If « is a program and g



' AUTOMATA-THEORETIC TECHNIQUES 211

is a formula, then both {(a),g and {a),g are formulas. We call these formulas
directed eventualities. Formulas of the former type are called downward eventualities,
and formulas of the latter type are called upward eventualities. We now define the
semantics of directed eventualities.

Let M=(W,R,IT) be a tree structure, and let xeW. We have that
M, x={a) g if there is an execution sequence w=w, *** w,,, m =0, accepted by «
and nodes xg, X;,...s X, Of w such that:

X=X,

e (x;, X;41)€R(W;, ) for all 0<i<m— 1,

e M, x,=g, and

. there is 0<k<m such that x,=x and x; properly succeeds x for
k + 1 <i<m (this is vacuously true if k=m).

Let M=(W,R,IT) be a tree structure, and let xeW. We have that
M, x=<{a), g if there is an execution sequence w=w, ***w,,, m=> 1, accepted by «
and nodes xg, Xy,.ey Xy Of W such that:

* X=X,

e (x5, Xiy1)ER(W; ) for all0<i<m-—1,

e M, x,}=g, and

. there is 0 <k <m such that x, is the predecessor of x.
Note that an upward eventuality actually requires that the computation eventually
.goes upward, while a downward eventuality does not require that the computation
eventually goes downward. Also note that an eventuality can be satisfied both
upwards and downwards. The relationship between the various types of ventualities
is expressed in the next proposition.

ProposiTION 5.7. Let M =(W, R, IT) be a tree structure, let xe W, let a be a
program, and let g be a formula. Then M,x|={a) g if and only if either
M, x=<ad>,g or M, x=<a}, g

Proof. The “if” direction is immediate. For the “only if” direction, assume that
M, x}={a) g. Then there is an execution sequence w=w, ***w,,, m >0, accepted
by « and nodes x¢,X;,..X, in W such that x=x,, M,Xx,}=g and
(X, Xiv1)ER(W,;,,) for all 0<i<m—1. Let j be the maximal index such that
x;=x. If j=m then M, x[={a) g If j<m, then either x; ., is a successor of x, in
whxch then M, x={a),g or x,,, is the predecessor of x, in which case

M, xl=<a>, g |

We now characterize the propagation of directed eventualities.

PROPOSITION 58. Let M=(W,R,IT) be a tree structure, let xe W, let
. a=(Z, S, p, s, F) be a program, and let g be a formula. Then M, x{=<{a>,g if and
only if either M, x}=cycle(a') for some te F and M, xi=g, or there are states p, € S,
an atomic program b, and a successor y of x such that

e M, xl=cycle(2*),

* qep(p,b),



212 VARDI AND WOLPER

» (x, y)eR(b), and
b M, y}=<aq>dg'

Proof. The “if” direction is immediate. For the “only if” direction, assume that
M, xi={a)>,g. Then there is an execution sequence w=w, ***w,,, m =0, accepted
by « and nodes xq, X,,-.., X, Of W such that x=x4, M, X,,}=8, (X;, X;1) € R(W; )
for all 0<i<m-—1, and there is 0 <k <m such that x, =x and x; properly suc-
ceeds x for k+ 1 <i<m (the last clause is vacuously true if k=m)..If k =m then
M, x=cycle(a’) for some te F and M, x|=g. So suppose k<m. Let s,,..., 5, be
states of S such that s,=s, s,,€F, and s5;, ,€ p(s;, w; ;) for0<i<m—1.Let p=s,
and ¢ =s,, . Since x, = x, we have M, xj=cycle(«?). Since x, ., properly succeeds
Xy, Wi, must be some atomic program b such that (x, x.,,)eR(b) and
g€ p(p, b). Finally, since x, properly succeeds x for k+1<i<m, we have that x;
succeeds x, ., for k + 1 <i<m. Consequently, M, x, ., =<2, >.8 1§

COROLLARY 5.9. Let M= (W, R, IT) be a tree structure, let xe W, let a=
(Z, S, p, s, F) be a program, and let g be a formula. Then M, x}={a) , g if and only if
there are nodes xg,..., X, of W states sg, lp,-s Sk, ty Of S, and atomic programs
b,,..., by such that v

o Xo=X, So=5, ty,€F,and s;, ,€p(t;,b;,,) for 0<i<k—1,

e X, is a successor of x; and (x;, X; .)€ R(b; ) for 0<i<k—1,
o M, x;=cycle(al) for 0< i<k, and

e M, xk}=g°

Proof. If. We claim that M, x;}=(a, >, g for 0<i<k. The proof is by induction
on i=k, k—1,..., 0 using proposition 5.8 and is left to the reader.

