e l—

The Complexity of Reasoning About Knowledge and Time: Synchronous
Systems

Joseph Y. Halpern
Moshe Y. Vardi

IBM Research
Almaden Research Center
650 Harry Rd.

San Jose, CA 95120-6099

Abstract: We study the propositional modal logic of knowledge and time for distributed
systems. We consider a number of logics (ninety-six in all!), which vary according to the
choice of language and the assumptions made on the underlying system. The major parameters
in the language are whether there is a common knowledge operator, whether we reason about
the knowledge of one or more than one processor, and whether our temporal operators are
branching or linear. The assumptions on distributed systems that we consider are: whether
or not processors forget, whether or not processors learn, whether or not time is synchronous,
and whether or not there is a unique initial state in the system. We completely characterize
the complexity of the validity problem for all the logics we consider. This paper focuses on
synchronous systems. Our results here include a II} upper bound for the language with
common knowledge with respect to systems where processors do not forget, and a corresponding
non-elementary-time result for the language without common knowledge We also provide a
complete axiomatization for the latter language.

1. Introduction!

It has been argued recently that knowledge is a useful concept for analyzing the behavior
and interaction of processors in a distributed system [CM,DM,FI1,Hal, HF, HM1,LR MT,PR,
RK,Ros]. When analyzing a system in terms of knowledge, not only is the current state of
knowledge of the processors in the system relevant, but also how that state of knowledge
changes over time. A formal propositional logic of knowledge and time was first proposed
by Sato [Sa]; others have since been proposed by Lehmann [Lel], Fagin et al. [FHV1], Parikh
and Ramanajum [PR], and Ladner and Reif [LR]. Still others are implicit in all the other
references cited above.

While Sato proved a nondeterministic exponential upper bound for his logic, Lehmann
stated a theorem claiming a doubly exponential upper bound for his logic (which included
common knowledge), and Ladner and Reif prove that one of their logics is undecidable. This
apparent inconsistency is, of course, due to the fact that all these papers actually consider
different logics. To add to the confusion, these papers use the same notation with different
interpretations.

In this paper we try to bring some order to this confusion by categorizing logics for
knowledge and time along two major dimensions: the language used and the assumptions
made on the underlying distributed system. By varying these parameters, we end up with
ninety-six logics. (Of course, they are not all of equal interest to distributed computing!)
All of the logics considered in the papers mentioned above fit into our framework. Our
major results involve completely characterizing the complexity of all these logics, showing
how the subtle interplay of the parameters can have a tremendous impact on complexity.

The languages considered in the literature vary according to the modalities used for
knowledge and time. As far as knowledge goes, the relevant issue is whether the language
can talk about the knowledge of more than one agent, and whether we have a modal operator
in the language for common knowledge (where common knowledge of a fact ¢ holds if
everyone knows @, everyone knows that everyone knows ¢, etc.). For time, the question is
whether we use branching time or linear time modalities (which essentially amounts to whether
or not we can quantify over the possible executions of a program).

It is well known that if we consider either knowledge or time alone, the language used
has a great impact on the complexity of the logic. As was shown by Halpern and Moses
[HM2], the complexity of reasoning about knowledge for the notion of knowledge most
appropriate for distributed systems (which satisfies the axioms of the modal logic S5), the
validity problem for the logic is co-NP-complete if we can only reason about one agent or
processor in the language, PSPACE-complete with two or more agents, and EXPTIME-complete
if we add common knowledge to the language. If we consider time alone, the validity problem
for the language with branching time modalities is EXPTIME-complete [EH1], while for the

1 The first two sections of this paper are essentially identical to the first two sections of [HV1]; we include
them here for completeness. While in [HV1] we described in detail lower bound results, here we describe
in detail some upper bound and completeness results. We plan to publish a more exhaustive acccount of
our upper bound and completeness results in a future paper.

language with linear time modalities it is PSPACE complete [SC]. Not surprisingly, we find
a similar phenomenon here; the complexity of reasoning about knowledge and time depends
on the language used. What is perhaps more interesting is how the assumptions made on
the underlying distributed system, which essentially place conditions on the interaction between
knowledge and time, affect complexity.

The types of assumptions on the system that are typically made include whether or not
processors forget (the assumption of no forgetting has also been called unbounded memory or
cumulative knowledge in other papers [FHV2,HV ,Mo]), whether or not processors can learn,
whether or not there is a unigue initial state in the system, and whether time is synchronous or
asynchronous. We now explain each of these parameters in more detail, and motivate them in
terms of distributed systems.

We first discuss the notion of knowledge in a distributed system. Although there have
been many papers that consider this notion, they all have the same essential features. A
distributed system is identified with a set of possible runs of the system, where a run is a
complete history of the system’s behavior over time. Thus, the run may include such things
as each processor’s initial state and its complete message history (i.e. the messages it has sent
and received, in the order they were sent and received, time-stamped if the processors have
local clocks). Formally, assume we have a system of m processors, each of which at any
time is in some local state. This local state may encode such things as the processor’s initial
state, part or all of its message history, and the values of relevant variables. A run is a
function from time (which, for simplicity, we assume is discrete and ranges over the natural
numbers) to global states of the form <Mh,...,b, >, where [is the local state of processor i.2
Given a run r and a time n, we can think of the global state r(n) as a “snapshot” describing
the current state of the system. We can think of n as denoting the time on some external
global clock (not necessarily observable by the processors). Following [HHM1], we call such
a pair (»,n) a point.

Processor i is said to know a fact @ (written K o) at a given point if ¢ is true at all other
points in which it is in the same state. Intuitively, a processor cannot distinguish two points
if it is in the same state in both; thus, it knows ¢ if @ is true at all the points it cannot
distinguish from the true state of affairs.3 We say a processor considers run ¢’ possible at point
(r,n) if for some n', it cannot distinguish (r,n) from (',n").

We say a processor does not forget if the set of runs the processor considers possible stays
the same or decreases over time (intuitively, as a result of the processor getting more
information). So if at some point (r,n) in run r processor i considers run r’ possible, then

2 In a more general model we might augment the global state to include a component describing the environment,
which intuitively consists of all the relevant features of the system not described by the processors’ local
states, such as messages in transit but not yet delivered, and so on (cf. [FHV2]). The environment component
plays no role in the complexity analysis, s0 we omit it here.

3 This interpretation of knowledge is called a state-based interpretation in [HM1], and is essentially the interpre-
tation used in [PR,HF,Ros,RK,FI1]. We will not consider the more general epistemic interpretations discussed
in [HM1].

run r was indistinguishable from /' at all points in the past. Intuitively, a processor that
cannot distinguish two runs that it could distinguish at an earlier time must have “forgotten”
the information that allowed it to distinguish those runs. Note that no forgetting intuitively
requires unbounded memory, so that a processor can store all the information it has received.
Thus, the distinction between forgetting and no forgetting essentially corresponds to whether
we view our processors as finite-state machines or Turing machines.

The dual notion to “no forgetting” is “no learning”. A processor does not learn if the set
of runs it considers possible stays the same or increases over time. More formally, ifl at
some point (r,n) processor i considers run r’ possible, then processor i will consider run r
possible at all times in the future (i.e. at all points (r,n") with n' > n). If processor i carnot
distinguish two points (r,0) and (r',0) in a system with no learning and no forgetting, then
i goes through the same sequence of states in both and 7/, regardless of what messages i
may receive. Such a system essentially corresponds to a non-adaptive algorithm. A processor
does not modify its actions in response to signals from the outside world; in this precise
sense, we can say that no learning takes place.

In some systems the assumption is made that each processor has a unique initial state. 'This
means that there is a unique initial global state for the system (i.e. for all runs r and ', the
global states r(0) and '(0) are identical). The assumption of a unique initial state seems
fairly innocuous. After all, we can always add a new initial state to every run and then let
it develop as it did before. However, as we shall see, this assumption is not so innocuous
when combined with the assumption of no learning.

In a synchronous system, we assume that a processor has access to a global clock that ticks
at every instant of time and the clock reading is part of its state, so the processor always
knows the time. Note that protocols that proceed in rounds can be viewed as running in
synchronous systems.

An interpreted system is a pair (R,w) where R is a system and o is a truth assignment to
the primitive propositions at every point of R. There is a straightforward way to extend =
to all formulas (the details are discussed in the next section). For the rest of our discussion,
it will be useful to have notation for different classes of interpreted systems and different
languages. We use € to represent the class of all interpreted systems. We then use subscripts
nf, nl, uis, sync to indicate restrictions to intepreted systems where, respectively, processors
do not forget, processors do not learn, where there is a unique initial state, and where the
system is synchronous. Thus, for example, ®(nfsyncuis) represents the class of interpreted
systems where processors do not forget, the system is synchronous, and there is a urique
initial state.

We use the notations CKL(), CKB (), KL(mm), and KBy to describe the languages we use.
The L and the B tells us whether linear time or branching time modalities are used, the
presence or absence of C in the name indicates whether or not common knowledge is included,
and the subscript indicates the number of agents. Thus, CKL() is the language that uses
linear time modalities and has modal operators K1, K3, and C for the knowledge of ageat 1,
agent 2, and common knowledge. (We describe the language and give its semantics in cletail

in the next section.) Similarly, KB(3) is the language that uses branching time modalities
and K;, i=1,2,3, but has no modal operator for common knowledge.

The logics that have been considered in other papers can now be classified as follows.
Sato [Sa] and Lehmann [Lel] restrict attention to €(nfsmc): synchronous systems where
processors do not forget. Lehmann uses the languages CKL(ny); Sato essentially does as well
(although his language does not have explicit temporal operators). Halpern and Fagin [HF],
Parikh and Ramanujam [PR], and the tree logic of protocols of Ladner and Reif [LR] also
assume no forgetting, but do not require that time be synchronous, so the class of interpreted
systems considered for these logics is €(,p. On the other hand, these papers differ in the
languages they consider: CKL(y) in [HF] and KB(y) in [PR] and [LR].# Ladner and Reif’s
linear logic of protocols, despite the name, also uses (a subset of) branching time, but restricts
attention to the class of interpreted systems €(pf niuis), where processors neither forget nor
learn, and there is a unique initial state. In the remaining papers that consider formal models
of knowledge and time [CM,FI1,Ros,RK], the assumption of no forgetting is not imposed;
all the interpreted systems in € are considered. However, in [Ros,RK] linear time is used,
while [CM] and [FI1] implicitly use branching time, although neither of these latter two
papers explicitly has temporal operators in their logics.

