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Abstract

We investigate the use of branching time temporal logic
to reason about fair programs. Our approach is novel in
viewing fairness conditions as an intrinsic part of the
computations rather than as a part of the formulas
specifying the computations. Our first result is that the
branching time logic of fair programs is the same as the
branching time logic of probabilistic programs and as the
logic of fusion- and suffix-closed programs defined by
Abrahamson. Next we give decision procedures for the
temporal logic of fair programs using a new type of auto-
mata on infinite trees. Matching upper and lower
bounds for two different versions of branching time tem-
poral logic are established

1. Introduction

In concurrent programs, there is an inherent non-
determinism due to the fact that, at each moment, the
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next computation step can be done by any enabled pro-
cess. It is convenient to imagine that this nondetermin-
ism is embedded in a scheduler. This scheduler decides
at each moment which process is going to perform the
next step. While we want to make as few assumptions
as possible about the scheduler, it is nevertheless reason-
able to assume that it is not a pathological one. Indeed,
almost all distributed protocols can be defeated by a
sufficiently “evil’’ scheduler. Thus, it is usual to assume
the scheduler to be fasr, ie., not to ‘‘discriminate”
against any process. Equivalently, we can restrict our
attention to fair computations, computations in which
all processes have been scheduled in a fair manner.
(Note that we are using here the term fairness generi-
cally; it has numerous formalizations (cf. [FK84,
LPS81)).) The issue we address in this paper is the use of
temporal logic to reason about fair programs.

Temporal logic was introduced by Pnueli [Pn77|
and comes in two main variants. In linesr temporal
logic (LTL) [GPSS80, Pn81)], formulas are interpreted
over linear sequences of program states. LTL formulas
are constructed using temporal connectives such as nezt
and until. In branching temporal logic (BTL) [BMP8L,
EC82, EH85, La80], on the other hand, formulas are
interpreted over tree-like structures which can represent
the possible computations of a concurrent or non-
deterministic program. Here, we consider the branching

version of temporal logic.
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In BTL, formulas are built from quantifiers over
paths of the branching structure and formulas describing
properties of the quantified paths. A typical BTL for-
mulas is of the form =, where ¢ is an LTL formula. 3¢
asserts that there exists a computations that satisfies .
BTL comes in many varieties, depending on the alterna-
tion between temporal connectives and quantifiers that
the logic allows. One of the weakest logics is CTL,
where there can be only one free temporal connective in
the scope of a quantifier. One of the strongest logics is

CTL ", where there is no such restriction [EH83].

So far, temporal logic has been used to reason
about fair programs by expressing the fairness con-
straints within the logic. That is, rather then asserting
“there exists a correct computation’, with the underly-
ing semantics guaranteeing that such a computation will
be fair, one asserts ‘““there exists a fair and correct com-
putation”, with the underlying semantics enforcing no
restrictions on computations {Em83|. In other words,
rather than having path quantifiers range over sets of
fair paths, they range over all paths with the fairness
condition being part of quantified path formula. We find
this solution quite unsatisfactory.

The first problem is that for this approach to work
the logic has to be able to express fairness. CTL, for
example, is not expressive enough, though it can express
most correctness assertions. CTL ° is expressive enough,
but one pays the price for this expressiveness. While
CTL has a simple axiomatization and is decidable in
exponential time [EH85] (which is considered to be a rea-
sonable upper bound in the realm of propositional modal
logics of programs), no axiomatization for CTL® is
known, and the best known time upper bound for that
logic is nondeterministic doubly exponential [Em85a,
VS85]. Of course one can try to find logics between
CTL and CTL® that will be expressive enough to
express fairness and not too expressive to render them
intractable, but this is no small task {cf. [EL85a}).

Furthermore, we believe that mixing fairness and
correctness is methodologically wrong. Correctness is a
specification issue; it is the condition that the program
has to meet in order to be useful. Fairness, on the other
hand, is an implementation issue; it is a characteristic of
the program being implemented. Indeed in program
verification one checks that the program together with
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its fairness condition satisfies the correctness assertion
[CESg83, LP85]. To sum up, we contend that fairness is
an intrinsic property of the computations of the pro-
gram, independent of the correctness assertions we might
make about these computations.

Consequently, we examine the interpretation of
BTL over fasr structures. A fair structure is essentially
a state transition diagram together with a fairness con-
dition. The fair computations are then those that satisfy
the
quantifiers as ranging over fair computations. A fairness

fairness condition, and one interprets path
condition is a condition about the limit behavior of the
computation, for example, “‘every process is scheduled
infinitely often” or “‘if a process is enabled infinitely

often, then it is scheduled infinitely often”.