Only if. We define the sequences inductively in such a way that M, x,=<a,>.,8
for 0<i<k. Let xo=x, so=s, and by assumption M, xof={a),g Suppose that
we have defined xq,..., X;, So, tos-» 5;» and by,.., b;, and we have M, x;= <a, > ;g
Then there is an execution sequence w =w, - w,,, m >0, states pq,..., p,, of S, and
nodes yo, Vi, ¥m Of W such that '

© Po=Si Pm€F, yo=x;;

e piri€p(piwici)and (¥, yis JeR(w; ) forall 0<j<m—1;

e M, Vm '= b 4]

« there is 0</<m such that y,= y, and y, properly succeeds y, for /+1 <
j<m. , :
We say in this case that {a,),g has rank m at x,.

Let ¢,= p,. Then M, x,l=cycle(«’). There are now two cases to consider. The first
case is that /= m. It follows that M, x;=g and we are done. The second case is that
I>m. Let s5,,,=p,;,.. Since y,,, properly succeeds y,, it must be a successor of
vo=x;. Let x,,, be y,,,. Thus w,,, must be some atomic program b such that
(¥, Vi+1)€ R(b) and s, , € p(t;, b). Let b;,, be b. By an argument similar to the
one in the proof of Proposition 5.8, we can show that M, x,, ,=<a,,,>,g and the
rank of this eventuality at x,,, is smaller than m. Since each time we extend the



*  AUTOMATA-THEORETIC TECHNIQUES 213

sequence we propagate an eventuality with a smaller rank, this process must ter-
minate. | _

We now state the propagation property of upward eventualities. The proof is
similar to the proof of Proposition 5.8 and left to the reader.

PROPOSITION 5.10. Let M= (W, R,II) be a tree structure, let xeW with
predecessor y, let a=(Z, S, p, s, F) be a program, and let g be a formula. Then
M, x={a).g if and only if there are states p, 4 € S and an atomic program b, such
that ‘

M, x=cycle(a?),
gep(p, b),

(x, y)e€ R(b), and
M, y=<{a,) 8.

Note that upward eventualities propagate undirected eventualities and that
upward propagation must stop at the root of the tree. ;

We now define the extended closure, ecl(f), of a converse-ADPDL formula f (we
identify a formula — g with g): '

feecl(f). '
If g, A g;€ecl(f) then g,, g, €ecl(f).
If "geecl(f) then geecl(f).
If geecl(f) then "1geecl(f).
If (a) geecl(f) then geecl(f).
If (o) geecl(f), where a=(Z, S, p, 5o, F), then g’ eecl(f) for all g"?7eX.
If <a> gECCl(f), where a= (Z’ S1 P Sos F)’ then <a:> g, <as>d &
{(z,>,geecl(f) for all seS. :
« If Ca) geecl(f), where a=(Z, S, p, 5o, F), then cycle(a’), cycleat),
cvcle (*)eecl(f) for all 5, 1€ S. '
It is not hard to verify that the size of ecl(f) is at most quadratic in the length of f.

PROPOSITION S.11. Let f be a converse-ADPDL formula. Then Iecf( )l = 0(n?).

We are now in position to define Hintikka trees for converse-ADPDL. Unlike in
Hintikka trees for ADPDL, it is not enough to label a node by the formulas in
ecl(f) it satisfies, Indeed, we also have to know what program connects this node
to its predecessor. Thus we also label nodes by atomic programs, and the labeling is
to be interpreted as follows: if a node x is labeled by atomic program b and the
predecessor of x is y, then (x, y)e R(b). Note that a node cannot be labeled by

more than one atomic program.
A Hintikka tree for a converse-ADPDL formula f is an n-ary tree T: [n]* —
2eclif)u Progu {1} where n is the number of eventuality formulas in cl(f), that satisfies.

the following conditions:

(1) feT(4);



214

VARDI AND WOLPER

and for all xe [n]*:

(2)

3)

4)

(2.1) |T(x)n Prog] < 1;