We do not discuss here which of these logics is most appropriate. Our feeling is that the
choice should be guided by the application at hand (see [Pn,La2,EH2] for a discussion of
these issues in the context of linear vs. branching time logics). Instead, we focus our attention
on the complexity of the decision procedures for each of them.

At a high level, we can view our results as saying that assuming either no forgetting or
no learning tends to make the complexity of reasoning about knowledge and time much worse.
For example, if we have common knowledge in the language (and at least two agents, since
common knowledge reduces to knowledge if we have only one agent), then the validity
problem with respect to many classes of interpreted systems where processors do not forget
or do not learn, such as €,y and @, is wildly undecidable, in fact, H%-complete. (A
precise definition of H} appears in Section 3.) This means that there can be no complete
axiomatization for these cases (since a complete axiomatization would imply that the set of
valid formulas was r.e.).5 On the other hand, for classes such as € or ®(sncyis) Where we do
not make the assumption that processors do not learn or do not forget, the complexity of
the validity problem for the language with common knowledge is (only!) EXPTIME-complete.

4 Actually, in [PR] there are also modal operators for what is called implicit knowledge in [HM1,HM2]. In
addition, the branching time modalities used in [PR] and [LR] only give us a subset of the language KB,
(a2 different subset in each of the papers). However, these differences have no impact on the complexity,
so we do not focus on them further here. Also, the fact that the systems in [LR] are actually trees instead
of sets of runs imposes another mild condition that we briefly discuss in the next section. Again, this
difference has no impact on complexity.

5 As we remarked above, Lehmann claimed a doubly-exponential time decision procedure for his logic, which
is CKL(m) interpreted over interpreted systems in €(,fync)- He also claimed a complete axiomatization [Lel].
Lehmann later retracted these claims, and only claimed these results for the one-agent case, without common
knowledge [Le2]. Of course, our results show that the original claims were in fact incorrect.

A similar situation arises if we consider the language without common knowledge. Although
the validity problem in the presence of no forgetting or no learning is in general decidable,
it is non-elementary, while if we do not make the assumption that processors do not learn
or do not forget, the validity problem is either PSPACE-complete or EXPTIME-complete
(depending on whether we consider linear time or branching time).

There are some anomalous situations though, mainly those involving the combination of
no learning and a unique initial state. For example, Ladner and Reif show that the validity
problem for KB() is undecidable (even without common knowledge in the language) with
respect 10 €(nraLuis)- An easy extension of their proof shows it is actually H{-complete;
these results also hold for the language KL(). On the other hand, if we consider the class
of interpreted systems ®(nf.nisync,uis)» Where we impose the additional condition of synchrony,
the situation collapses. The validity problem for this logic is EXPSPACE-complete, even
with common knowledge in the language! Intuitively, the reason is that the combination of
these assumptions implies that no expressive power is gained by having common knowledge
or more than one agent in the language.

Our results are summarized in the table below. The results given in the table are tight:
the upper bounds match the lower bounds (to within constant factors). In order to explain
the results for the languages KL(,, and KB(y,), m 22, in the first two rows of the table in
a little more detail, we must introduce some notation. Let ex(m,n) be defined inductively
via ex(0,n) =n, ex(m+1,n) =2e(mn) (g5 that, intuitively, ex(m,n) is a stack of m 2’s, with
the top 2 having exponent n), let the alfernation depth of @, written ad(p), be the number of
alternations of distinct knowledge modalities (X;’s) in @, and let |p| be the length of ¢ when
viewed as a string of symbols. The nonelementary time bound means that there is an algorithm
for deciding if a formula ¢ is valid which runs in time ex(1 + ad(p), dgl), for some constant
¢>0. Furthermore, any algorithm for deciding validity must run in time ex(1 + ad(p), dg
for some constant d > 0 and infinitely many formulas ¢. The explanation of the nonelementary
space bound is analogous. Note that, by definition, for any formula ¢ of KL(1) or KB(1) we
have ad(p) < 1. Thus, the bounds for KL(1)/KB(y) in the first two rows of the table are
special cases of the bounds for KL(my)/KB(y). In particular, Lehmann’s doubly-exponential
time upper bound for KL, is a special case of ours.

The difference between the nonelementary time bounds in the first row of the table, and
the nonelementary space bounds in the second row of the table can roughly be explained by
noting that allowing learning gives us the ability to encode alternation. More precisely, when
we have no forgetting but allow learning, we can encode alternating Turing machines that
run in space ex(ad(p),dp]) (which corresponds to time ex(ad(p) +1,dg)); once we impose the
assumption of no learning, we can only encode deterministic Turing machines that run in
space ex(ad(e), del).

Given the number of results, we concentrate in this paper on upper bounds and
axiomatization in synchronous systems. For the lower bounds the reader is referred to [HV1]
The rest of this paper is organized as follows. The next section describes the languages and
the various kinds of interpreted systems discussed above in detail. The rest of the paper
focuses on the class €(,f5mcn)- In Section 3 we present our T1} upper bound results for the

CKL(m)/CKB(m),
m22

KL(m)/KB(m), m22

KL1)/KBq)

€ (uis)

EXPTIME for KB(y

€t €nfsme) o} nonelementary (time double-exponential
Cnfuis) Clnfsyncuis) ex(ad(p) +1,de]) time

€ Cafn, n} nonelementary (space EXPSPACE
€(nfnlsinc) Cnisinc) ex(ad(p), de))

©nfnluis) i } EXPSPACE

€ (niuis) co-r.e. co-r.e. EXPSPACE

€ (nlsyne,uis)s EXPSPACE EXPSPACE EXPSPACE
€(nfnlsync uis)

€, €(ync)r C(sync.uis)s EXPTIME PSPACE for KLy, PSPACE for KLy,

EXPTIME for KB(y

Figure 1: The complexity of the validity problem for logics of knowledge and time

languages CKL(y) and CKB(,), m 22, while in Section 4 we present the upper bound for
KLy, and in Section 5 we provide a complete axiomatization for KL).

2. The Formal Model: Language and Systems

The logics we are considering are all propositional. Thus, we start out with primitive
propositions p, g, ... and we close the logics under negation and conjunction, so that if ¢ and
Y are formulas, so are ~¢ and ¢ Ay. In addition, we close off under modalities for knowledge
and time, as discussed below. As usual, we view true as an abbreviation for ~(p A ~p), pV{
as an abbreviation for ~(~¢ A ~y), and @ = as an abbreviation for ~¢pVy. We assume that
A and V bind more tightly than =, so that we write, for example, ¢ =Y Ay rather than
o> W AY).

If we have m agents (in distributed systems applications, this would mean a system with
m processors), we add the modalities K, ..., K,,. Thus, if ¢ is a formula, so is K;p (read
“player i knows ¢™). In some cases we also want to talk about common knowledge, so we
add the modalities E and C into the language; Ep says that everyone knows @, while Cop says
¢ is common knowledge.

The temporal modalities (sometimes called operators or connectives) that we use depend on
whether we are considering linear time or branching time. In the linear time case, we have
a unary operator o and a binary operator U. Thus, if ¢ and ¢ are formulas, then so are op
(read nexttime ¢) and Uiy (read ¢ until\y). We view Qo as an abbreviation for trueUp, while
Oe is an abbreviation for ~~g. Intuitively, op says that ¢ is true at the next point (one
time unit later), p LAV says that ¢ holds until y does, O says that ¢ is eventually true (either
in the present or at some point in the future), and [J¢ says that ¢ is always true (in the
present and at all points in the future). In the branching time case, we also have quantifiers
over runs, so that if ¢ and ¢ are formulas, so are Voli), 3pU4), Yop, and 3op. A formula

of the form Vo is true at the point (r,n) if op is true at (+/,n) for all runs r’ extending
(r,n), where the notion of extending will be made precise below. Similarly, 3plA) is true at
(r,n) if @UA is true at (', n) for some run r’ extending r. Again, we view YOo (resp. 30¢)
as an abbreviation for VerueUgp (resp. 3trueUp), and V[Jo (resp. 3Q¢) as an abbreviation for
~30~gp (resp. ~¥O~¢). Thus, for example, YOo is true at the point (r,n) if ¢ is eventually
true for all runs r’ extending (r,n). It has been argued that a nexttime operator (o) is
inappropriate for reasoning about asynchronous systems (cf. [Lall); after all, the processors
do not have access to an external clock in such systems, so it is not even clear that the
notion of the ticking of such a clock makes sense. We remark that all our lower bounds
also hold if the language does not have a nexttime operator.6

As we mentioned in the introduction, we take |p| to be the length of the formula ¢ viewed
as a string of symbols, while in the languages without C and E (i.e. KL, and KB(,)) we
define ad(¢) to be the greatest number of alternations of distinct K;’s along any branch in
¢’s parse tree. For example, ad(Ki~KK1p) =3; temporal operators don’t count, so that
ad(K10K1p) = 1. Note that ad(e) <|pl, and if ¢ is in KL(;) or KB(j), then ad(¢) < 1.

A system for m processors consists of a set R of runs, where each run » ¢ R is a function
from IN to L™, where L is some set of local states. Thus, r(n) has the form <4,...,}, >; such
a tuple is called a global state. (Formally, we could view a system as a tuple (R, L, m), making
the L and m explicit; we have chosen not to do so in order to simplify notation. The L and
m should always be clear from context.) An interpreted system M for m processors is a tuple
(R, %) where R is a system for m processors, and = maps every point (r,n) € R x IN to a truth
assignment w(r,n) on the primitive propositions (so that «(r,n)(p) € {true,false} for each
primitive proposition p).

We now give semantics to CKL,,) and KL,;). Given an interpreted system M = (R,7), we
write (M, r,n) = ¢ if the formula ¢ is true at (or satisfied by) the point (r,n) of interpreted
system M. We define | inductively for formulas of CKL(,) (for KL, we just omit the
clauses involving C and E). In order to give the semantics for formulas of the form Ko,
we need to introduce one new notion. If r(n) = <H,.... 5>, () =<1},...., [}, >, and =1},
then we say that r(n) and r'(n’) are indistinguishable to processor i and write (r,n) ~; (+',n"). Of
course, ~; is an equivalence relation on global states. K;p will be defined to be true at (s, n)
exactly if ¢ is true at all the points whose associated global state is indistinguishable to i
from that of (r,n). We proceed as follows:

e (M,r,n) |=p for a primitive proposition p iff #(r, n)(p) = true

M,r,n) =AY iff (M,r,n)E¢e and (M,r,n)EY

(M,r,n) E ~g iff (M,r,n) o

(M, r,n) = K;p iff (M,r',n") =@ for all (+,n’) such that (r,n) ~; ', n")

6 The G, F, and U operators of [PR] correspond to our V[, V¢ and VU respectively. Parikh and Ramanujam
do not have a nexttime operator in their language. The [, O, ¢, and ¢* of [LR] correspond to our VO,
V[, 30, and 30 respectively. Ladner and Reif have neither V{ nor an until operator. All our results are
easily seen to hold for these restricted languages. We could, of course, also allow more complicated mixtures
of modalities, such as V3¢, as in the logics CTL* [EH2] or MPL [Ab). Doing - this seems to increase the
complexity of the decision procedure by at least one exponential (cf. [VS]).