A review of the literature brings up a few
instances in which related approaches have been taken.
Both Lamport [La80] and Clarke et al. [CES83] have
looked at concurrent programs with a built-in fairness
assumption, but they did not investigate the branching
temporal logic of such structures. Abrahamson has con-
sidered the branching temporal logic (which he called
MPL ) of concurrent programs with certain built-in res-
trictions on the set of computations [Ab80]. He supplied
an axiomatization and proved a doubly exponential time
upper bound. It is not clear, however, what is the con-
nection between his restrictions (suffiz closure and fusion
closure) and the fairness restriction (c.f. [Em83]).
Finally, Lehman and Shelah looked at the branching
temporal logic (which they called TC,) of probabilistic
programs [LS82]. Probabilistic programs can be viewed
as implementing fairness through randomness. Lehman
and Shelah supplied an axiomatization for T'C,, and
Kraus a doubly exponential upper bound [Kr84| (see also
[HS84,K1.83]). Surprisingly, the axiomatization of rC,
is identical to Abrahamson’s axiomatization of his logic
MPL , even though the underlying models are quite
different.

Qur first result relates the three classes of con-
current programs we have just mentioned: fair programs,
suffix- and fusion-closed programs (3 la Abrahamson),
and probabilistic programs (& la Lehman and Shelah).
Quite surprisingly, they have the same branching time
logic. Specifically, a CTL or CTL® formula is
satisfiable by a fair structure iff it is satisfiable by a
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suffix and fusion-closed structure iff it is satisfiable by a
probabilistic structure. Basically, our proof defines a
notion of canonical structure and show that for each
class of structures a formula is satisfiable by a structure

in that class iff it is satisfiable by a canonical model.

Next, we study the complexity of the logic. For
this, we use the automata-theoretic technique developed
in [VW84]. Unfortunately, the type of tree automata
usually used to decide standard branching time logic is
unsuitable for deciding the branching time logic of fair
programs. To overcome this difficulty we introduce a
new type of tree automata: leftist tree automatas that are
designed to recognize our canonical models. Using leftist
tree automata we get complexity upper bounds in a
clean and simple way. For CTL* over fair programs we
prove a doubly exponential time upper bound, and for
CTL over fair programs we prove an exponential time
upper bound. In both cases we also prove matching
lower bounds. Finally, our automata also enable us to
prove a finite model theorem for the branching temporal
logics of fair programs.

2. Branching Time Temporal Logic

2.1. Syntax

We consider two versions of branching temporal
logic: CTL and CTL® [EH83, EH85]. To define the syn-
tax of these logics, we distinguish between path formulas
and state formulas. Path formulas are built from a set
Prop of atomic propositions using Boolean and temporal
connectives. For example, Gp means “p holds at all
points of the computation”, Fp means “p holds at some
point of the computation”, and pUg means “there is a
point in the computation in which ¢ is true, and p is
true in all preceding points”. In CTL path formulas are
constructed from a single temporal connective, and in
CTL” path formulas are constructed from any number
of temporal and Boolean connectives. For example,
GFp O GFgq is a path formula in CTL® but not in
CTL .
Boolean
existentially or universally quantified path formulas. For

In both logics, state formulas are essentially
combinations of atomic propositions and

example,

2 \/3Gq is a CTL state formula; it holds in a state s if

either p holds in s or there is a computation that starts
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at s and ¢ holds at all point of that computation. We
now give a formal definition of CTL and CTL".

The CTL and CTL’ formulas built from a set of
atomic propositions Prop are defined as follows:

State Formulas

. An atomic proposition p €Prop is a state formula.

. If f and g are state formulas, so are [ /\g and
~f .

. If ¢ is a path formula, then Zi¢ and Vi are state
formulas

Path Formulas (CTL)

. If ¢ and ¢ are state formulas, then X ¢, F ¢, G ¢
and ¢ U ¢ are path formulas.

Path Formulas (CTL ")

. A state formula is a path formula.

. If ¢ and ¢ are path formulas, so are ¢/\ ¥ and
-

. If ¢ and ¢ are path formulas, then X ¢, F ¢, G ¢
and ¢ U ¢ are path formulas.

Finally, the formulas of CTL and CTL® are their
respective state formulas.

2.2. Semantics

We are interested in interpreting CTL and CTL*
over three different types of structures, namely, fair
structures, Abrahamson structures (suffix- and fusion-
closed structures) and probabilistic structures. In all
three cases, the semantics of path formulas will be ident-
ical and will be the usual semantics of linear temporal
logic formulas. Given a set of states 5, an w-path over
$ is a function o:w—S5 . We denote by ¢' the i th tail of
o (ie. o'(j)=0(i +5)). We then have the following
semantics for path formulas:

. If ¢ is a path formula that is also a state formula,
then o |=¢ iff o(0)|==¢ according to the seman-
tics of state formulas.

. o|=¢/\ Yifo|=¢and o |=¢

. o |==¢ iff not o |=¢

. ol=X¢iff o'l=4

o o |=F ¢ iff for some i >0, 0" |=¢
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. o|=@G ¢ iff forall i>0,0" |=¢

o  o|=¢Uyiff for some i >0, ¢' |=¢ and 0/ |=¢
forall 0< 7 <¥.