(2.2) if y,z are two distinct successors of x, a is a positive atomic
program, and a~ € T(y), then a~ ¢ T(z);

(23) if y is a successor of x, a is a positive atomic program, and
ae T(x), then a~ ¢ T(y); :

(3.1) either T(x)={L} or 1 ¢ T(x) and ge T(x) iff 21g ¢ T(x);

(32) g, A g,eT(x)iff g,eT(x) and g, e I(x); '

ifa=(Z,8,p,5 {t})isa program, then

(4.1) cycle(x)e T(x) if and only if there are states 505 Sy 1N S, where

0<m<|S|, such that s4=s, Sm=1t, and for 0<i<m—1, either
cycle (5+1) e T(x) or cycle(asi+1) e T(x);

(4.2) if y is the predecesor of x, then cycle (a) € T(x) if and only if there are

states p, ge S and an atomic program b such that
o beT(x),

* cycle(ag) e T(y),

* pep(s,b)and tep(q,b~);

(4.3) cycle(a) if either there is a test 8?7 such that ge T(x) and te p(g?, s),

or there are states s,,..., s, in S, l<m<|S], an atomic program b
and a successor y of x such that

« b7 eT(y),

o cyclefai+)eT(y) for 1 <ig<m— 1,

* S5 €p(s,b) and rep(s,,, b™);

(44) cycle (o) e T(x) only if there is a finite subset W’ < [n]* with xe W’

(5)

and a mapping ¢: W’ — 2°U) guch that cycle(a) € ¢(x), and if ye W’
and cycle (a?) € §(y), then either there is a test g? such that ge T(y)
and pep(q, g?), or there are states Stres S I S, 1<m<|S], an
atomic program b and a successor ze W’ of y such that

o« b e 1(z),

o cyclefosi+)ed(z) for I<ism—1,

* si€p(p,b)and gep(s,,, b~);

fa=(Z,8,p,5 Fisa program and g is a formula, then

(5.1) (&) geT(x) if and only if either (x>, ge I(x) or L&), g€ T(x);
(5.2) if y is the predecessor of x, then <{a), ge T(x) if and only if there are

states p, g€ S and an atomic program b, such that
» cycle(a?) € T(x),

* q€p(p,b),

e beT(x),

« La,> geT(y);

(5.3) <(ad,ge T(x) if either cycle(a) e T(x) and g e T(x), or there are states

P, g€ S, an atomic program b, and a successor y of x, such that
* cycle(a?) e T(x),



AUTOMATA-THEORETIC TECHNIQUES 215

» gep(p,b)
» b7 eT(y),
* (aq>dge (y);
(54) <{a),ge T(x) only if there are nodes x,,..., x;, states so, Loy Sks i Of
S, and atomic programs b,,..., b, such that
e Xo=X, So=35, x€F, and 5, ,€p(t;,b;,,) for 0<i<k—1,
e Xx;,,is a successor of x; and b, ,e T(x,,,) for 0<i<k-—1,
o cycle(al)e T(x;) for 0<i<k,
. geT(x,).

The clauses of the definition are meant to capture Propositions 5.3-5.10. Note,
however, that conditions (4.3) and (44) each capture only one direction of
Proposition 54 and Corollary 5.5. Similarly, conditions (5.3) and (5.4) each cap-
tures only one direction of Proposition 5.8 and Corollary 5.9. This will be sufﬁcxent,
as the following proposition shows.

PROPOSITION 5.12. A converse-ADPDL formula f has a tree model if and only if
it has a Hintikka tree.

Proof. Only if. Let M = (W, R, IT) be an n-ary tree model for f (ie.,, W< [n]*).
We define a Hintikka tree T: [n]* — 2°/)vProsv{L} for f as follows: for a node
xe[n]*—W, T(x)={L}, and for a node xe W,

T(x)={geecl(f): M, xl=g} v {b: y is the prcdecessqr of x and (x, y)e R(b)}.

We leave it to the reader to verify, using Propositions 5.3-5.10 that T is a Hintikka
tree for f.

If. Let T be a Hintikka tree for f. We construct a tree model for f as follows. The
structure is M = (W, R, IT), where W= {xe[n]*: T(x)#{L1}}, R(b)= {(x, xi):
xie W and b~ e T(xi)}, and for all xe W, II(x)= { pe Prop: pe T(x)}.