(M,r,n) F Eg iff (M, r n)l=K,<p for i=1,.

(M, r,n) [Co iff (M,r',n") [EXo, for k=1, 2 .. (where Elp = Ep and E¥tlg = EEKg)
(M, r,n) Fogp iff (M, r,n+1)I=<p

(M,r,n) = Uy iff there is some n’ >n such that (M,r,n')Ey, and for all n” with
n<n” <n, we have (M, r,n") = .

There is a graphical interpretation of the semantics of E* and C which we shall find useful
in the sequel. Fix an interpreted system M. We say a point (+/,n') in M is reachable from
a point (r,n) in k steps if there exist points (n,n9),..., (rx, ;) such that (r,n) = (n, ng),
(', n) = (rk,nk), and for all j=0,...,k~ 1 there exists i such that (rj,nj) (r1+1,n1+1) We
say (#',n’) is reachable from (r,n) 1f it is reachable in & steps for some k. It is easy to check
that (M,r,n) |==E @ iff (M r',n") = ¢ for all points (+',n") reachable from (r,n) in k steps,
and (M,r,n) [Co iff (M,r’,n") e ¢ for all points (+/,n") reachable from (r,n).

We remark here that we could have presented the semantics in a slightly different way,
more closely related to the standard Kripke semantics for knowledge (see, for example,
[HM2]). Instead of associating to each point (r,n) the global state r(n), we could view points
as more abstract entities, without this additional structure. An interpreted system would now
consist of a set of runs, a truth assignment =, and equivalence relations ~i,...,~, on the
points. The semantics of formulas such as K;p could be defined using these equivalence
relations just as above. This approach was taken in an earlier version of this paper [HV] and
is also taken by Lehmann [Lel]. The two definitions are equivalent in an obvious way: once
we associate a global state to each point, we can use that to define an equivalence relation.
Conversely, once we have an equivalence relation on the points, we can associate a global
state with each point in such a way that two points are indistinguishable to i iff they are
equivalent. We will use this observation in a number of our proofs below. We have chosen
to use global states here in order to emphasize the intuitions coming from distributed systems.
This choice also allows us to define branching time semantics in a natural way.

Given an interpreted system M = (R,w), we say that r’ € R extends the point (r,n) € R x IN
if #'(n") =r(n") for all n’ <n; ie. if r and ' go through the same sequence of global states
up to time n. With this definition, we can now give semantics to branching time formulas
as follows:

o (M,r,n) F30¢ iff (M,r’,n+ 1) ¢ for some run 7’ extending (r, n)
e (M,r,n) =Yoo iff (M,r',n+ 1) ¢ for all runs ' extending (r,n)
o (M,r,n) =3¢y iff for some run r extending (r,n) there exists some n’ > n such that

(M,r',n)[E ¢, and for all n” with n<n” <n’, we have (M, ,n")E ¢
o (M,r,n) =VoUy iff for all runs r’ extending (r,n) there exists some n’ > n such that

(M,r',n") =y, and for all n” with n<n” <n’, we have (M,r',n") = ¢.7

7 The notion of branching time we have defined here differs slightly from that defined in [LR] and an earlier
version of this paper [HV]. In these papers, the set of runs has a tree-like structure, which guarantees that
the set is limit closed. As defined here, the set of runs is not necessarily limit closed, making it more like
Abrahamson’s MPL [Ab] than CTL (see [Em,EH2] for a detailed discussion of this issues). In our framework,
we can say that a set R of runs is limit closed if, for all runs r, the fact that for all n there is a run r,e R
extending (r,n) implies that r ¢ R. By imposing the additional condition of limit closure on our classes of

As usual, we define a formula ¢ to be valid with respect to a class D of interpreted systems iff
(M,r,n) = @ for all interpreted systems M ¢ @, runs r in M, and times n. A formula ¢ is
satisfiable with respect to @ iff for some M € D, r, and n we have (M,r,n) = ¢. It will often be
more convenient for us to consider the satisfiability problem rather than the validity problem
in proving lower bounds.

We now turn our attention to formally defining the classes of interpreted systems discussed
in the introduction.

We say processor i does not forget in M = (R,w) if all runs r,r’ € R and times n,n’, k, if
(r,n) ~; (*',n") and k < n, then there exists k' <n’ such that (r,k) ~; (*',k’). In order to
motivate this definition, define processor i’s history at the point (r,n) to be the sequence , ...,k
of states that processor i takes on in run r up to time n, with consecutive repetitions omitted.
For example, if from time O through 4 in run r processor i goes through the sequence /,1,1',1,1
of states, its history at (r,4) just [,!’,l. Roughly speaking, processor i does not forget if it
“remembers” its history. More precisely we have

Lemma 2.1. Processor i does not forget in a system R iff for all runs r,¢¥’ € R, if (r,n) ~; (r',n’)
then processor i’s history is the same at (r,n) and (r',n’).

Proof. The fact that remembering the history implies no forgetting is immediate from the
definition. The converse can be proved by a straightforward induction on n+n’. ®

This lemma shows that no forgetting requires an unbounded number of local states in
general, since processor / may have an infinite number of distinct histories in a given system.
There is one more observation about systems where processors do not forget that we frequently
use; this is captured in the following lemma.

Lemma 2.2. If processor i does not forget in R and (r,n) ~; (r,n’), then (r,n) ~; (r,n"’) for all n'
with n<n"” <n'.

Proof. We proceed by induction on n. Note that since (r,n)~; (r,n’) and »" <n', by
definition of no forgetting there must be some k < n such that (r,k) ~; (r,n""). f n=0, we
must have k=n. If n>0, then if k=n we are done, while if kX <n, by the induction
hypothesis (where k plays the role of n, n plays the role of n”, and n” plays the role of n),
it follows that (r,n) ~; (r,k), and by transitivity we get (r,n) ~; (r, n). m

A system where processor i does not forget is shown in Figure 2, where the vertical lines
denote runs (with time O at the top) and all points that i cannot distinguish are enclosed in
the same region.

In a system where processor i does not learn, we have the opposite situation: If (r, n) ~; ', n"),
then for all k> n there must be some k' > n’ such that (r,k) ~; (+',k’). A system where
processor i does not forget and does not learn is shown in Figure 3. With no learning, the
equivalence relations do not refine. Note how i goes through the same sequence of states in
all runs it cannot distinguish (modulo stuttering, i.e. the same state repeating at consecutive

runs, we get precisely the classes considered in [LR]. This condition has no impact on the complexity of
the decision procedure, although it does slightly affect the axioms for the logic. In practice we would not
want to impose this condition since it is easier to consider issues of fairness without it.

10

i

Figure 2: A system where processor i does not forget.

points). (We remark that if we consider no learning but allow forgettmg, the situation is
slightly more complicated. If processor i cannot distinguish (r,0) and (*,0), then there may
be a set S of states such that i is in every state of § infinitely often m both runs 7 and #/,
but it does not go through the states in the same sequence in r and ')

In a synchronous system, we assume that every processor has access to a global clock that
ticks at every instant of time, and the clock reading is part of its state. Thus, in a synchronous
system, each processor always ‘“knows” the tlme More formally, we say a tlme is synchronous
in R if for all processors i and all runs r,r I if (r,n) ~ (r n'), then n=n'. We remark that
in a previous version of this paper [HV], we took a sllghtly weaker definition: we required
that for all runs r, if (r,n) ~; (r,n’) then n= n’. Let us call a system that satisfies that latter
condition weakly synchronous. Note that the definition of weakly synchronous only considers
one run r rather than two runs r and 7’. It is easy to show (by induction on n) that the two
definitions are equivalent for systems where processors do not forget. However, in general

Figure 3: A system where processor i does not forget and does not learn.

11

they are different. (We remark that the notion of weak synchrony is important in some of
our proofs.) Observe that in a synchronous system where (r,n) ~; (+',n), an easy induction
on n shows that if i does not forget and n >0, then (r,n—1) ~; (+',n—1), while if i does not
learn, then (r,n+ 1) ~;(r',n + 1).

Finally, we say that a system R has a unique initial state if for all runs r,r € R, we have
r(0) = r'(0). Thus, if R is a system with a unique initial state, then we have (r,0) ~; ', 0)
for all runs r,# in R and all processors i.

We say that M= (R,w) is an interpreted system where processors do not forget (resp.
processors do not learn, time is synchronous, there is a unique initial state) exactly if R is
a system with that property. As we mentioned in the introduction, we use the notation €
to represent the class of all interpreted systems, and add the subscripts nf, nl, sync, and wuis
to denote particular subclasses of €.

3. Upper bounds for CKL(m) and CKB(ny)

In this section we show that the validity problem for CKL(y,) and CKB(y,) any of the
classes of structures that we consider is in H%. We begin with a brief review of the notions
of H{ and its dual 21. Further details can be found in [Rog] or any other standard textbook
of recursive function theory.

Formulas of second-order arithmetic with set variables consist of formulas of first-order arith-
metic, augmented with expressions of the form x € X, where x is a number variable and X is
a set variable, together with quantification over set variables and number variables. Second-
order arithmetic with set variables is a very powerful language. For example, the following
(true) sentence of the language expresses the law of mathematical induction over IN:

(1) VX0 eXAVx((x e X>x+1eX)>Vx(x e X)))

A TI}-sentence (resp. 3]-sentence) of second-order arithmetic with set variables is one of
the form VX;..VX,¢ (resp. 3X;..3X,¢), where ¢ is a formula of second-order arithmetic with
set variables that has no quantification over set variables. A set 4 of natural numbers is in
11} (resp. =D) exactly if there is a I1}-sentence (resp. S]-sentence) ¥(x) with one free number
variable x and no free set variables such that ae A iff Y(a) is true. I’I{-hardness and
I1}-completeness are defined in the obvious way (the reduction is via recursive functions).
It is well-known that H}-complete sets are not recursively enumerable (cf. [Rog]). In
particular, it follows from the fact that the validity problem for both CKL(,) and CKBy),
m212,is H}-complete that there can be no complete (recursive) axiomatization for these
languages.