The difference between the three semantics we are
considering is in how the quantification appearing in
state formulas is interpreted. In fair structures, it ranges
over fair paths, in Abrahamson structures, it ranges over
suffix-closed and fusion-closed sets of paths, and in pro-
babilistic structures it ranges over sets of paths with a
given measure. We now give more details about the

three types of structures.

2.2.1. Fair Structures

A fair structure My is a tuple (S ,R,V F), where
S is a nonempty denumerable set of states, R C§ X§
is a total accessibility relation on §, V:8 —2P"% assigns
truth values to the atomic propositions in each state,
and FC2% x2% is the fasrness condition. Thus, F is a
set of pairs (X;,Y;) of subsets of §. It is used to define
fair paths through Mg .

An w-path through My is a function o:w—S such
that for all £ >0, (o(f ),0(s +1))ER . Given a set X C 5,
we define the size of the intersection of X with o
(denoted |XnNo|) as the cardinality of the set
{jewlo(j)eX} A path o is fair iff, for all pairs
(X:,Y;)EF, it | X;no| is infinite, then | ¥;No| is
also infinite. For technical reasons, we will only consider
fair structures such that for each state s €5 there is at

least one fair path starting at s .

We have chosen here one of a number of possible
definition of a fairness condition. It corresponds to the
notion of generalized fairness in [FK84], and it can be
used to express many fairness conditions studied in the
literature. For example, consider strong fairness: “if a
process is infinitely often enabled, then it is scheduled
infinitely often’ [La80]. To express this condition we let
F contain a pair (X;,Y;) for each process ¢, where X; is
the set of states where the process is enabled and Y; is
the set of states where it is scheduled. As another exam-
ple, consider state fairness: “if a computation goes
through a state & infinitely oiten, then all transitions
from s are taken infinitely often [Pn83,QS82]. To
express this condition we let F contain a pair ({s},{t})
for each edge (s,t)€R . (Interestingly, it follows from
the results in the sequel that with regard to satisfiability
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of CTL* formulas it suffices to consider fair structures
where the fairness specification consists of a single pair).

We can now give the semantics of CTL and
CTL"® state formulas over fair structures. Given a
structure My and a state s €5, the truth of a state for-

mula is defined as follows:

. Mg ,s |=p iff p€V(s), for an atomic proposition
p.

. Mp,s |=¢/\ ¥ il Mp,s |=¢ and Mp,s |=9¢

. Mg s |==¢ iff not Mr,s |=¢

. Mp,s |=VYyg iff for all fair paths ¢ such that
o(0)=s,0|=g.

. Mg ,s |=3g iff there exists a fair path o such

that o{0)=s and o |=yg .

Note that if we ignore the fairness condition and
have the quantification range over all paths, rather than
just fair paths, we get the usual semantics of CTL and
CTL* es defined in [EH83, EH85]. For future reference,
we will call that semantics the stendard semantics of
CTL and CTL".

[———

2.2.2. Abrahamson Structures

An Abrahamson structure M, is a tuple (§,V ,P)
where S is a nonempty denumerable set of states,
V:§ —2Pr assigns truth values to the atomic proposi-
tions in each state, and PCS¥ is a non-empty set of
infinite paths that is suffix and fusion closed. A set P of
paths is suffix closed if whenever o€P, all the suffixes o'
of o are also in P (¢ :w—S is that path defined by
o' (j)=o(i+j)). To define fusion closure, consider any
two paths o, and o, in P that contain a common state
3, i.e. oy and o, can be respectively written as oy=p;s m
and oo=pos mo. A set P of paths is then fusion closed if
whenever two paths like ¢, and o, are in P, the paths
p18 Tz and pys m, are also in P. In other words, once we
reach a state ¢ in a path, we can follow any other path
from s and still have a path in the set.

{Interestingly, it was pointed out by Emerson
[Em83] that if to the two conditions of suffix closure and
fusion closure we add a third condition, limit closure, we
get exactly the set of paths that can be generated from a
set of states by some binary relation on §. To define
limit closure, consider an infinite sequence of paths in P

of the form 8,m, §18Mg, 81328s%s .... Then P is limit
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closed, if whenever all the paths in the sequence are in
P, then the limit path 8,808 - - + is also in P.)

The semantics of CTL and CTL® over Abraham-
son structures are now straightforward. To interpret a
formula V¢ or 34, in a state s, we take the quantifiers
as meaning for all (for some) paths in P starting with
state g .

2.2.3. Probabilistic structures

A probabilistic structure Mp is a tuple (5 ,P,V)
where §
PS5 X §—[0,1] is a transition probability function such
that g);_E}SP (8,t)=1for all 8€S and V:§ —2"? assigns

is a nonempty denumerable set of states,

truth values to the propositions in each state. One can
think of a probabilistic structure as a labeled Markov
chain. As in the theory of Markov processes (c.f.
|[KSK66]), one can define a measure on the sets of of
infinite sequences generated by the probabilistic struc-
ture, starting with a given state. Specifically, given a
state 8,685, we define a probability space called the
sequence space Wr=(Q,4,u), where QC S “ is the set of
all infinite sequences of states starting at sg, A is a Borel
field generated by the basic cylindric sets

A(&o,&l, ..