By condition  (2) for Hintikka trees, M is a structure for converse-ADPDL, that
is, R(a) is deterministic for every positive atomic program a. It now remains to
show that M, Al=f. For this, we show by induction on the structure of formulas
that for all geecl(f), ge T(x) iff M, x}=g. For atomic propositions, this is true by
construction. The inductive step for formulas of the form g, A g, and g follows
from condition (3). For cycle formulas, we will consider first downwards and then
upwards and undirected cycle formulas.

For downwards cycle formulas, we need to prove that cyclea)e T(x) iff
M, xk=cycle (o). If cycle (a)e T(x), where a=(Z, S, p, s, {t}), then by condition
(4.4) there is a finite subset W’ = W with xe W’ and a mapping ¢: W* — 2°/) such -
that cycle (a) € #(x), and if y € W’ and cycle (a?) € §(y), then either there is a test g?
such that ge T(y) and pep(q, g?), in which case by the induction hypothesis
M, yl=g, or there are states s,,..., 5,, in S, 1 <m<|S], an atomic program b and a
successor ze W’ of y such that '



216 VARDI AND WOLPER

b b—ET(Z), 50 (}’,Z)ER(b),
o cycleaji+')ed(z)for 1<i<m—1,
» s5,€p(p, b) and gep(s,,, b™).

Thus by Corollary 5.5, M, x|=cycle {«).

Suppose now that M, x|=cycle (x). By Corollary 5.5, there is a finite subset
W' < W with xe W’ and a mapping ¢: W’ — 2%<) such that cycle {a) € #(x), and if
ye W and cycle (xf) € §(y), then either there is a' test g? such that M, yl=g and
pep(q, g7), or there are states s,,...,5,,in S, | <M< IS], an atomic program b and
a successor ze€ W’ of y such that . :

« (¥ 2)eR(b),
o cyclefasi+')ed(z) for 1<i<m—1,
« si€p(p, b) and gep(s,,, b™).

We claim that. cyclea?)e T(y) for all ye W’ and cycle(a?) € ¢(y). In particular
cycle (a) € T(x).

We now prove the claim. Let y € W be such that it has no successors in W’ and
let cycle (a?) € (). Then there is a test g? such that M, Y=g and pep(q, g?), so
by the induction hypothesis, ge T(y), and by condition (3.3), cyclefa?)e T(y).
Suppose now that we have already proven the claim for all successors of a node
ye W'. It is easy to verify that the claim holds for y, because of condition (3.3).
Since W is finite, the claim holds for all ye W". '

We now turn to upwards and undirected cycle formulas. Note that as upwards
cycle formulas propagate undirected cycle formulas, we have to consider both
simultaneously. We will prove by induction on the distance of a node from the root
of the tree that cycle,(x)e T(x) iff M, xf=cycle,(a) and cycle(x) e T(x) iff M, x}=
cycle(a).

Consider first the root of the tree. By condition (4.2) there are no upward cycle
formulas in 7(4), and by Proposition 5.6 no upward cycle formula is satisfied in A.
Thus, by condition 4.1, cycle(a) € T(x) iff there are states 505 Sy IR S, 0S<M < |S),
such that so=s, 5, =1, and cycle (aji+')e T(A) for 0<i<m—1. By the previous
argument for downward eventualities, the last condition is equivalent to the
following: there are states s,,..., s,, in S, 0<m<|S|, such that sq=s, 5, =1, and
M, A= cycle (aji+!) for 0 <i<m— 1. By Proposition 5.3, the last condition holds iff
M, Al=cycle(x). : :

Consider now a node xie W. By condition (4.2), cycle,(a)e T(xi) iff there are
states p, g€ S and an atomic program b such that

» be T(xi),
o cycle(a?) € T(x),
» pep(s,b) and tep(q, b™).

By the induction on nodes, the last condition is equivalent to the following: there
are states p, g€ S and an atomic program b such that

e (xi, x)e R(b),



" AUTOMATA-THEORETIC TECHNIQUES 217

o M, xf=cycle(a?),
« pep(s,b)and tep(q, b7)
By Proposition 5.6, the last condition holds iff M, xil=cycle (a).