Theorem 3.1. The validity problem for CKL(p) and CKB(y), m 2 2, in €(nfsync) is in 1.

Proof. It suffices to show that the satisfiability problem is in 2}. We give the argument
for CKL(y), and then comment on the modifications required to deal with CKB(ny). The
argument is the same for both the synchronous and asynchronous cases. The first step is to
show that a formula in CKL(,) is satisfiable iff it is satisfiable in a countable system (i.e.,
a system with only countably many runs).

Clearly if a formula is satisfiable in a countable system it is satisfiable. For the converse,
suppose ¢ is satisfied in some interpreted system M = (R,w). Thus, we have (M,r,n) = ¢ for

12

some run r in R. We define a sequence Rg,Rj,... of countable sets of runs in R such that
Rg = {r}, and for all j>0 and every formula of the form ~K;y such that M, r', nE ~K;y
for some r’ € Uy R, there is some " € R; and some n' such that (',n")~; (+",n"") and
(M,r",n") = ~. It ‘is obvious that we can indeed define such a sequence inductively. Let
R’'=U;R;and let M' = (R ! o'}, where 7’ is the restriction of = to (R’ x IN). By construction,
M' is a countable system.

Moreover, we can show that for all ' ¢eR', all n’ € N, and all formulas ¢, we have
(M, ¢ ,n"Y e iff (M,r',n')Ey. The proof is by induction on the number of occurrences
of C in ¢, with a subinduction on the structure of ¢. If ¢ is of the form K/, then if
M, r',n") |=K,~\,b', we must have (M.r"”,n") ¢/ for all (+",n"") such that ', n")~; ", n".
Since R’ is a subset of R, we easily get (M',7,n")|F Ky from the induction hypothesis.
And if (M, 7, n") EKq/, then (M,r',n") = ~K;y/. Since r’ € R', we must have re Rf for some
j. By construction, there is some r” € Rj4+1 and some n” such that (', n")~; (@"',n"") and
(M, r", 0"y ~¢'. Again, using the induction hypothesis, we have (M " n")E ~y/. Thus,
by definition, (M’,r,n") ¥Ky/. If ¢ is of the form E%Y/, note that (M,r”,n") = EY iff
(M, r",n")E K/ for i=1,...,m, so this case quickly reduces to the last one. Finally, note
that (M, r,n") = Y iff (M,r',n") | EXY' for k=1,2,... Since E'Y’ has one less occurrence
of C than Cy/, the case of Cy' also easily follows using the inductive hypothesis. This
completes the induction proof. Since, by construction, r e R’, we have (M’,r,n) = ¢. Thus,
M’ is a countable model of ¢, as desired.

We now sketch how to encode the satisfiability of an CKL,) formula ¢ in a 2}-formula.
Suppose ¢ has k subformulas g1, ..., px, Where ¢ = ¢;. Note that a formula has only finitely
many subformulas. Given a countable system M =(R,w), we can assume without loss of
generality that R is just IN. Thus, a point (r,n) can be encoded by the number 2"3". We can
also assume without loss of generality that « assigns truth values only to the primitive
propositions that appear in ¢ (otherwise we can just ignore the truth values 7 assigns to the
other primitive propositions). Thus, we can easily encode 7 as a set Y of numbers. We can
also assume that the equivalence relation ~; is also encoded as a set Z; of numbers. We then
use the sets Xj, ..., Xi to encode the sets of points where the formulas g1, ..., gk are true. We
can then write down some obvious consistency conditions that these sets must satisfy. For
example, if ¢; is of the form g@; Agy, then X; must be the intersection of X; and Xj,.
Similarly, if ¢; is of the form Kjg;, then X; consists of all the (encodings of) points (r,n)
such that for all (encodings of) points (+,n) with (+,n)~; (r,n), we have (*',n) € X;. Note
that we have to “consult” the set Z; to check if (',n)~; (r,n). The fact that ¢ is true at
some point in M is simply the statement that X; is nonempty. Finally, we have to write
down conditions on the Z’s that will force the system to have the right properties (such as
no forgetting or no learning). By existentially quantifying appropriately over the sets
X1, s Xic» Yy Z1, .. s Zm, We end up with a 2} formula that is true iff ¢ is satisfiable at some
point in a countable system iff, by the proof given above, ¢ is satisfiable.

The proof in the case of CKBy) is identical, except that in the proof that there always
exists a countable model for a satisfiable formula, we also have to add runs to R’ ensure
that formulas of the form 3oy and YUY’ are satisfied in M’. We leave the straightforward
details to the reader. W

13

We note that essentially the same proof provides T1} upper bounds for satisfiability of
CKL(y) and CKB(, with respect to all classes of structures discussed earlier.

4. Upper bounds for KL, and KBy,

If we do not reason about common knowledge, then, at least in the synchronous case, the
logic becomes decidable, although non-elementary. We focus here on KL(py).

To understand the upper bound, consider again the proof of the H{ Iower bounds in [HV1].
In that proof we used C to play the role of [],, ie., to talk about things that happen
arbitrarily far to the right. Without common knowledge, the logic cannot talk about things
that happen arbitrarily far to the right; roughly speaking, a formula ¢ can only talk about
things that happens within distance ad(p). Thus, to check if a formula ¢ is satisfiable at a
point (r,0), it suffices to consider only a “vertical cylinder” of radius ad(p) around run r.
We now formalize this intuition.

We start by defining the closure of ¢. A formula that is not of the form ~y' is called
positive. The closure of ¢, denoted cl(¢), is the least set of formulas such that:

o All subformulas of ¢ are in cl(gp).

o If Y € cl(p) and ¢ is positive, then ~y € cl(9).

o If YU € cl(p), then o(YUE) € cl(p).

o If ~oycl(p) and ¢ is positive, then then o~y € cl(9).
o If ~o~yYrcl(p), then then oy € cl(g).

It is easy to check (by induction on the structure of ¢) that lcl(e)| <6lel.
A subset a of cl(¢) is an atom of ¢ if the following holds:

o If ¢ e cl(p) and ¢ is positive, then Y e a iff ~y ¢ a.

e If YAteclp), then yAfecaiff Yeaand feca.

o If ~oy € cl(p) and ¢ is positive, then ~oy € a iff o~y € a.

o If ~o~y € cl(p), then ~o~y € a iff oY € a.

o If YUE € cl(p), then YUE € a iff either £ € a or both ¢ € a and o(YU¥E) € a.
o If K;{ € a, then Y € a.

Let az(p) be the set of all atoms of .

We consider finite trees whose nodes labelled by atoms of ¢ and whose edges are labelled
by the agents mentioned in the formula @; without loss of generality, we will assume that
the set of agents is {1,...,m}. We are only interested in trees of height at most ad(p).
Intuitively, these trees represent the set of points in a horizontal “layer” that a formula of
depth at most ad(p) can talk about. Given a tree T and a node 7 in 7, we use atom(?) to
denote the atom labelling the node ¢ and tree(t) to denote the subtree of T rooted at & We
often identify a node ¢ in a tree T with the tree tree(s). (However, note that even if 1 and
1 are distinct nodes in a tree 7, we may have tree(s1) = tree(t2).) An edge labelled by j is
called a j edge. If there is a j edge from s to ¢ in a tree, then we say that ¢ is a j-child of s
and s is the j-parent of ¢. A tree T is lean if for all nodes s in T, if ¢ and t' are distinct
Jj-children of s, 1 <j < m, then tree(t) and tree(t’) are distinct. A tree T is compact if no two
adjacent edges on a branch have the same label, i.e. if #,%,% are nodes of T and » is a

14

j-child of 1, then # cannot be a j-child of . A tree T is full if whenever a node ¢ is of
height k, then all children of ¢ are of height k — 1. Standard trees are lean, compact, and full.
A k-tree T is a standard tree of height k.

Proposition 4.1. There are at most ex(1 + k,7 | @ | + k) distinct k-trees.

Proof. We proceed by induction on k to show that there are at most ex(1 + k,4| @ | + k&)
distinct lean trees of height k. Since the standard trees of height k are a subset of the lean
trees, the result follows.

Let N; be the number of distinct lean trees of helght k. Since a lean tree of helght 0 is
a node labelled by an atom, and there are at most 2 6lol atoms, clearly Np €2 6lel por
k>0, observe that a lean tree of height k consists of a root labelled by an atom, together
with j edges to lean trees of height k — 1, for 1 £ j < m. Since the j edges must lead to distinct
trees of height k — 1, we can completely characterize a lean tree of height k by the atom
labelling the root and the subset of lean trees of height k — 1 that the j edges lead to, for
1 € j < m. Thus, there are at most 2 619lmNe—1 lean trees of heleghf k. S}Pqe 6lel € N1
and m € |¢| —1, it follows that N <2"’Nk-‘T 11<2"’ ,and for k21,
an easy computation shows that N]" < 2|V’|e"(k7|"’l+(k))-< ex(1 +k, 7 I<p| +k). &

Corollary 4.2. There are at most ex(1 + ad(¢),8 | ¢ |) standard trees of height <ad(p).

Let 7 be a tree and let #,% be nodes in 7. We say that # and # are j— relatives if either
1 =t, t; is a j-child of 5, &, is a j-child of #, or there is a node # that is the j-parent of
both 4 and 5. In general, j-relativeness is not an equivalence relation, but it is easy to see
that it is an equivalence relation for compact trees.

A tree T is a knowledge tree if it satisfies

o If £ and ¢’ are nodes of T that are j-relatives then K; iy € atom(?) iff Ky € atom(t).
 If ¢ is an internal node of T and ~K € atom(1), then there is a node ¢/ of T that is a
Jj-relative of ¢ and ~y € atom(¢ n.

Note that in the second clause we do not require that ~K;y formulas at the leaves of T are
taken care of. The idea is that knowledge trees of height k will satisfy formulas of depth k.
Thus, the leave have only to satisfy formulas of zero depth.

We now define the notion of potential successors. Let S and T be trees, and let s be a node
of S. We say that T is a potential successor of (S,s) if

o for Oxp € cl(p), we have that oy e atom(s) 1ff Y € atom(T), and
o if T’ is a j-child of T, then there is some s’ in S such that s’ is a j-relative of s and T’ is
a potential successor of (S,s’).

Note that potential succession is a well-defined notion, since the height of T’ is smaller than
the height of T.

The following lemma is proven by easy induction.