"8"):{060:0’:‘90:311---;‘%," -},

and u is a probability distribution defined by
B(A(80,31,...,8x ))=P(80,81) P(81,8.) - - P(8a-1,8).
Moreover, let ¢ be a linear time temporal logic and, for a
given 8¢S, let A4 s0) be the measure of the set of
infinite sequences {0 |o(0)=s0/\ o |=¢}. It can be
shown that A(¢,8,) is a measurable set. This lets us
give meaning to CTL and CTL® over probabilistic
structures as follows:

. Mp s |=Vg iff A(g,8)=1.

. Mp,s |=3g iff A(g,s)>0.

Thus V¢ means “almost all computation satisfy ¢”, and

T means “there is a nonnegligible likelihood that the
computation will satisfy ¢”’. See [LS82] for more details.

3. Canonical Structures

In this section, we define a class of canonical struc-
tures and show that a CTL " (and hence CTL ) formula
has a fair, an Abrahamson, or a probabilistic model iff it
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has a canonical model. Our canonical structures are a
specialization of tree structures. An infinite n-ary tree
T over an alphabet T is a mapping T:{n]*—Z, where
[n] denotes the set {1, ..., n}. Each element of [n]"
is a node of the tree, and the root is the empty string X.
We say that a node y is a successor of a node z if
y==2i for some {€[n]. A path o starting at a node
z€[n]’
;41 is & successor of z; for all £ >0. In our canonical

is an infinite set 20,7 4,... such that zo=z and

structures we will use special paths. A leftmost path
starting at a node z €[n |” is the set z 1°. A leftist path
starting at a node z €[n |” is an infinite set zo,7,... such
that zg==z, Z,4; is a successor of z; for all ¥ >0, and
such that for some j >0 and for all {27, z,u=2:1
That is, a leftist path is a path that at some point
becomes a leftmost path. In other words, after some
point our paths always take the leftmost branch out of 2

node. This is why we call them ‘““leftist’”.

An n-ary canonical structure My is a tree over
the alphabet 2777  Intuitively, Mg assigns truth values
to the propositions in each node. Over a canonical
structure, we interpret quantification in CTL and
CTL"® formulas as meaning for some (for all) leftist
paths. More precisely, for a canonical

Mg :{n]* —2P" and a node z €[n |*, we have that

structure

s Mo,z |=Yg iff for all leftist paths o starting at
z, we have o |=¢
. Mg,z |=3g iff for some leftist paths ¢ starting

at z, we have o |=¢g

Because they are characterized by leftist paths, we will
often call our canonical structures leftist tree structures
or leftist trees. We note that there is nothing special
about choosing leftmost branches, what matters is that
after some finite prefix, all paths follow a definite direc-
tion. Note also that there is a unique leftmost path and
countably many leftist path starting at each node,
whereas there is an uncountable number of arbitrary
paths starting at each node. This is significant to under-
standing why the leftist interpretation of CTL® has
different characteristics than the standard interpretation.

We can now state our theorems.

Theorem 8.1: A CTL" formula f containing n path
quantifiers has a fair model iff it has an n +1-ary canoni-

cal model.
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Sketch of Proof.
If: Suppose without loss of generality, that f is satisfied

o0
Finally, take ¢ to be |_j¢:. We leave it to the

1=
reader to verify that for all formulas g €se¢l(f ) and all
nodes in z€n+1* we have Mg,z |=g iff
Mp,¢(z)|=g. Thus in particular, Mg \|=/f iff

at the node X\ of an n +1-ary canonical tree structure
Mg . Then, f would be satisfied at the state A of the
fair structure {[n +1]° ,Mc F) as long as F ensures that

exactly the leftist paths are fair. This can be done by Mr.sol=/ . |l

choosing F={(X 0)} where Theorem 8.2: A CTL® formula f containing n path
X={y€[n+1]" . y¢[n+1]"1}. Basically, F imposes quantifiers has an Abrahamson model iff it has an n +1-
that fair paths do not infinitely often take transitions ary canonical model.

that are not leftist. Sketch of Proof

Only if: Before giving the proof, we define the state clo- If. By definition, a canonical model is an Abrahamson
sure of a CTL or CTL" formula f (scl(f )) as the set model.

of state subformu f i 1 . . .
ate subformulas of / and their negation, where we Only if Here, we use a construction similar to the one

used in the proof of theorem 3.1. The difference is that
instead of choosing fair paths when defining ¢, we choose
paths within the Abrahamson structure. Both the suffix

identify ——g with g. We also define existential state
formulas as those of the form =g or —\Yg where g is a
path formula.

Now, suppose f is satisfied in a state 3¢ of a fair closure and the fusion closure are necessary to ensure the
structure My =($ R,V F). We construct a canonical correctness of the construction. Specifically, suffix closure
model for / by the selective filtration technique [GaT6). is necessary to ensure the existence of the relevant paths
We define a leftist tree structure Mo :[n +1]" —2" for the construction to go through. Fusion closure is
such that Mg\ |=f by inductively constructing a necessary to ensure that all leftist paths of the tree
mapping ¢:[n +1]"—5 and taking Mo(z )=V (4(z)). structure correspond to paths in the Abrahamson struc-
We start with a mapping ¢, defined on the set Xo=1" ture. ||

(i.e. the leftmost path starting at \). To define ¢o, we
choose some fair path o==0{0)0{(1)o(2)... starting at
0(0)=s, in Mp and define ¢o{1*)=0c{k). Note that
each node z €X, has exactly one successor in X, which

Theorem 8.8: A CTL® formula f containing n path
quantifiers has a probabilistic model iff it has an n +1-

ary canonical model.

If: 1f the formula f is satisfied at the node X of the
canonical structure Mo :[n +1]" =277, then f will be
satisfied in the state A of the probabilistic structure
Mp=(|[n +1]" ,P , M) as long as P can be chosen such
that 1) all leftist paths have positive probabilities, 2) at
each state the measure of the set of leftist paths is 1.
Note that as we are dealing with a tree structure, P can
be viewed as a function P :[n +1]" —[0,1] rather than as
a function P:[n+1]"X[n+1]"—[0,1]. For a state
E Gocl (f ) such that My ¢(z ) |=E . There are at most 2 €[n+1]", 25X\, P(z) will be the probability of the

n such formulas, say B ..., E,, where n is the unique edge leading to z. By convention, we will take
number of state quantifiers in f , where E; is either g, P)=I

is its leftmost successor z 1.

Now, given the mapping ¢; defined on the set of
nodes X;, we show how to define ¢,4;. Our construction
ensures that all nodes in X, either have n +1 successors .
within X; or only have their leftmost successor in X;.
Consider the nodes in X; that only have a leftmost suc-
cessor in X;. For each such node z, we extend ¢; as
foliows. Consider all existential state formulas

or -\g; . For each formula E; , we choose a fair path o
in My such that o, (0)=¢, (z ) and such that o; |=g; if
E; is 3g; and g, |[=~g, if E; is —Vg; . We then define
bia(z (j+1)=0;(1) and @,z (7 +1)1F)=0;(k+1).
If there are only 0<k<n formulas E;, for
j=k+1,.,n, we choose o; to be an arbitrary fair path
starting at ¢;(z ). since J[(1-a:)>1-Y a;, we have ensured that the
£>0 >0

We define the function P inductively, similarly to
what we did for the function ¢ in the proof of Theorem
3.1. We start by defining Po on the set X¢=1" by
P{1*)=1-a; for some constants cg0y,... such that
ag==0, 0<a; <1 for all ¥ >0, and kE a; <1. Note that

>0
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measure of the path 1° is positive.

Now, given the function P; .defined on X;, we
define P;4;. For each node in z €X; that only has a
leftmost successor in X;, we proceed as follows. For
j€{2, ..., n+1}, we define P(zj)=(1-P(z1))/n.
Moreover, for k >0, we choose P(zj1f)=1-a;. It is
easy to convince oneself that this assignment of probabil-
ities makes the measure of leftist paths positive. Let us
prove that it also makes the measure of the set of leftist
We denote by
unz (2 ) the measure of the set of non-leftist paths rooted
at 7. Notice that for all states y that are not of the
form z 1, the assignment of probabilities to the subtree

paths starting at a given node be 1.

rooted at y is identical to the assignment of probabilities
to the tree rooted at A\ and hence that g (¥ )=paz (V).
yF#z 1, thus
s (y )S(§oa”‘)x“”" (y) which implies that

For any node we have

uny (y)=0. For a node y that is of the form z 1, we
have that for some § >0 pn (¥ )<( Y ara)éme (N) and
E2j

hence we also have un (¥ )=0

Only if Again the construction is similar to the one
given for Theorem 3.1. Here, when selecting the paths
satisfying existential state formulas, we have to select a
path that satisfies the existential formula and also all
universal state formulas that are true at the point ¢(z ).
We can always find such a path as universal formulas
are satisfied on sets of paths of measure 1 and existential
formulas on sets of paths of positive measure. {]
Theorems 3.1, 3.2, and 3.2, show that fair struec-
tures, Abrahamson structures, and probabilistic struc-
The
meaning of this result is that BTL is not expressive
enough to distinguish between these very different kinds

tures have the same branching temporal logic.

of structures, in the same way that first-order logic may
not distinguish between two elementarily equivalent but
non-isomorphic relational structures.

4. Decision Procedures

In this section, we investigate the satisfiability
problem for CTL and CTL " interpreted over canonical
structures. By Theorems 3.1-3.3, our results will also
apply to fair, Abrahamson and probabilistic structures.
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4.1. Leftist Tree Automata

To obtain a decision procedure for CTL or CTL*
interpreted over fair structures, we use the approach
advocated in [VWB84]. Specifically, given a formula ¢,
we build a tree automaton A 4 that recognizes precisely
the leftist tree models of . We then check whether A4
accepts some tree. ¢ is satisfiable if and only if A4
accepts some tree. Unlike the tree automata in [VW84],
we need here automata that run on leftist trees; we call

them leftist tree automata.

Let us first recall some standard definitions. A
Buchi sequential automaton A is a tuple
A =(Z,5,p,5,F ), where T is the alphabet, § is a set of
states, p:§ XL —25 is the transition function, SoC S is
the set of initial states, and F C S is a set of designated
states. A run of an automaton A over an infinite word
w:w—2 is an infinite word o.w—S such that o{0)eS,
and for all § >0, o(i )ep(o(s -1),w(i-1)). Arunof ois
accepting if inf (0)NF 5£@, where inf (o) is the set of
states that occur infinitely often in o. That is, accepting
runs are those in which some state in F appears

infinitely often.

A Buchi n-ary tree automaton is a tuple
A =(%,5,p,50,F ), where T is the alphabet, § is a set of
states, p.5 x 525" is the transition function (for each
state and letter it gives the possible sets of n succes-
sors), SoC S is the set of initial states, and FC§ is a
set of designated states. A run of an automaton A over
atree T:n]"—X
is a tree ¢:n]"—S, where ¢(N)ES, and for every
z€[n]", we have (§(z1), ..., #zn))ep(é(z) T (z)).
A run ¢ of A over T is accepting if for all infinite
paths o starting at A\ we have inf (¢,0)NF =* @, where
inf (¢,0) denotes the set of states appearing infinitely
often on path o in run ¢. A accepts T if it has an
accepting run on T'. A is non-empty if A accepts some
tree.

Leftist tree automata are like Blichi automata
except for the notion of acceptance. Instead of defining
an accepting run as one in which on all infinite paths o,
inf ($,0)NF =0 , we only require that on all leftist
paths o, , the condition inf (@0, )NF =t @ is satisfied.
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As mentioned before, in order to use tree auto-
mata for deciding satisfiability of formulas, we have to
be able to solve their emptiness problem, i.e., to decide,
for a given automaton A, whether A accepts some tree.
Rabin has shown that the emptiness problem for Blichi
tree automata is solvable in polynomial time [Ra70].
Here we prove a similar result for leftist tree automata.

Theorem 4.1: The emptiness problem for leftist auto-
mata is logspace complete for PTIME.

Sketch of Proof:

In PTIME: Consider an n-ary leftist tree automaton
A=(L,5,p,50,F). Since we deal with nondeterministic
automata, we can assume that the alphabet ¥ consists of
For a state s €S, a finite leftmost
path o4, from ¢ in A is a finite sequence of states
.., 8 such that sg=s and for all 1<i <k,
there exists arbitrary states z,, .. such that
(8:,2i2 « -, Zin JEP(8i1,8 ). We will say that a state

a single letter a.

80,8y, -

<y Tia

& is a good leftist state if there is a finite leftmost path
o from s of length & >2 such that its last state, g;, is
in F.

The algorithm proceeds by repeatedly eliminating
the states that are not good leftist states. The algorithm
stops when no more states can be eliminated. Note that
after a state is eliminated, the transition function p and
the set F' have bo be updated accordingly. Clearly this
algorithm runs in polynomial time. We leave it to the
reader to verify that the leftist automaton accepts some
tree iff some initial state is not eliminated.

Hard for PTIME: This can be shown by reduction from
the path system problem in [JL77]. [}

4.2. CTL"

We first give the decision procedure for CTL*® as
it is the most general and interesting. We then specialize
it to CTL. The best decision procedure know for
CTL" over standard structures is nondeterministic dou-
bly exponential time [Em85a, VS85]. The reason for the
difficulty can be intuitively explained as follows. What
makes CTL* hard to decide over standard structures is
that to check a formula of the form V/f , one has to
check that f is satisfied on all infinite paths. The usual
way to do this is to build a Blichi sequential automaton
(on infinite words) that accepts the paths satisfying f
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[WVs83], and to run this automaton on all paths.
Unfortunately, to run this automaton on all paths, it has
to be deterministic, and determinizing finite automata on
infinite strings is notably hard. In particular, to deter-
minize Blichi sequential automata one needs to use a
more powerful kind of sequential automata, such as
Rabin automata [Ra72] or Streett automata [St82] (cf.
|[ES84, McN66]). Thus the resulting tree automata are
not Blichi tree automata, and their emptiness problem is
harder [Em85a, St82, VS85].

The situation is rather different when we interpret
CTL " over canonical structures. Here, we are interested
in accepting leftist trees. This gives us the advantage
that, to check a formula Vf , we only have to check f
on leftist paths. This can be done without determinizing
the sequential automata. Applying the classical subset
construction suffices. (Note the the subset construction
does not determinize automata on infinite words.)

Before giving the construction, we define the
notion of a leftist Hintikka tree for a CTL* formula f .
Note that, as our logic includes negation for both state
and path formulas, we can assume without loss of gen-
erality that the only path quantifier being used is 3. To
define Hintikka trees, we need to define the semantics of
path formulas over sequences o:w—2°% (/). These seman-
tics are identical to those we gave in section 2, except for
the following clause: if ¢ is a state-formula in ecl(f ),
then we say that o |=¢ if #€o(0). A leftist Hintikka
tree for a CTL"® formula f of size n, with state closure
scl(f ), is an n+1 ary tree T:[n+1]"—2%(f ) that
satisfies the following conditions for all elements z of
[n+1)*

1) feT).

2) gET(z)ifl =g ¢T(z).

3) 91/\g2€T (z)iff g,€T(z)and g,€T(z).
Let E, ..
sel(f ).

4) If E,€T(z), where E;=3g, then the path zf 1*
satisfies the path formula ¢ .

., E, be the formulas of the form g, in

5) If —Jg €T (z ), then all the leftist paths from z
satisfy the path formula —g .

Lemma 4.2 A CTL" formula f is satisfiable by a
canonical structure iff there is a leftist Hintikka tree for

g1008/012



11/10/2009 13:42 IFAX canon730i@rice.edu

[
Sketch of proof:

If: given a Hintikka tree T, one can obtain a canonical
model by restricting T to [n +1]" —2°7F

Only if: given a canonicai‘model Mg, one can build a
leftist Hintikka tree by first labeling each node z of M¢
by the formulas g €scl(f ) such that My,z |=¢ . One
can then ensure that each existential formula E;, =Ty is
satisfied on the path zi1" by a construction similar to
the one used in the proof of Theorem 3.1. ||

Theorem 4.8: Given a CTL® formula f of length n,
one can build an n +1l-ary leftist automaton of size
O (exp%(n ) that is non-empty iff f is satisfiable.

Sketch of Proof: We build an automaton that recognizes
the leftist Hintikka trees for f . The automaton is built
in three parts. The local automaton, checks Hintikka
conditions 1-3, the ezistential automaton checks Hintikka
condition 4, and the universel automaton checks Hin-
tikka condition 5. We now describe each of these auto-
mata.

The Local Automaton

The local automaton is
Ay =(29 20U o, N, 201)) The state set and
the alphabet are thus the collection of all sets of formu-
las in scl(f ).
(81 . . ., Bas1)EpL (8,8) iff a==s and
. g€siff g és.

*  g1/\ g€siff g1€8 and go€s.

The set of starting states N; consists of all sets s
such that f €s.

For the transition relation we have that

The Ezistential Automaton

The existential automaton checks Hintikka condi-
tion 4. To do this, we construct an automaton for each
of the formulas E; and then take the intersection of
these automata. The construction of the automaton Ag‘.
for a specific B;=3g proceeds as follows. By the result
in [WVS83], we can build a Blichi sequential automaton
A, =(g%U ’,S, Py S0y, Fy) that accepts exactly the
Ag‘, is then

We

sequences satisfying g.
(2”1(/ ):Sg U{O}IPE")SO’ ;F; )

s s,+1)EpE'.(s,a) whenever the following condi-

have that

(sll v

tions are satisfied:
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. if E;¢ a, then, for all 2<j <n+1, 8, =0.
such that

8 €p, (s, ,a) for some 89, €Sy, . Also s; =0 for
all 2< £ +1<n +1.

. if E;ca, then s, =8 for some s

. if 8=0, then 8,=0.

. if 8540, then s,—s' for some & such that
8’ €p,(s,a).
The existential automaton Ag is then the intersec-

tion (c.f. [VW84]) of the at most n automata Ag, . Each

of these is of size 2“, where n; is the length of the for-
mula path formula in E;. Hence the automaton Ag is of

. In
size 27 ==02"
The Universal Automaton

Here we build an automaton for each of the for-
mulas U; of the form —Jg that are in scl(f ). Each of
these antomata checks that whenever the formula,

-3¢ €T [z ], there is no leftist path from z that satisfies
g, or equivalently that all leftist paths from z satisfy
—g . To do this, we could construct the Blichi sequential
automaton for the formula —g and run it over all leftist
paths starting at every node z where —Jg €z . How-
ever, it is more economical and equivalent to proceed as
follows. We run on all leftist paths from the root the
sequential Blichi automaton (over the alphabet 2% (f )
corresponding to the linear time temporal logic formula

G (-3¢ Og). Let this automaton be
A, =(2"V)S, p, ,So; ,F,). The automaton on leftist
trees for the formula U;=-3g¢ is  then

Ay =(2*'0),2 x 8, py (S0, } X 5o, F,). We have
that (sy, ..., s..H)Epu'_ (s,a) whenever the following
conditions are satisfied, for s=(X s ):

o 8, =(Y,d ) where ¢ €p,(s,a)
Y={y €S, | y€p,(z ,a), for some z€X}.

and

. For 2<j<n+1,8;=(Y,8 )whered €p,(z,a)
for some z €X, and Y={y €S, |y €p,(z ,a), for
some z €X }.

Intuitively, what our construction does is to apply
the classical Rabin-Scott [RS59] construction to the
automaton A, and run the resulting deterministic auto-
maton down the tree, while simultaneously running a
nondeterministic copy of A, down every leftmost path
(ie. path of the form 1%) that is encountered. The

g1009/012



11/10/2009 13:42 IFAX canon730i@rice.edu

universal automaton Ay is then the intersection of the
(at most) n automata Ay . Each of these automata is of

5.
size 22 ', where n, is the length of the path formula in

Ay, and hence the automaton Ay is at most of size 22",

Finally, we take the intersection of the local auto-
maton, the existential automaton and the universal auto-
maton. The resulting automaton is of size O (exp(n)) {]

The lower bound proved in [VS85] for CTL®
interpreted over standard structures can be adapted to
CTL’ interpreted over canonical structures. Thus we
have:

Theorem 4.4: The satisfiability problem for CTL * inter-
preted over canonical (fair, Abrahamson, probabilistic)
structures is logspace complete for deterministic doubly
exponential time. []

Note that the above upper bound also follows
from Theorems 3.1-3.3 and the doubly exponential time
upper bounds in [AbSO,Kr84]. Nevertheless, our use of
leftist automata yields a decision procedure that is sub-
stantially cleaner than Abrahamson’s and Kraus'. Also,
we find it very illuminating as far as explaining the
difference between C'TL * interpreted over fair and stan-
dard structures. We also note that our lower bound
applies to the other logics in [LS82} (i.e., CTL"® inter-
preted over finite and bounded infinite Markov chains).

4.3. CTL

For CTL , we can of course use the same construc-
tion as for CTL *. The main difference is that the Blichi
sequential automata we build for path formulas are this
time of constant size rather than exponential in the
length of the formula. This implies that the resulting
automaton is of size O (exp(n )). Precisely, we have the
following.

Theorem 4.5: Given a CTL formula f of length n, one
can build an 5 +l-ary leftist automaton of
O (exp(n )) that is non-empty iff f is satisfiable. |

size

Combining Theorems 4.1 and 4.4 yields an upper
bound for the satisfiability of CTL over canonical struc-
tures. An exponential time lower bound for CTL over
probabilistic structure was proven in [Kr84].

Theorem 4.6: The satisfiability problem for CTL over
canonical (fair, Abrahamson, probabilistic) structures is
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logspace complete for EXPTIME. ||

An exponential upper bound for CTL over proba-
bilistic structure is also proven in [Kr84]. Our proof,
however, has the advantage that it is easy to extend to
logics between CTL and CTL®. The key idea behind
our exponential time upper bound is that the sequential
automata for the path formulas in CTL are of some
fixed size. As long as this property holds, the exponen-
tial time upper bounds also holds. For example, we
could allow formulas of the form {((pUq )Ur ), where p,
¢, and r, are state formulas, and still retain the

exponential time upper bound.

4.4. Finite Models

Another advantage of using decision procedures
based on automata, is that they make it relatively easy
to prove a finite model theorem for CTL and CTL®
interpreted over fair structures.

Theorem 4.6: A CTL ® formula f has a fair model iff it
has a finite fair model. []

The idea is that, if a leftist automaton accepts
some infinite leftist tree, then there is a representation of
that tree by a finite fair structure. The finite representa-
tion will be of size polynomial in the size of the automa-
ton and will thus be exponential in the size of the for-
mula for CTL and double exponential in the size of the
formula for CTL*, (The theorem does not apply to pro-
babilistic structures, since we need infinitely many
different transition probabilities). The construction of a
finite model from the given formula can also be viewed
as a synthesis of a fair program from the correctness

specification (cf. [EC82, MW84]).

5. Concluding Remarks

We have investigated the branching temporal logic
of fair concurrent programs. The motivation for doing
so is that we view the fairness conditions as an intrinsic
part of the program, separate from the correctness asser-
tions. We have shown that the branching time logic
(BTL) of fair structures is identical to the BTL of Abra-
hamson and probabilistic structures. We believe this is a
significant contribution to our understanding of the BTL
of all three types of structures. Our proof is based on
the existence of canonical models (which are leftist tree
structures) for the three different logics. In order to
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obtain decision procedures, we developed an automata

theory for leftist trees. Then, using leftist automata, we

obtained clean decision procedures, and provided match-

ing lower bounds.
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