Finally, by condition (4.1), cycle(z) € T(x) if and only if there are states So,-.., S
in S, 0<m<|S|, such that so=s5, 5, =1, and for 0<i<m—1 either cycle (a}i*') €
T(x) or cycle{aj+') € T(x).

By the induction hypotheses, the last condition is equivalent to the following:
there are states Sg,.. S, in S, 0<m<|S|, such that s,=s, s.,=¢ and for
0<i<m—1 cither M, xj=cycle (asi+') or M, x|=cycle{a}**). By Proposition 5.3,
the last condition holds iff M, xj=cycle(a). _

The induction step for eventualities is analogous to the induction step for cycle
formulas: first the induction is carried out for downward eventualities and, then by
induction on the distance of nodes from the root, for upward and undirected even-
tualities. Details are left to the reader. |

The next step is to build a Biichi automaton on n-ary trees over the alphabet
9l Progw {1} that accepts precisely the Hintikka trees for /. Rather than do that,
we build three automata: the local automaton 4,, the { )-automaton A4, and
the cycle automaton 4., such that T(4,)N T(A )N T(A,y..) is the set of Hin-
tikka trees for f- The local automaton checks Hintikka conditions (1)-(3), (4.1-3),
and (5.1-3). It is built analogously to the local automaton for ADPDL. The ¢ >-
" automaton checks Hintikka condition (5.4). It is a set-subtrec automaton. The cycle
automaton checks Hintikka condition (4.4). It is also a set-subtree automaton.
Finally, we convert the { )-automaton and the cycle automaton to Biichi automata
and combine them with the local automaton.

The { >-Automaton

The ( )-automaton is a set-subtrec automaton A4 ,= (ecl(f)w Progu {1},
p¢>). For the transition relation p,, we have that (s,,..., 8,) € p¢>(s, a) ifl:
e sca, and
e If ¢a)yges, where a=(Z, S, p, 5, F), then there is a state pe S such that
cycle(a?) e a and either pe F and gea or there is an atomic program b and a state
g€ p(p, b) such that for some s; we have b~ €s; and {«,).gE€S;.

The Cycle Automaton

The cycle automaton is a set-subtree automaton 4., = (ecl(f)u Progu {1},
Peveie)- For the transition relation p .., We have that (s, ,..., 8,) € pycee(s, a) ill:

« sca,and ' '

o if cycle{a) s, where a=(Z, S, p, 5, {t}), then either there is a test g? such
that gea and r€p(s, g?) or these are states s,,..., Sp, in S, 1<m<|S|, and an
atomic program b such that for some s, we have '

e b es,
e cyclefaz+)es; for 1<i<m—1, and
e s,€p(s,b) and tep(s,,b").



218 VARDI AND WOLPER

It is immediate to check that conditions (1)~(4) of the definition of set-subtree
automata are satisfied for 4., and Ay Furthermore, A, and 4., clearly
accepts precisely the trees that satisfy Hintikka conditions (54) and (4.4),
correspondingly. Thus we have :

PROPOSITION 5.13. Let f be a converse—ADi’DL Jormula, and let T: [n]* -
2¢1)-Prog o {1} be an n-ary tree. Then T is a Hintikka tree for f iff Te T(4,)N

T(A < )) N T(Acycle)' '
As for ADPDL, we have proven

THEOREM 5.14. The satisfiability problem for converse-ADPDL can be solved in
exponential time.

Again, the satisfiability problem for converse-PDL is reducible to the satisfiability
problem for converse-ADPDL. Thus we have also reestablished an exponential
upper bound for the satisfiability problem for converse-PDL. Note that since con-
verse-ADPDL extends ADPDL, it has the same exponential lower bound as
ADPDL.

6. CONCLUDING REMARKS

We have presented a unifying technique for obtaining decision procedures for
modal logics of programs. We have demonstrated our technique by proving
exponential upper bounds for several variants of deterministic propositional
dynamic logic. In [32] we sketched a proof of an exponential upper bound for a
propositional u-calculus Mu~—. A full proof of this result will appear in a future
paper.