Lemma 4.3. Let S and T be standard trees, let s be a node of S, and let i be a node of T. If T
is a potential successor of (S,s), then there is a node sy of S such that ty is a polential successor of
(S,s1). Furthermore, if t is a j-relative of 11, then there is a node s of S such that &, is a potential
successor of (S,s2) and sy is a j-relative of s1. B

15

In general a system in €(,f5mc) is a “grid-like” structure, where a view knowlegde edges
as horizontal edges and temporal edges as vertical edges. Indeed, in [HV1] this property of
the structures is used to obtain the undecidability result for CKL(,). The crux of the
decidability proof here is that when considering satisfiability of KL(,) formulas we can
describe structures by trees. These trees are called Hintikka trees. We now proceed with a
formal definition.

A Hintikka tree for ¢ is an infinite tree T rooted at xp such that an element x of 7 (called
vertex) is labelled by a standard knowledge tree, denoted lab(x), and the following conditions
are satisfied.

(HD) Let x be a vertex of 7, let S = lab(x), and let X be the set of successors of x. Then
there is a bijection o, from the nodes of S to X such that the following holds: Let
s be a node of S, where s is a k-tree, let o,(s) =y, and let lab(y) =t, where ¢ is a
k’-tree. Then ¢ is a potential successor of (S,s) and k'> k.

(H2) lab(xg) is a k-tree for for some k > ad(p) and ¢ € atom(lab(xg)).

(H3) Let x be a vertex of 7, and lab(x) = S. Then YU§ € atom(S) iff there is a sequence
of vertices xi, ..., x; such that x =x1, x; = ax,(lab(x;~1)) and lab(x;) = S; for 1<i</|,
¢ € atom(S)), and Y € atom(S;) for 1 <i<l

Intuitively, every vertex in 7 consists of a description of a horizontal slice of the structure
center at some point. The slice has to be big enough to satisfy formulas at that point. In
particular, to satisfy ¢ we need in (H2) a knowledge tree of height at least ad(g). In (H1),
s takes care of formulas of depth k, which explains why 7 has to be of at least height k.

The connection between Hintikaa trees and structures is established by the following lemma.

Lemma 4.4. Let ¢ be a formula of KL(y,). The the following are equivalent:
1. @ is satisfiable in €(nfsync)-
2. @ has a Hintikka tree.
3. @ has a Hintikka tree whose vertices are labeled by k-trees for k < ad(g).

Proof. For the sake of the proof we take the alternative view of interpreted systems, where
instead of viewing runs as functions from IV to a set of local states, we view runs as abstract
objects and we specify the indistinguishability relations explicitly. That is, an interpreted
system is system is a tuple (R,~1,...,~m,T), Where ~; is an equivalence relation on R x IN
and 7 is a mapping from R x NN to truth assignments. We have already observed earlier that
this notion is equivalent to our standard notion.

We first prove that if ¢ is satisfiable, then it has a Hintikka tree whose nodes are labeled
by k-trees for k < ad(p). Let M =(R,~1,...,~m,7) be an interpreted system. With every
point (r,i) we associate an atom, denoted atom(r,i), which is the set of formulas
f: ¥ ecl(p) and (M, r,i) =y}. It is easy to see that atom(r,i) is indeed an atom. We aslo
associate nonstandard trees with the points of M. More precisely, with every point (7,) and
k >0 we associate a nonstandard tree, denoted k-nst(r,i). These trees will be lean and full,
but not compact. The idea is that k-nst(r, i) describes a “circle” of radius k around (r,i). The
construction is by induction on k. For the basis of the induction, let 0-nst(r,) consist of a

16

single node labeled by atom(r,i). Suppose now that k-nst(r,i) has been defined for all r and
i. The root of (k + 1)-nst(r,i) is labeled by atom(r,i). The j-children of (k + 1)-nst(r, i) are all
the distinct trees of the form k-nst(r’, i), where (r,i)~;(r’,i) (the emphasis on distinctness
guarantees leanness). This completes the construction. Note that if ¢ is a node of height / in
(k + 1)-nst(r, i}, then there is a run ¢ such that ¢ = I-nst(+',). Two distinct nodes can, however,
be associated with the same run r'.

We now prune these trees to get standard trees. More precisely, if #, £, and # are nodes
of k-nst(r,i), #; is the j-parent of f, and # is the j-parent of 3, then we delete # (and the
nodes below it). We continue until we end up with k — tree(r, 7).

We prove that k-tree(r,i) is a knowledge tree. Let # and # be nodes of k-tree(r, i), where
4 is of height k1 and # is of height k. Then there are runs rq and r such that # is obtained
from ky-tree(r1,i) by pruning and ¢, is obtained from ky-tree(ry,i) by pruning. If #4 and # are
J-relatives, then (ry,#)~;(r2,7). Thus, Ky e atom(yy) iff (M,n,i)F Ky iff M, n,) FE Ky iff
Kiy € atom(pp). If k1 21 and ~Kp) € atom(t1), then (M,r, i) ~Kpp. Thus, for some r3 such
that (r, i)~ j(r3, i), we have that (M, r3,i) | ~¢. If 4 is a j-child of some node ¢, then ky-tree(r3, i)
with its j-children deleted is also a j-child of «. Otherwise (kj —1)-tree(r3, i) with its j-children
deleted is a j-child of #. In either case, # has a j-relative #3 such that ~y € atom(s).

We now show that k-tree(r, i) is a potential successor of (l-tree(r,i— 1), l-tree(r,i— 1)), when
k < I. The proof is by induction on k. For k=0, the claim follows from the definition of
atom(r,i). Assume that the claim has been proven for k—1. The first condition in the
definition of potential successor again follows from the definition of atom(r,i). So it remains
to prove that the second condition holds. Suppose that T’ is a j-child of k-tree(r,i). Then
there is a run #' such that (v,i)~;(r,/) and T’ is (k- 1)-tree(’, i) with its j-children deleted.
By the induction hypothesis, (k— 1)-tree(r’,i) is a potential successor of
((1— V)-tree(r’, i — 1), (I = 1)-tree(r’,i — 1)). But (I — 1)-tree(+',i— 1) with its j-children deleted
is a j-child of Itree(r,i—1). The claim follows.

We now define a Hintikka tree 7 by induction on the depth. With every vertex x of T we
associate a point point(x) of M and we let lab(x) =k-tree(point(x)) for some k. Let rpe R be
such that (M,rn,0)F . We let point(xg) = (r9,0) and lab(xp) =ad(p)-tree(r,0). Clearly,
o € atom(lab(xp)). Thus, (H2) is satisfied.

Suppose that all the vertices of = up to level i and their labels have been defined. Let x
be a vertex, with point(x) = (r,i) and lab(x) =k-tree(r,i). Consider a node ¢ of lab(x). If ¢ is
the root, then we add a successor x’ of x with point(x’) = (r,i + 1), lab(x") =k-tree(r,i + 1), and
o, () =x'. If tis a j-child, then there is some r € R such that ¢ is (k — D-tree(?’,i) with its
j~children deleted, for some !<k. We add a successor x” of x with point(x") = (r,i+1),
lab(x"") = (k — D-tree(r’,i + 1), and oy (D =x".

We have to show that (k — D-tree(r’,i+ 1) is a potential successor of (k-tree(r,i),?). We
know that (k — D)-tree(r’,i + 1) is a potential succssor of ((k — D-tree(r’, i), (k — D-tree(r’, 1)).
Thus, if 7z was a root, then we are done. It remains to deal with the case that ¢ is a j-child.
Let s be a child of (k— D-tree(+',i+1). We know that (k — D)-tree(r’,i) has a child s’ such
that s is a potential successor of (s’,s”). Thus, if s is not a j-child, then s is a child of 7 and
s is a potential successor of (k-tree(r,i),s’). If, on the other hand, s is a j-child, then s is a

17

j-child of £'s j-parent, so again s is a potential successor of (k-tree(r, i),s’). This shows that
(H1) is satisfied.

Finally, it remains to verify that (H3) is satisfied. Let x be a vertex of 7. Suppose that
YUt € atom(lab(x)). Then (M,r,i) | Yy UE. Therefore, there is some i’ > i such that (M, r,i") [£,
and for all i’ with i <i"” <i’, we have (M,r,i") = . Define a sequence xj,Xxp,... of vertices
of 7 as as follows: xj =x, and x;,1 = oxj(lab(xj)), j2 1. We know that point(xj) =(r,i+j—1).
Thus, there is an I such that £ e atom(lab(x;)), and ¢ € atom(lab(x;)) for 1 <i< [Conversely,
suppose that there is a sequence of vertices xi,...,x; such that x =x;, x;= oxj(lab(xj_l)) for
1<j<l &eaom(lab(x)), and ¢ e atom(lab(x)) for 1<j<l. We then have that
poinl(xj) = (rni+j—1), so (M,r,i+I1-1)F¢ and (M,r,i+j—1)Ey for 1 <j<L It follows
that (M, r, i) E Y UE, so YU € atom(lab(x)).

We have shown that if ¢ is satisfiable then it has a Hintikka tree. We now show that if
¢ has a Hintikka tree 7, then it is satisfiable. With every vertex x of T we associate a run
r.. The set R of runs is the set of runs r, for all the vertices x in 7. To define the equivalence
relations ~js 1 < j < m, we need some additional machinery.

With every vertex x and i > 0, we associate a vertex x; and a node #; of lab(x;) such that
t; is a potential successor of (lab(x;—1), &-1). The construction is by backward and forward
induction.

Suppose that x is at level n of 7. We first deal with the case 0 <i<n—1. Let xg,..., X1
be the path leading to x. That is, x,_1 =x, and x; is the successor of xj_q for 1<jsn—-1
For i=n-—1, let t,_1 = lab(x,_1). Assume by induction that z; is defined. By (H1), there
is a node s of lab(x;_1) such that lab(x;) is a potential successor of (lab(x;—1),s). It follows
by Lemma 4.3 that that there is a node ¢, ;1 of lab(x;—1) such that & ; is a potential successor
of (lab(x,-_l),tx,,'_l).

We now deal with the case i > n— 1. Recall that 4 ,_1 = lab(x,_1). Suppose that x; and
t,; have been defined. By (H1), there is a successor x;, 1 of x; such that lab(x;+1) is a potential
successor of (lab(x;),lab(x;)). Thus, let & ;41 = lab(x;;1).

We can now define the equivalence relations ~; for 1 <j <m. We let (r,)~;(r, D) if x;=y;,
and & ; and ¢,; are j-relatives. It is easy to see that ~; is an equivalence relation. Since we
are trying to construct a synchronous system, we have to show that (rx,i)~j(ry,1) entails
(r,i— 1’)~j(ry,i— 1).

Suppose that (ry,)~;(ry,). Then x;=y; and f; and ¢,;, which are nodes of lab(x;), are
Jj-relatives. But x;_ is the parent of x; and y;_; is the parent of y;. It follows that x;_1 =y;_1.
Furthermore, by Lemma 4.3, & ;_1 and 4,;_; are j-relatives.

Finally, we associate a truth assignment #(r,7) with every point (r,i) in the following
way. Then w(ry,)(p) = true iff p € atom().

Let M be (R,~1,...,~m, 7). We claim that (M,ry,0) = 9. To prove this, we would like
to prove that (M, r,) = ¢ iff Y € atom(;) for ¢ € cl(p). Unfortunately, this is not the case,
since ‘“‘deep” knowledge formulas need “deep” knowledge trees to satisfy them. Thus, we
attempt to prove a weaker statement: if 4 ; is a k-tree and ad(y) < k, then (M,r,i) =y iff
¥ € atom(t,;) (the earlier claim then would follow by condition (H2)). Unfortunately, even

18

this claim does not hold, and we need to weaken it further. Let ¢ e cl(p) such that
ad(y) < k + 1 and, furthermore, if K;¢ is a subformua of y such that ad(Ky) =k +1, then &
is a j-child. We prove that (M, rx,z) =y iff ¢ € atom(z, ;). The earlier clalm then follows by
condition (H2).

The proof is by induction on the structure of the formulas. For primitive propositions
the claim follows from the definition of . For the Boolean connectives the claim follows
from the definition of atoms. Consider now a formula 0. We know that 4 ;1 is a potential
successor of (lab(x}),t;). Thus, (M,r,)Eoy iff (M,r,i+ 1)y iff (by the induction
hypothesis) € atom(z, ;1) iff (by the definition of potential successor) oy € atom(tx .

Consider now a formula U§. Now (M e, i) EYUE iff there is some i’ > i such that
M, ry, i) EE, and for all i"” with i<i” <i’, we have (M, re,i")E Y. Thus, (M, rx,z)t=;[zU£
iff (by the 1nduct1on hypothesis) there is some i’ > i such that £ € atom(t,;), and for all i’
with i <i” <i’, we have ¢ e atom(t,;#). Assume (M,ry,i)EEyUE. Then it follows by the
definition of potential successors and atoms that YU € atom(ty ;). Assume, on the other hand
that YUE € atom(z, ;). Suppose that x is at level n of 7. There are two cases to consider. If
i 2 n, then f; = lab(x;). Thus, by (H3), (M, r,, 1) = Y UE. If on the other hand, i < n, then one
can prove by 1nductlon that either there is some i, i < i’ < n, such that 5 € atom(ly, ,'), and for
all i with i<i” <i’, we have { € atom(,;”), or ¢ € atom(s,;) for all i"” with i<i” <n and
YUt € atom(lab(x)). It follows, either immediately in the first case or by applying (H3) in
the second case, that (M,r.,i) = Y UE.

It remains to deal with knowledge formulas. Let Ky € cl(p). Suppose that K € atom(ty ;).
Let (rg,i)~;(ry,). It follows from the definition of ~; and from the definition of knowledge
trees that K;y € atom(y,;), so we have y € atom(s,;). There are now two cases to consider. If
Lis a _]-Chlld then it is possible that ad(K W) =k +1. But in that case, since (7,)~ (ry, i,
we have that 4,; is of height k +1 or k. If on the other hand ¢ ; is not a j-child, then b
is of height k or k — 1. But in that case ad(K;y) < k. Thus, in either case it follows, by the
induction hypothesis, that (M,ry,) =y Smce this is true for all y such that (r, i) J(ry, i,
it follows that (M, ry, i) = Kp).

Suppose now that ~K;y € atom(tx). Then ¢ ; has a j-relative ¢, where ¢’ is a k'-tree, such
that ~y € atom(t'). Let y =0y (t). It is easy to see that y; =% and £,; = t'. Thus, (r,,d)~ i (rys).
As before, either k' >k or k' > k-1, ad(Kjy) < k, and t' is a j-child. In either case, the
induction hypothesis applies and we have (M re, D) |E ~y, so (M, rx, i) F ~Kp. This completes
the proof. WM

We can now use Lemma 4.4 to derive an upper bound for satisfiability of KL(y).

Theorem 4.5. There exist a positive constant c such that the problem of deciding the satisfiability of
a formula @ of KLy in €(ufsynch) can be solved in time O(ex(1 + ad(p),cl @ |)).

Proof. By Proposition 4.1, if the vertices in a Hintikka tree for ¢ are labeled by trees of
height bounded by ad(|@|), then the fan-out of the tree is bounded by ex(ad(¢),dl¢|) for
some positive constant ¢. To obtain a decision procedure we use the automata-theoretic
technique described in [VW]. We construct a Bichi automaton that recognize Hintikka trees
for @, where the labels are trees of height bounded by ad(|¢|). The automaton consists of
two parts: the local automaton and the eventuality automaton. The local automaton, whose

19

states are k-trees, checks that conditions (H1) and (H2) are satisfied. Intuitively, the local
automaton is a recursive algorithm that starts at the root of the tree, checks that the root
satisfies (H1), checks that the root has successors so that (H2) is satisfied, and then applies
itself recrusively to the children of the root (without, of course, checking again for (H1)).
The eventuality automaton, whose states are sets of formulas in c/(¢), checks that conditions
(H3) is satisfied. Intuitively, the eventuality automaton is also a recursively descending
algorithm that carries with it a set of formulas of the form YU and check that they are
eventually satisfied. The reader is referred to [VW, Section 3] for more delatils. There is a
positive constant ¢ such that the size of this automaton is bounded by ex(1 + ad(¢),cle|).
Now ¢ is satisfiable iff the automaton accepts some infinite tree. This can be checked in
time polynomial in the size of the automaton [Ra] whence the bound in the theorem. W

5. Complete Axiomatizations

In the literature can be found complete axiomatizations for reasoning about knowledge
({Hi,HM2]), common knowledge ([Mi,Le,HM2]), linear time ([GPSS]), and branching time
([EH2]). These are reviewed below.

Axioms for propositional reasoning:

PA1. All instances of propositional tautologies
PR1. 1—”—’%]2 (modus ponens)
Axioms for knowledge

KAL Ko AKi(p=>Y) > Ky
KA2. Kip=» ¢

KA3. K;9o = K;K;9

KA4. ~K;9o > K;~K;p

P
KR1. —
Ko
Axioms for common knowledge (with m knowers)

CAl. Ep=Kijp A ... AK,9
CA2. Co=>p AECyp

CA3. CoAC(p=»y)=» Cy
CA4. C(p=» Ep) = (¢ = Cop)

@
CR1. —
Co

Axioms for linear time

LAl. o~p = ~0p
LA2. cp Ao(p =) oy
LA3. oWy =yV(p Ao(e¥))

20

L4
LR1. 59

¢’ >~y Aog’
¢’ > ~(eUy)
Axioms for branching time

BA1l. Yog = ~3o~¢

BA2. Yop AVo(p =) = Voy

BA3. Yop = 309

BA4. V(o) = YV(p AVoV(pUy))
BAS. 3(eUy) = ¢V (p AJo3(eY))

LR2.

@
" Voo ,
ary &> (YA
L g V(oY)
o (o RV -2 U
¢’ > ~A(eUy)

BR1

BR3.

It is easy to check that all these axioms are sound for all the classes of structures we
study here. For system with no forgetting, it follows from H} lower bound in [HV1] that
no axiomatization exists once we allow common knowledge into the language. Lehman does
give some axioms that are sound for the synchronous case though [Lel]. We can show that
by adding one of his axioms, we get a complete axiomatization for KL(y) in the synchronous
case. Adding a similar axiom leads to a complete axiomatization for KBy in the synchronous
case. Consider the following axioms, which intuitively describes the fact that the set of runs
is always decreasing over time, so there is “no forgetting”.

Axioms for the interaction between knowledge and time®

LKALl. K;op= oK

BKAIl. K;Vog = VoK

It is easy to check that LKA1 (resp. BKA1) is sound for KL(y;) (resp. KB(m)) in €(nfsync)s
and, as we now show, it is the only extra axiom required for completeness in this case.
(Note, as pointed out in [LR], it is nor sound in the asynchronous case.)

We focus here on KL(,). We want to prove that every formula that is consistent (with the
axioms for propositional reasoning, knowledge, linear time, and interaction between knowledge
and time) is satisfiable. The main idea of the completeness proof is to use the fact that the
axioms for knowledge (together with the axioms for propositional reasoning) are complete
for knowledge, and the axioms for linear time (together with the axioms for propositional
reasoning) are complete for linear time. To prove that the axioms are complete we have to
show that if a formula is consistent, then it is satisfiable. We shall do that by showing that

8 It is interesting to note that the contrapositives of LKA1 and BKAL1, i, OK;p % K;Op and VoK;¢ = K;VOgp,
respectively, captures the interaction between knowledge and time in synchronous systems with no learning.

21

if a formula is consistent, then it has a Hintikka tree. We construct the tree by alternately
considering formulas of KL(,) as knowledge formulas and as temporal formulas.

We now formalize the idea that a formula of KL(,) can be treated both as a knowledge
formula and as temporal formulas. time. We first give semantics to pure knowledge formulas,
i.e., formulas that are constructed from the primitive propositions by Boolean connectives
and knowledge modalities. A knowledge structure Mg = (W, ~1, ..., ~m,T), where W is a set of
states, each ~; is an equivalence relation on W, and w(w) is a truth assigment on primitive
propositions for each we W. We write (Mg, w)E ¢ if the pure knowledge formula ¢ is
satisfied by the state w of Mg. We define | inductively:

o (Mg,w) = p for a primitive proposition p if a(w)(p) = true.
. (MK9W)'=‘PA\{/ if (MK’W)I=<P and (MK7W)F¢

o (Mg, W)~ if (Mg,w) Fo

« (Mg, w) E Ko if (Mg,w") o for all w’ such that w~; w'.

We write Mgk o if (Mg, w)[F o for all we W.

We now give semantics to pure temporal formulas, i.e., formulas that are constructed from
the primitive propositions by Boolean and temporal connectives. A linear temporal structure
M; is simply a sequence of truth assignments. That is, we view the natural numbers as states,
and M (i) is a truth assignment on primitive propositions. We write (Mz,) [¢ if the pure
linear temporal formula ¢ is satisfied by the state i of M;. We define | inductively:

e (My,i) = p for a primitive proposition p if My (i)(p) = true.

o M, DEQAYIf (Mp,)F e and (ML,)FY

o (ML, D) ~p if (ML,]) e

« (M1, @U if there is some i’ 2 i such that (M,i") ¢ and for all i" i<i” <i, we
have that (My,i") = .

We write My o if (Mp,)F¢ for all i>0.

Consider now formulas of LK(,). A general truth assignment is a function from formulas
to truth values. A temporal formula is either a primitive proposition, a formula of the form
oy, or a formula of the form YUE. A temporal truth assignment is a truth assigment on temporal
formulas. A temporal truth assignment for ¢ is a truth assigment on the temporal subformulas
of p. A pseudo knowledge structure for ¢ Mg = (W, ~1,... ,~m,-n') for a formula ¢ of LKy
is like a knowledge structure, where o’ assigns to every state a temporal truth assignment
for ¢.

We can view @ as a pure knowledge formula by treating each temporal subformula of ¢
as a primitive proposition. Thus, we can talk about satisfaction of arbitrary KL(m) formulas
in Mg. We say that My is a pseudo knowledge model for ¢ if for some we W we have that
(Mg, w) = 9, and for all we W the set fY:(Mp,w) ¢y} is consistent.

Lemma 5.1. Let ¢ be a formula of LK. If @ is consistent then ¢ has a pseudo knowledge model.

Proof. The proof is a modification of the completeness proof for pure knowledge formulas.
The following is proven is [HM2]: Let ¢ be a pure knowledge formula. If ¢ is consistent
with the axioms and inference rules for propositional reasoning and knowledge, then ¢ is

22

satisfiable.

The proof has the following structure: Assume that that ¢ is consistent with the axioms
and inference rules for propositional reasoning and knowledge. The proof then proceeds to
construct a structure M, where every state in M is a consistent set of formulas, and every
consistent set of formulas is a state in M. Furthermore if a formula is a member of a state
then it is satisfied by that state. Since ¢ is consistent, there is a state that contains ¢, and
consequently satisfies .

Here we assume that ¢ is consistent with the axioms and inference rules of propositional
reasoning, knowledge, linear time, and the interaction between knowledge and time. To adapt
the proofs to our need, we use in the constructions only sets of formulas that are consistent
in that stronger sense. With every set X of formulas we associate a temporal truth assignment
oy such that ox(y) = true iff Y € X. The argument in [HM2] shows that we get a pseudo
knowledge model for ¢. W

So far we have treated formulas of LK(,) as pure knowledge formulas. We now describe
the dual approach, whereby these formulas are treated as pure temporal formulas.

A knowledge formula is either a primitive proposition or a formula of the form Kjy. A
knowledge truth assignment is a truth assignment on knowledge formulas. A knowledge truth
assignment for ¢ is a truth assigment on the knowledge subformulas of ¢. A pseudo (linear)
temporal structure My for ¢ is simply a sequence of knowledge truth assignments on ¢

We can view @ as a pure temporal formula by treating each knowledge subformula of ¢
as a primitive proposition. Thus, we can talk about satisfaction of arbitrary KL(n) formulas
in M;. We say that My is a pseudo temporal model for o if for some i2 0 we have (M1,0)F ¢
and for all j> 0 the set {¥ e cl(@):(Mr,i) ¢} is consistent.

Lemma 5.2. Let @ be a formula of LK) If ¢ is consistent then @ has a pseudo temporal model.

Proof. The proof is a modification of the completeness proof for pure linear temporal
formulas. The following is proven is [GPSS]: Let ¢ be a pure temporal formula. If ¢ is
consistent with the axioms and inference rules for propositional reasoning and linear time,
then ¢ is satisfiable.

The proof has the following structure: Assume that that ¢ is consistent with the axioms
and inference rules for propositional reasoning and linear time. The proof then proceeds to
construct a structure M, where every state in M is a consistent set of formulas in cl(p).
Furthermore if a formula is a member of a state then it is satisfied by that state. Since ¢
is consistent, there is a state that contains ¢, and consequently satisfies ¢.

Here we assume that ¢ is consistent with the axioms and inference rules of propositional
reasoning, knowledge, linear time, and the interaction between knowledge and time. To adapt
the proofs to our need, we use in the constructions only sets of formulas that are consistent
in that stronger sense. With every set X of formulas we associate a knowledge truth assignment
oy such that ox(y) = true iff ¥ € X. The argument in [GPSS] shows that we get a knowledge
pseudo model for . W

The basic idea of the completeness proof is to show that if ¢ is a consistent formula, then
it has a Hintikka tree. To construct the tree we use Lemma 5.1 and Lemma 5.2. We first

23

consider ¢ as a knowledge formula, and using Lemma 5.1 we construct a knowledge tree.
Now we consider the atoms labeling the nodes of the tree as temporal formulas, and using
Lemma 5.2 we construct pseudo temporal models, which we “hook” to these nodes. The
construction continues by alternately considering formulas as knowledge formulas and temporal
formulas.

It turns out that its is fairly easy to ensure that (H2) and (H3) are satisfied, but it is
quite hard to ensure that (H1) is satisfied. This is because we have to ensure that that there
is a relation of potential succession between the knowledge trees labeling successive vertices.
This relation depends on all atoms labeling nodes in these knowledge trees. What we need is
to reduce this to some condition that depends only on the roots of the knowledge trees.

To reduce potential succession to a relation between roots of knowledge trees, we need to
define the notion of the extended closure of ¢, denoted ecl(p). We define a sequence of

“closures”, clo(qa),cll((p), ..., such that clo((p) =cl(p), and ecl(p) = cl“d("’)(cp). The definition is
by induction:

1. cl(p)sci*(g). '
2. If {od1, ..., o9} Ecl(e), then ~oK;j(¥1V ... Vil € cli*1(g).
3. cl'+1(<p) is closed under subformulas.

The intuition behind the definition of the extended closure will be explained shortly. Note
that the size of ecl(p) is nonelementary in the length of ¢. Note also that c/'(p) may contain
formulas of alternation depth ad(e) +i. Thus, ecl(p) may contain formulas of alternation
depth 2ad(¢).

We define an extended atom of @ to be a subset of ecl(p) that satisfies all the clauses in
the definitions of atoms, where ecl(p) is substituted for cl(p). We also define extended trees
to be trees labeled by extended atoms. We denote the label of an extended tree T by eatom(T).
We denote by atom(T) the atom eatom(T) Ncl(p). To every extended tree T, there corresponds
a tree T, obtained by considering the atoms of nodes rather than the extended atoms (that
is, we use bold face letters to denote extended trees and italics letters to denote the corre-
sponding trees).

As said earlier we want to reduce potential succession to a condition that depends only
on the roots of the involved knowledge trees. To accomplish that we need to make sure that
the roots of the involved knowledge trees contain sufficient information about the rest of
the tree. This will be achieved by extended knowledge trees, where an extended knowledge tree

T is an extended tree that satisfies all the considions of knowledge trees and also the following
additional condition:

e Let t be a node of T, and let {q,...,¥x}Secl(p) be a set of formulas such that (a)
oK;(y1V ... Vi) € ecl(p), and (b) if t' is a j-relative of ¢, then oy; e atom(t) for some
1<i<k. Then oK;(y1V .. V) € eatom(t).

Thus, in an extended knowledge tree every nodes keeps information about its relatives. In
particular, the root of the tree keeps information about the whole tree. The defintion of
extended closure was designed in such a way that the root has enough information to enable

24

us to reduce potential succession to a relation between roots. Note that if T is a standard
extended knowledge tree, then T is a standard knowledge tree.

Let S be an extended standard knowledge tree, and let s be a node of S. Let T be an
extended standard knowledge tree of height ! < ad(p). We say that T is an apparent successor
of (S,s), if for all oy € ecl(p) such that ad(y) < ad(e) +/, if oy € eatom(s) then ¢ € eatom(T).

Note that apparent succession is a relation between roots of extended knowledge trees.
The next lemma gives us the reduction of potential succession to apparent succession.

Lemma 5.3. Let S be an extended standard knowledge tree, and let s be a node of S. Let T be an
extended standard knowledge tree of height | < ad(p). Let S and T be the corresponding standard
knowledge trees. If T is an apparent successor of (S,s), then T is a potential successor of (S,s).

Proof. The proof is by induction on the height of T.

Assume first that /=0. Let oy € cl(p). Since ad(y) < ad(¢), if oY € atom(s), then by the
definition of apparent successors, we have { € atom(T). If ~oy € atom(s), then ~oy € atom(s),
and consequently, o~y € atom(s). It follows that ~y € atom(T), so ¢ ¢ atom(T). Thus, T is a
potential successor of (S,s).

We assume that the claim has been shown when the height of T is /, and we consider T
of height /+ 1. The argument that for oy € cl(¢) we have that oy e atom(s) iff ¢ e atom(T)
is as before. Let T’ be a j-child of T. We claim that there is some j-relative s’ of s, and T
is an apparent successor of (S,s’). If the claim is indeed true, then we can apply the induction
hypothesis to complete the proof. So it remains to prove the claim.

Suppose that the claim is not true. Then for every s’ that is a j-relative of s, there is a
formula oy € ecl(p) such that ad(y) < ad(p) +1—1, o € eatom(s’) but § ¢ eatom(T’). We say
¥ separates s’ from T'. Let 1, ...,y be the formulas that separate the j-relatives of s from
T'. Note that the alternation depth of all these formulas is bounded by ad(p) +/—1. Thus,
by the definition of extended knowledge trees, oK; GV .. . V{) € eatom(s), and therefore
Ki(y1V ... V{y) € eatom(T), It follows that Y1V.. Va,bk € eatom(T'), which implies that
zp, € eatom(T') for some 1 <i<k. But yq,..., Y, are the formulas that separate the j-relatives

of s from T, so by definition y; ¢ eatom(T’) for 1 < i < k - contradiction. This completes the
proof. M

We say that an extended knowledge tree T is consistent if for all nodes ¢z of T we have
that eatom(T) is consistent. We are almost ready for the construction of Hintikka trees for
consistent formulas. The last technical result we need is a guarantee for the existence of
consistent extended knowledge tree.

Lemma 5.4. Let ¢ be a formula of LK) and 12 0. If @ is consistent then there is a consistent
standard extended knowledge tree T of depth | such that ¢ € eatom(T).

Proof. By lLemma 5.1, since ¢ is consistent, it has a pseudo knowledge model M. With
every state of M we associate an extended standard knowledge tree as in the proof of Lemma
4.4 That is, we first label points by extended atoms, then we associate nonstandard trees, and
finally we prune them to get standard knowledge trees. We have to show that these are
extended knowledge trees, i.e., that the additional clause in the definition of extended knowl-
edge trees is satisfied.

25

A node ¢ of the tree corresponds a a state w in M. The j-relatives of ¢ corresponds the
the state that are related to w via ~ ;. Let {{1,...,¥x} be a set of formula such that if ¢ is
a j-relative of ¢ then oy; € atom(t) for some 1<i<k. Then, by the knowledge axioms,
Kjo(Y1V ... V{y) is in w. By the axiom for interaction of knowledge and time we have that
oK;V (Y1V ... Vi) is also in w.

Finally, there is a state w in M that satisfies p. Let ¢ be the consistent extended standard
knowledge tree T of depth ! associated with w. Since w satisfies ¢, we have that ¢ € eatom(T).
[|

We are now ready for our main result.

Theorem 5.5. The axioms for propositional reasoning, knowledge, linear time (resp. branching time)
together with LKA1 (resp. BKA1) give a sound and complete axiomatization for KLy (resp. KB(my))

in €(nf.sync)-

Proof. Assume that a formula ¢ is consistent. We prove that ¢ is satisfiable by constructing
a Hintikka tree for ¢. In this construction it is convenient to assume that the tree is ordered,
and, in particular, for every vertex x there is a leftmost successor x’. A path XjyXig1,... in the
tree is a leftmost path if xj, 1 is the leftmost successor of x; for all j>i We assume that
for every extended tree T there is a standard enumeration f,#,... of the nodes of T, where
fp is T. We assume without loss of generality that if v is a Hintikka tree x is a vertex of T,
and 4 is the i-th node of lab(x), then o, (4) is the i-th successor of x. In particular, o, (lab(x))
is the leftmost successor of x. Thus, the path that satisfies the formulas of the form Y Uf in
atom(lab(x)) is a leftmost path.

We now describe the construction of a Hintikka tree v for ¢. We first construct an
extended Hintikka tree 7', which is labeled by extended standard knowledge trees. We then
replace every extended knowledge tree by its associated knowledge tree, to obtain a Hintikka
tree.

By Lemma 5.4, there is a consistent extended standard knowledge tree T of depth ad(¢)
such that ¢ € atom(T). We let T be the label of the root xy of v. Consider now all the nodes
1, ...t of T, where g is T. Since T is consistent, eatom(s;) is consistent for each i. By Lemma
5.2, there is a pseudo temporal model M; ; of eatom(t;). We use My ; to label the path x1,xy, ...,
where x; is the i-th successor of xg, and xj, 1 is the leftmost successor of x;, for j2 1. (In
particular, My o will be used to label the leftmost path starting at xp.)

Consider the consistent set of formulas a; = {y € ecl(@):(ML ;,/) F¥}. By Lemma 5.4, there
is a consistent standard knowledge tree T; of depth ad(g) such that a;= atom(T). We let T;
be the label of x;.

In the inductive stage of the construction we have a partially labelled extended Hintikka
tree, with the property that if x is labelled, then the leftmost path starting at x is labelled.
If x is labelled, and its i-th successor is not labelled, then we use the pseudo temporal model
M ; of eatom(t;) to label the i-th successor of x and the leftmost path starting at the i-th successor.

Assume that have labeled all the nodes by extended standard knowledge trees. We now
replace every extended knowledge tree by its associated knowledge tree, to obtain a Hintikka

26

tree. It is easy to check that the resulting tree r satisfies conditions (H2) and (H3); by
Lemma 5.3 it also satisfies (H1) W

Acknowledgements

We would like to thank Martin Abadi, Karl Abrahamson, Ron Fagin, and Ed Wimmers for
their comments on a previous draft of this paper.

References

[Ab] K.R. Abrahamson, Decidability and expressiveness of logics of processes, Ph.D. Thesis,
University of Washington Technical Report #80-08-01, 1980.

[CM] M. Chandy and J. Misra, How processes learn, Distributed Computing 1:1, 1986, pp.
40-52.

[DM] C. Dwork and Y. Moses, Knowledge and common knowledge in a Byzantine envi-
ronment I: crash failures, Theoretical Aspects of Reasoning About Knowledge: Proceedings
of the 1986 Conference (ed. 1.Y. Halpern), Morgan Kaufmann, 1986, pp. 149-169.

[Em] E. A. Emerson, Alternative semantics for temporal logics, Theoretical Comp. Sci. 26,
1983, pp. 121-130.

[EH1] E.A. Emerson and J.Y. Halpern, Decision procedures and expressiveness in the
temporal logic of branching time, J. Computer and Systems Science, 30:1, 1985, pp.
1-24.

[EH2] E.A. Emerson and 1.Y. Halpern, “Sometimes” and “not never” revisited: on branch-
ing vs. linear time, J. ACM, 33:1, 1986, pp. 151-178.

[FHV1] R. Fagin, J.Y. Halpern, and M.Y. Vardi, A model-theoretic analysis of knowledge,
Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science,
1984, pp. 268-278.

[FHV2] R. Fagin, J.Y. Halpern, and M.Y. Vardi, What can machines know? On the
epistemic properties of machines, Proceedings of AAAI-86, 1986, pp. 428-434.

[FI1] M.JI. Fischer and N. Immerman, Foundations of knowledge for distributed systems,
Theoretical Aspects of Reasoning About Knowledge: Proceedings of the 1986 Conference
(ed. 1.Y. Halpern), Morgan Kaufmann, 1986, pp. 171-185.

[GPSS] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, On the temporal analysis of fairness,
Proceedings of the 7th ACM Symposium on Principles of Programming Languages, 1980,
pp- 163-173.

[Hal] 1.Y. Halpern, Using reasoning about knowledge to analyze distributed systems,
Annual Review of Computer Science, Vol. 2, Annual Reviews Inc., 1987, to appear.

[HF] 1.Y. Halpern and R. Fagin, A formal model of knowledge, action, and communication
in distributed systems: preliminary report, Proceedings of the 4th ACM Symposium on
Principles of Distributed Computing, 1985, pp. 224-236.

[HM1] 1.Y. Halpern and Y.O. Moses, Knowledge and common knowledge in a distributed
environment, in Proceedings of the 3rd ACM Symposium on Principles of Distributed
Computing, 1984, pp. 50-61; revised report appears as IBM Research Report RJ
4421, Jan. 1986.

[HM2] 1. Y. Halpern and Y.O. Moses, A guide to the modal logics of knowledge and belief:
preliminary report, Proceedings of the 9th International Joint Conference on Artificial
Intelligence, 1985, pp. 480-490.

27

[(HV]

[HV1]

[LR]

[La1l}

[La2]

[Lel]
[Le2]
[Mi]

[Mo]

[MT]

[PR]

[Pn]

[Ra]

[Rog]
[Ros]

[RK]

1.Y. Halpern and M.Y. Vardi, The complexity of reasoning about knowledge and
time: extended abstract, Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, 1986, pp. 304-315.

1.Y. Halpern and M.Y. Vardi, The complexity of reasoning about knowledge and time, 1
- lower bounds, IBM Research Report RI5764, August 1987.

R. Ladner and J.H. Reif, The logic of distributed protocols, Theoretical Aspects of
Reasoning About Knowledge: Proceedings of the 1986 Conference (ed. 1.Y. Halpern),
Morgan Kaufmann, 1986, pp. 207-221.

L. Lamport, What good is temporal logic?, Information Processing 83 (ed. RE.A.
Mason), Elsevier Publishers, 1983, pp. 657-668.

L. Lamport, “Sometime” is sometimes ‘“not never”: on the temporal logic of
programs, Proceedings of the 7th ACM Symposium on Principles of Programming Lan-
guages, 1980, pp. 174-185.

D.J. Lehmann, Knowledge, common knowledge, and related puzzles, Proceedings of
the 3rd ACM Symposium on Principles of Distributed Computing, 1984, pp. 62-67.

D.J. Lehmann, Talk given at the 3rd ACM Symposium on Principles of Distributed
Computing, August, 1984.

P. Milgrom, An axiomatic characterization of common knowledge, Econometrica,
49:1, 1981, pp. 219-222.

R.C. Moore, Reasoning about knowledge and action, in Formal Theories of the
Commonsense World (ed. J. Hobbs and R.C. Moore), Ablex Publishing Corp.,
Norwood, New Jersey, 1985.

Y. Moses and M. Tuttle, Programming simultaneous actions using common knowl-
edge, Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science, 1986, pp. 208-221.

R. Parikh and R. Ramanujam, Distributed processing and the logic of knowledge,
Proceedings of the Workshop on Logics of Programs (ed. R. Parikh), Springer-Verlag,
Lecture Notes in Computer Science, vol. 193, 1985, pp. 256-268.

A. Pnueli, Linear and branching structures in the semantics and logics of reactive
systems, Proceedings of the 12th International Collogquium on Automata, Languages and
Programming, Springer-Verlag, Lecture Notes in Computer Science - v. 194, 1985,
pp- 15-32.

M.O. Rabin, Weakly definable relations and special automata. Proceedings of the
Symposium on Mathematical Logic and Foundations of Set Theory (Y. Bar-Hilel, ed.),
North-Holland, 1970, pp. 1-23.

H. Rogers, Ir., Theory of Recursive Functions and Effective Computability, McGraw-Hill,
1967.

S. Rosenschein, Formal theories of knowledge in AI and robotics, New Generation
Computing 3, 1985, pp. 345-357.

S. Rosenschein and L. Kaelbling, The synthesis of digital machines with provable
epistemic properties, Theoretical Aspects of Reasoning About Knowledge: Proceedings of
the 1986 Conference (ed. 1.Y. Halpern), Morgan Kaufmann, 1986, pp. 83-97.

28

[Sa]

[8C]

[VS]

[VW]

M. Sato, A study of Kripke-style methods of some modal logics by Gentzen’s
sequential method, Publications Research Institute for Mathematical Sciences, Kyoto Uni-
versity, 13:2, 1977.

A.P. Sistla and E.M. Clarke, The complexity of propositional linear temporal logics,
J. ACM, 32:3, 1985, pp. 733-749.

M.Y. Vardi and L.J. Stockmeyer, Improved upper and lower bounds for modal
logics of programs, Proceedings of the 17th ACM Symposium of Computing, 1985, pp.
240-251.

M.Y. Vardi and P.L. Wolper, Automata-theoretic techniques for modal logics of
programs, J. Computer and System Sciences 32(1986), pp. 183-221.

29