Our technique is based on the tree model property, which seems to be more fun-
damental then the small model property. Furthermore, we can actually use our
technique to prove the small model property. The algorithm for testing emptiness of
Biichi automata works by checking the existence of good embedded subtrees. These
subtrees can be combined to form a finite structure that can be unraveled into an
accepting run. The size of this structure is polynomial in the size of the given
automaton. When this automaton is the automaton that accepts precisely the set of
Hintikka trees for a formula /, the above structure is actually a model for /. Thus, if
a formula f of loop-ADPDL is satisfiable, then it has a model whose size is at most
exponential in the length of £ In the case of converse-DPDL, this construction does
not work. Indeed, because of the presence of the converse construct, positive atomic
programs in the resulting structure may be nondeterministic. This is to be expected,
since converse-DPDL does not have the finite model property.

In [14], the maximal model technique was used to prove completeness of an
axiom system for PDL. Their technique was extended in [1] to DPDL. Our
automata-theoretic technique can also be used to prove completeness results. The



" AUTOMATA-THEORETIC TECHNIQUES : 219

idea is to allow only consistent sets of formula as states in the automata, and then
to prove that automata that are built from consistent states necessarily accept some
trees. This technique fails, however, for converse-ADPDL, since the extended
closure for a converse-ADPDL formula includes formulas that are not converse-
ADPDL formulas. Thus the axiomatization of converse-ADPDL remains an open
problem.

APPENDIX

In [32] we defined eventuality automata. In eventuality automata, the acceptance
condition is specified by a collection F<2° of designated sets. A run ¢ of 4 over T
is accepting if and only if, for all infinite paths p starting at 1 we have inf(¢, p)Nn X
for all Xe F.

Having defined eventuality automata, we went on to prove that the emptiness
problem for eventuality automata can be solved in polynomial time. Unfortunately,
while writing that paper we were not aware of [25]. We show now that every even-
tuality automaton can be converted to an equivalent Biichi automaton, with a
polynomial increase in size. This conversion, together with Theorem 1.2, yields a
polynomial time algorithm for the emptiness of eventuality automata.

THEOREM A.l. Let A=(Z, S, p, Sy, {Foss Fe_1}) be an eventuality
automaton. There is a Biichi automaton 4’ with k| 4| states such that T{(4) = T(A').

Proof. Let A'=(ZX,S,p,55,F), S =Sx{0,..,k—1}, o=3Sox {0},
F=Fyx{0}, and for 0<i<k—1 ((s5y, )y (5, 1)) €P'((s, i), o) iff (s,,...,s,)e
p(s, 6), and either s¢ F; and i=j or se F; and j=i+ 1 (mod k). We leave it to the
reader to show that T(4)=T(4’). | ’

We note that in [32] we had a direct reduction from the satisfiability problem to
the emptiness problem for eventuality automata. In the process of writing the
proofs we realized that they can be significantly simplified by the introduction of
subtree automata and set-subtree automata. '

ACKNOWLEDGMENTS

We'd like to thank the following people for helpful discussions and comments: E. A. Emerson, R.
Fagin, J. Y. Halpern, M. Karpinski, J. C. Michell, R. Parikh, and A. P. Sistla.

REFERENCES

1. M. BEN-ARI, J. Y. HALPERN, AND A. PNUELI, Deterministic propositional dynamic logic: finite
models, complexity, and completeness, J. Comput. System Sci. 28§ (1982), pp. 402-417.

2. M. BEN-AR1, Z. MANNA, A. PNUELL, The temporal logic of branching time, Proc. 8th ACM Symp. on
Principles of Programming Languages, Williamsburg, 1981, pp. 164-176.



220 . VARDI AND WOLPER

3

11.

12,

13.

14.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. R. BGcHi, On a decision method in restricted second order arithmetic, Proc. Internat Congr.
Logic, Method and Philos Sci. 1960, Stanford University Press, 1962, pp. 1-12.

- E. A. EMERsON, J. Y. HALPERN, Decision procedures and expressiveness in the temporal logic of

branching time, J. Computer and System Sciences 30 (1985), pp. 1-24.

. E. A. EMERSON, A. P. SISTLA, Deciding branching time logic, Proc. 16th ACM Symp. on Theory of

Computing, Washington, 1984, pp. 12-24.

- M. J. FisHER, R. E. LADNER, Propositional dynamic logic of regular programs, J. Comput. System

Sci. 18(2), 1979, pp. 194-211.

. D. M. GaBBAY, “Investigation in Modal and Tense Logic,” Reidel, 1976.
- Z. HaBasinski, “Decidability Problems in Logics of Programs,” Ph.D. Thesis, Dpt. of Mathematics,

Technical University of Poznan, 1983.

. J. Y. HALPERN, Private communication, 1983.
. R. HossLey, C. W. RACKOFF, The emptiness problem for automata on infinite trees, Proc. 13th IEEE

Symp. on Switching and Automata Theory, 1972, pp. 121-124.

D. HARgeL, R. SHERMAN, Looping vs. repeating in dynamic logic, Information and Control 55 (1982),
pp. 175-192. :

D. HAREL, R. SHERMAN, Propositional dynamic logic of flowcharts, Proc. Int. Conf- on Foundations
of Computational Theory, Lecture Notes in Computer Science, vol. 158, Springer-Verlag, Berlin,
1983, pp. 195-206. ‘

N. D. Jones, W. T. Laaser, Complete problems in deterministic polynomial time, Theoretical Com-
puter Science 3 (1977), pp. 105-117.

D. KozeNn, R. PARIKH, An elementary proof of the completeness of PDL, Theoretical Computer
Science 14 (1), 1981, pp. 113-118. .

A. R. MEYER, Weak monadic second order theory of successor is not clementary recursive, Proc.
Logic Colloguium, 1975, Lecture Notes in Mathematics, vol. 453, Springer-Verlag, pp. 132-154.

D. E. MULLER, Infinite sequences and finite machines, Proc. 4th IEEE Symp. on Switching Circuit
Theory and Logical Design, New York, 1963, pp. 3-16.

R. ParikH, Propositional logics of programs: systems, models and complexity, Proc. 7th Symp. on
Principles of Programming Languages, Las Vegas, 1980, pp. 186-192.

A. PNueLl, The temporal logic of concurrent programs, Theoretical Computer Science 13 (1981),
pp. 45-60.

V. R. PRATT, Semantical considerations on Floyd-Hoare logic, Proc. 17th IEEE Symp. on Foun-
dations of Computer Science, Houston, October 1976, pp. 109-121.

V. R. PrRATT, Models of program logics, Proc. 20th IEEE Symp. on Foundations of Computer
Science, San Juan, 1979, pp. 115-122.

V. R. PRATT, A near-optimal method for reasoning about action, J. Comput. System Sci. 20 (1980),
pp- 231-254. :

Y. R. PRATT, Using graphs to understand PDL, Proc. Workshop on Logics of Programs, (D. Kozen,
ed.), Yorktown-Heights, Lecture Notes in Computer Science, vol. 131, Springer-Verlag, Berlin, 1982,
pp. 387-396.

A. PNUELL, R. SHERMAN, Propositional dynamic logic of looping flowcharts, Technical Report,
Weizmann Institute, Rehovot, Isracl, 1983.

M. O. RaBIN, Decidibility of second order theories and automata on infinite trees, Trans AMS, 141
(1969), pp. 1-35.

M. O. RasiN, Weakly definable relations and special automata, Proc. Symp. Math. Logic and Foun-
dations of Set Theory (Y. Bar-Hillel, ed.), North-Holland, 1970, pp. 1-23.

M. O. RaBIN, Automata on infinite objects and church’s problem, Proc. Regional AMS Conf. Series
in Math. 13 (1972), pp. 1-22. '

R. SHERMAN, “Variants of Propositional Dynamic Logic,” Ph.D. Dissertation, The Weizmann Inst.
of Science, 1984.

R. S. STREETT, “A Propositional Dynamic Logic for Reasoning about Program Divergence,” M. Sc.
Thesis, MIT, 1980. ’



-

- AUTOMATA-THEORETIC TECHNIQUES 221

29. R. S. STREETT, Propositional dynamic logic of looping and converse is elementarily decidable, Infor-
mation and Control 54 (1982), pp. 121-141.

30. J. W. THATCHER, J. B. WRIGHT, Generalized finite automata theory with an application to a decision
problem of second-order logic, Mathematical System Theory, 2 (1968), pp. 57-81.

31. M. Y. VARDI, L. STOCKMEYER, Improved upper and lower bounds for modal loglcs of programs,
Proc. 17th ACM Symp. on Theory of Computing, 1985, pp. 240-251.

32. M. Y. VARDI, P. WOLPER, Automata-theoretic techniques for modal logics of programs, Proc. 16th
ACM Symp. on Theory of Computing, Washington, 1984, pp. 446-456.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium



