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We study the propositional model logic of knowledge and time for distributed systems. We
consider a number of logics (ninety-six in all!), which vary according to the choice of language
and the assumptions made on the underlying system. The major parameters in the language
are whether there is a common knowledge operator, whether we reason about the knowledge .
of one or more than one processor, and whether our temporal operators are branching or
linear. The assumptions on distributed systems that we consider are: whether or not
processors forget, whether or not processors learn, whether or not time is synchronous, and
whether or not there is a unique initial state in the system. We completely characterize the
complexity of the validity problem for all the logics we consider. This paper focuses on lower
bounds; a sequel will deal with the corresponding upper bounds. Typical results include a
TTi-completeness result for the language with common knowledge with respect to systems
where processors do not forget, and a corresponding non-elementary-time result for the
language without common knowledge. It is shown that, in general, the assumption that
processors do not forget or do not learn greatly increases the complexity of reasoning about
knowledge and time. © 1989 Academic Press, Inc.

1. INTRODUCTION

It has been argued recently that knowledge is a useful concept for analyzing the
behavior and interaction of processors in a distributed system [CM, DM, FI1, Hal,
HF, HM1, LR, MT, PR, RK, Ros]. When analyzing a system in terms of
knowledge, not only is the current state of knowledge of the processors in the
system relevant, but also how that state of knowledge changes over time. A formal
propositional logic of knowledge and time was first proposed by Sato [Sa]: others
have since been proposed by Lehmann [Lel], Fagin er al. [FHV1], Parikh and
Ramanajum [PR], and Ladner and Reif [LR]. Still others are implicit in all the
other references cited above.

While Sato proved a nondeterministic exponential upper bound for his logic,
Lehmann stated a theorem claiming a doubly exponential upper bound for his logic
(which included common knowledge), and Ladner and Reif prove that one of their
logics is undecidable. This apparant inconsistency is, of course, due to the fact that
all these papers actually consider different logics. To add to the confusion, these
papers use the same notation with different interpretations.
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In this paper we try to bring some order to this confusion by categorizing logics
for knowledge and time along two major dimensions: the language used and the
assumptions made on the underlying distributed system. By varying these
parameters, we end up with ninety-six logics. (Of course, they are not all of equal
interest to distributed computing!) All of the logics considered in the papers men-
tioned above fit into our framework. Our major results involve completely charac-
terizing the complexity of all these logics, showing how the subtle interplay of the
parameters can have a tremendous impact on complexity.

The languages considered in the literature vary according to the modalities used
for knowledge and time. As far as knowledge goes, the relevant issue is whether the
language can talk about the knowledge of more than one agent, and whether we
have a modal operator in the language for common knowledge (where common
knowledge of a fact ¢ holds if everyone knows ¢, everyone knows that everyone
knows ¢, etc.). For time, the question is whether we use branching time or linear
time modalities (which essentially amounts to whether or not we can quantify over
the ‘possible executions of a program).

It is well known that if we consider either knowledge or time alone, the language
used has a great impact on the complexity of the logic. As was shown by Halpern
and Moses [HM2], the complexity of reasoning about knowledge for the notion of
knowledge most appropriate for distributed systems (which satisfies the axioms of
the modal logic S5), the validity problem for the logic is co-NP-complete if we can
only reason about one agent or processor in the language, PSPACE-complete with
two or more agents, and EXPTIME-complete if we add common knowledge to the
language. If we consider time alone, the validity problem for the language with
branching time modalities is EXPTIME-complete [EH1], while for the language
with linear time modalities it is PSPACE-complete [SC]. Not surprisingly, we find
a similar phenomenon here; the complexity of reasoning about knowledge and time
depends on the language used. What is perhaps more interesting is how the
assumptions made on the underlying distributed system, which essentially place
conditions on the interaction between knowledge and time, affect complexity.

The types of assumptions on the system that are typically made include whether
or not processors forget (the assumption of no forgetting has also been called
unbounded memory or cumulative knowledge in other papers [FHV2, HV, Mo}),
whether or not processors can learn, whether or not there is a unique initial state in
the system, and whether time is synchronous or asynchronous. We now explain each
of these parameters in more detail and motivate them in terms of distributed
systems.

We first discuss the notion of knowledge in a distributed system. Although there
have been many papers that consider this notion, they all have the same essential
features. A distributed system is identified with a set of possible runs of the system,
where a run is a complete history of the system’s behavior over time. Thus, the run
may include such things as each processor’s initial state and its complete message
history (i.e., the messages it has sent and received, in the order they were sent and
received, time-stamped if the processors have local clocks). Formally, assume we
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have a system of m processors, each of which at any time is in some local state. This
local state may encode such things as the processor’s initial state, part or all of its
message history, and the values of relevant variables. A run is a function from time
(which, for simplicity, we assume is discrete and ranges over the natural numbers)
to global states of the form {/,,..,1,>, where I, is the local state of processor i.'
Given a run r and a time n, we can think of the global state r(n) as a “snapshot”
describing the current state of the system. We can think of n as denoting the time
on some external global clock (not necessarily observable by the processors).
Following {HM 1], we call such a pair (r, n) a point.

Processor i is said to know a fact ¢ (written K,¢) at a given point if ¢ is true at
all other points in which it is in the same state. Intuitively, a processor cannot dis-
tinguish two points if it is in the same state in both; thus it knows ¢ if ¢ is true at
all the points it cannot distinguish from the true state of affairs.> We say a processor
considers run r' possible at point (r, n) if for some n’, it cannot distinguish (r, n)
from (r', n’).

We say a processor does not forget if the set of runs the processor considers
possible stays the same or decreases over time (intuitively, as a result of the
processor getting more information). So if at some point (r, #) in run r processor i
considers run r’ possible, then run r was indistinguishable from r’ at all points in
the past. Intuitively, a processor that cannot distinguish two runs that it could
distinguish at an earlier time must have “forgotten” the information that allowed it
to distinguish those runs. Note that no forgetting intuitively requires unbounded
memory, so that a processor can store all the information it has received. Thus, the
distinction between forgetting and no forgetting essentially corresponds to whether
we view our processors as finite-state machines or Turing machines.

The dual notion to “no forgetting” is “no learning.” A processor does not learn if
the set of runs it considers possible stays the same or increases over time. More for-
mally, if at some point (r, n) processor i considers run ' possible, then processor i
will consider run r’ possible at all times in the future (ie., at all points (r, n’) with
n'=n). If processor i cannot distinguish two points (r, 0) and (v, 0) in a system
with no learning and no forgetting, then i goes through the same sequence of states
in both r and r’, regardless of what messages i may receive. Such a system essen-
tially corresponds to a non-adaptive algorithm; a processor does not modify its
actions in response to signals from the outside world. In this precise sense, we can
say that no learning takes place.

In some systems the assumption is made that each processor has a unigue initial
state. This means that there is a unique initial global state for the system (i.e., for all

! In a more general model we might augment the global state to include a component describing the
environment, which intuitively consists of all the relevant features of the system not described by the
processors’ local states, such as messages in transit but not yet delivered, and so on (cf. [FHV2]). The
environment component plays no role in the complexity analysis, so we omit it here.

? This interpretation of knowledge is called a state-based interpretation in [HM1], and. is essentially
the interpretation used in [PR, HF, Ros, RK, FI1]. We will not consider the more general epistemic
interpreiations discussed in {HM1].
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runs r and r', the global states r(0) and r’(0) are identical). The assumption of a
unique initial state seems fairly innocuous. After all, we can always add a new initial
state to every run and then let it develop as it did before. However, as we shall see,
this assumption is not so innocuous when combined with the assumption of no
learning.

In a synchronous system, we assume that a processor has access to a global clock
that ticks at every instant of time and the clock reading is part of its state, so the
processor always knows the time. Note that protocols that proceed in rounds can
be viewed as running in synchronous systems.

An interpreted system is a pair (R, n), where R is a System and = is a truth
assignment to the primitive propositions at every point of R, There is a
straightforward way to extend 7 to all formulas (the details are discussed in the
next section). For the rest of our discussion, it will be useful to have notation for
different classes of interpreted systems and different languages. We use ¢ to
represent the class of all interpreted systems. We then use subscripts nf, nl, uis, sync
to indicate restrictions to interpreted systems where, respectively, processors do not
forget, processors do not learn, where there is a unique initial state, and where the
system is synchronous. Thus, for example, € gyne uis) TEPresents the class of inter-
preted systems where processors do not forget, the system is synchronous, and there
is a unique initial state.

We use the notations CKL,,,, CKB,,,, KL, and KB, to describe the
languages we use. The L and the B tell us whether linear time or branching time
modalities are used, the presence or absence of C in the name indicates whether or
not common knowledge is included, and the subscript indicates the number of
agents. Thus, CKL,, is the language that uses linear time modalities and has modal
operators K,, K,, and C for the knowledge of agent 1, agent 2, and common
knowledge. (We describe the language and give its semantics in detail in the next
section.) Similarly, KBy, is the language that uses branching time modalities and
K;, i=1,2,3, but has no modal operator for common knowledge.

The logics that have been considered in other papers can now be classified as
follows. Sato [Sa] and Lehmann [Lel] restrict attention to ®nt,sync): Synchronous
systems where processors do not forget. Lehmann uses the languages CKL,,,,; Sato
essentially does as well (although his language does not have explicit temporal
operators). Halpern and Fagin [HF], Parikh and Ramanujam [PR], and the tree
logic of protocols of Ladner and Reif [LR] also assume no forgetting, but do not
require that time be synchronous, so the class of interpreted systems considered for
these logics is %an- On the other hand, these papers differ in the languages they
consider: CKL,,,, in [HF] and KB, in [PR, LT].? Ladner and Reif’s linear logic

* Actually, in [PR] there are also modal operators for what is called implicit knowledge in
[HM1, HM2]. In addition, the branching time modalities used in {PR] and [LR] only give us a subset
of the language KB, (a different subset in each of the papers). However, these differences have no
impact on the complexity, so we do not focus on them further here. Also, the fact that the systems in
[LR] are actually trees instead of sets of runs imposes another mild condition that we briefly discuss in
the next section. Again, this difference has no impact on complexity.
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of protocols, despite the name, also uses (a subset of) branching time, but restricts
attention to the class of interpreted systems Ciot,t.uis)» Where processors neither
forget nor learn, and there is a unique initial state. In the remaining papers that
consider formal models of knowledge and time [CM, FI1, Ros, RK], the
assumption of no forgetting is not imposed; all the interpreted systems in ¥ are
considered. However, in [Ros, RK] linear time is used, while [CM, FI1] implicitly
use branching time, although neither of these latter two papers explicitly has
temporal operators in their logics.

We do not discuss here which of these logics is most appropriate. Our feeling is
that the choice should be guided by the application at hand (see [Pn, La2, EH2]
for a discussion of these issues in the context of linear vs. branching time logics).
Instead, we focus our attention on the complexity of the decision procedures for
each of them.

At a high level, we can view our results as saying that assuming either no
forgetting or no learning tends to make the complexity of reasoning about
knowledge and time much worse. For example, if we have common knowledge in
the language (and at least two agents, since common knowledge reduces to
knowledge if we have only one agent), then the validity problem with respect to
many classes of interpreted systems where processors do not forget or do not learn,
such as €, and %,,, is wildly undecidable, in fact, []!-complete. (A precise
definition of T[]} appears in Section 3.) This means that there can be no complete
axiomatization for these cases (since a complete axiomatization would imply that
the set of valid formulas was r.e.).* On the other hand, for classes such as € or
%(sync, uis)» Where we do not make the assumption that processors do not learn or do
not forget, the complexity of the validity problem for the language with common
knowledge is (only!) EXPTIME-complete.

A similar situation arises if we consider the language without common
knowledge. Although the validity problem in the presence of no forgetting or no
learning is in general decidable, it is non-elementary; if we do not make the
assumption that processors do not learn or do not forget, the validity problem
is either PSPACE-complete or EXPTIME-complete (depending on whether we
consider linear time or branching time).

There are some anomalous situations though, mainly those involving the com-
bination of no learning and a unique initial state. For example, Ladner and Reif
show that the validity problem for KB,, is undecidable (even without common
knowledge in the language) with respect to %, .is)- An €asy extension of their
proof shows it is actually []}-complete; these results also hold for the language
KL(;). On the other hand, if we consider the class of interpreted systems
€ ot n1,sync,uis)» Where we impose the additional condition of synchrony, the situation

* As we remarked above, Lehmann claimed a doubly exponential time decision procedure for his
logic, which is CKL,,, interpreted over interpreted systems in b0t sync)- He also claimed a complete
axiomatization [Lel]. Lehmann later retracted these claims and only claimed these results for the one-
agent case, without common knowledge [Le2]. Of course, our results show that the original claims were
in fact incorrect.
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collapses. The validity problem for this logic is EXPSPACE-complete, even with
common knowledge in the language! Intuitively, the reason is that the combination
of these assumptions implies that no expressive power is gained by having common
knowledge or more than one agent in the language.

Our results are summarized in Fig. 1. The results given in the table are tight: the
upper bounds match the lower bounds (to within constant factors). In order to
explain the results for the languages KL,,,, and KB,,,, m>2, in the first two rows
of the table in a little more detail, we must introduce some notation. Let ex(m, n) be
defined inductively via ex(0, n)=n, ex(m+ 1, n)=2xtmn (so that, intuitively,
ex(m, n) is a stack of m 2’s, with the top 2 having exponent n), let the alternation
depth of ¢, written ad(p), be the number of alternations of distinct knowledge
modalities (Ks) in ¢, and let || be the length of ¢ when viewed as a string of sym-
bols. The nonelementary time bound means that there is an algorithm for deciding
if a formula ¢ is valid which runs in time ex(1 +ad(gp), ¢ |@l), for some constant
¢>0. Furthermore, any algorithm for deciding validity must run in time
ex(1 +ad(¢), d|op|) for some constant d >0 and infinitely many formulas ¢. The
explanation of the nonelementary space bound is analogous. Note that, by
definition, for any formula @ of KL, or KB, we have ad(@) < 1. Thus, the bounds
for KL;,/KB,, in the first two rows of the table are special cases of the bounds for
KL,,,/KB,,,. In particular, Lehmann’s doubly exponential time upper bound for
KL, is a special case of ours.

The difference between the nonelementary time bounds in the first row of the
table, and the nonelementary space bounds in the second row of the table can
roughly be explained by noting that allowing learning gives us the ability to encode
alternation. More precisely, when we have no forgetting but allow learning, we can
encode alternating Turing machines that run in space ex(ad(p), c|¢|) (which
corresponds to time ex(ad(g)+ 1, ¢ l@l); once we impose the assumption of no

CKkL,,,/CKB,,,,

mz2 KL,,,/KB,,, m>2 KL,,/KB,,
Cans Cat.oyner m Nonelementary (time Double-exponential
Cint.uis)s ot sync, uis) ) ex(ad(@) + 1, c lo})) time
L AN A I Nonelementary (space EXPSPACE
%nl.nl.synt)’ %:nl,sync; ex(ad(p), lol))
Gt e uis) I I EXPSPACE
Cont.uins co-r.e. co-re. EXPSPACE
oL sync. uisys EXPSPACE EXPSPACE EXPSPACE
(Klnl.nl.:ync,ui;)
€ €ipners Clayac,uinns EXPTIME PSPACE for KL,,,,, PSPACE for KL,,,,
7 EXPTIME for KB, EXPTIME for K8,

)

FiG. 1. The complexity of the validity problem for logics of knowledge and time.



¢

REASONING ABOUT KNOWLEDGE AND TIME 201

learning, we can only encode deterministic Turing machines that run in space
ex(ad(o), c lol).

Given the number of results, we concentrate on the lower bound proofs in this
paper, deferring proofs of upper bounds and complete axiomatizations (in the cases
where such axiomatizations are possible) to a sequel. The rest of this paper is
organized as follows. The next section describes the languages and the various
kinds of interpreted systems discussed above in detail. In Section 3 we present all
our lower bound results for the languages CKL,,, and CKB,,,,, m > 2, while in Sec-
tion 4 we consider the situation for the languages without common knowledge. We
conclude in Section 5 with some of the philosophical implications of these results.

2. THE FORMAL MODEL: LANGUAGE AND SYSTEMS

The logics we are considering are all propositional. Thus, we start out with
primitive propositions p, g, .. and we close the logics under negation and con-
junction, so that if ¢ and ¥ are formulas, so are ~¢ and ¢ A . In addition, we
close off under modalities for knowledge and time, as discussed below. As usual, we
view true as an abbreviation for ~(p A ~p), @ vy as an abbreviation for
~(~@ A ~y), and ¢ = as an abbreviation for ~¢ v . We assume that A and
v bind more tightly than =, so that we write, for example, ¢ = A ' rather than
o=y A Y.

If we have m agents (in distributed systems applications, this would mean a
system with m processors), we add the modalities X, .., K,,. Thus, if ¢ is a for-
mula, so is K;@ (read “processor i knows ¢”). In some case we also want to talk
about common knowledge, so we add the modalities £ and C into the language; E¢
says that everyone knows ¢, while Ce says ¢ is common knowledge.

The temporal modalities (sometimes called operators or connectives) that we use
depend on whether we are considering linear time or branching time. In the linear
time case, we have a unary operator O and a binary operator U. Thus, if ¢ and ¢
are formulas, then so are Q¢ (read nexttime @) and ¢ U (read ¢ until ). We
view O @ as an abbreviation for true U ¢, while (¢ is an abbreviation for ~ O ~¢.
Intuitively, O¢ says that ¢ is true at the next point (one time unit later), ¢ Uy
says that ¢ holds until ¥ does, C¢ says that ¢ is eventually true (either in the
present or at some point in the future), and D¢ says that ¢ is always true (in the
present and at all points in the future). In the branching time case, we also have
quantifiers over runs, so that if ¢ and Y are formulas, so are Vo Uy, 3o Uy, YO o,
and 30¢. A formula of the form VO is true at the point (r, n) if O¢ is true at
(', n) for all runs »’ extending (r, n), where the notion of extending will be made
precise below. Similarly, 3¢ Uy is true at (r, n) if @ U ¢ is true at (r’, n) for some
run r’ extending r. Again, we view Y<Co (resp. 3O ¢) as an abbreviation for
VerueUq (resp. FtrueUp), and VO ¢ (resp. 3O @) as an abbreviation for ~3C ~¢
(resp. ~V<O ~¢@). Thus, for example, YO ¢ is true at the point (r, n) if ¢ is even-
tually true for all runs r' extending (r, n). It has been argued that a nexttime



i

202 HALPERN AND VARDI

operator (O) is inappropriate for reasoning about asynchronus systems
(cf. [La1]); after all, the processors do not have access to an external clock in such
systems, so it is not even clear that the notion of the ticking of such a clock makes
sense. We remark that all our lower bounds also hold if the language does not have
a nexttime operator.’

As we mentioned in the Introduction, we take || to be the length of the formula
@ viewed as a string of symbols, while in the languages without C and E (i.e., KL,
and KB,,,) we define ad(¢) to be the greatest number of alternations of distinct K's
along any branch in ¢’s parse tree. For example, ad(K; ~ K, K, p) = 3; temporal
operators do not count, so that ad(K, O X, p)=1. Note that ad(¢) < |¢|, and if ¢
is in KL, or KB,,,, then ad(¢)< 1.

A system for m processors consists of a set R of runs, where each run re R is a
function from N to L™, where L is some set of local states. Thus, r(n) has the form
{1, s 1,,D; such a tuple is called a global state. (Formally, we could view a system
as a tuple (R, L, m), making the L and m explicit; we have chosen not to do so in
order to simplify notation. The L and m should always be clear from context.) An
interpreted system M for m processors is a tuple (R, n), where R is a system for
m processor and m maps every point (r, 7)e Rx N to a truth assignment n(r, n) on
primitive propositions (so that n(r, n)( p)e {true, false} for each primitive
proposition p).

We now give semantics to CKL,, and KL,,. Given an interpreted system
M = (R, ), we write (M, r, n) = ¢ if the formula @ is true at (or satisfied by) the
point (r, n) of interpreted system M. We define = inductively for formulas of
CKL,, (for KL,,, we just omit the clauses involving C and E). In order to give the
semantics for formulas of the form K¢, we need to introduce one new notion. If
rin)=<ly, ., 1), r(n)y=<1,, .., L., and l;=1], then we say that r(n) and r'(n')
are indistinguishable to processor i and write (r,n) ~,(r',n’). Of course, ~ ; is an
equivalence relation on global states. K,¢ will be defined to be true at (r, n) exactly
if ¢ is true at all the points whose associated global state is indistinguishable to i
from that of (r, n). We proceed as follows:

* (M, r,n) = p for a primitive proposition p iff n(r, n)(p) = true

. (M,r,n)}z(p/u//iﬁ"(M,r,n)}:(pand(M,r,n)}zlll

* M,r,n)lE~piff (M,r,n)F ¢

* (M,r,n) = Ko iff (M,r,n')E ¢ for all (r'’,n’) such that (r, n) ~, (r', n’)

> The G, F, and U operators of [PR] correspond to our ¥(J, YO, and YU, respectively. Parikh and
Ramanujam do not have a nexttime operator in their language. The O, O*, ©, and O* of [LR]
correspond to our VO, VO, 30, and 3¢, respectively. Ladner and Reif have neither YO nor an until
operator. All our results are easily seen to hold for these restricted languages. We could, of course, also
allow more complicated mixtures of modalities, such as YO <, as in the logics CTL* [EH2] or MPL
[Ab]. Doing this seems to increase the complexity of the decision procedure by at least one exponential
(cf [VS]).
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s (M,r,n)FEEoiff  M,r,n)=K,pfori=1,..m

ol (M, r, n) = Co iff (M,r',n’) = E*o, for k=1,2, .. (where E'¢ = E¢ and
E*" ¢ =EE"p)

s M,r,n)= O iff (M,r,n+1)F ¢

s (M,r,n) = ¢ Uy iff there is some n’ =n such that (M, r,n’) =y, and for
all n” with n<n”" <n’, we have (M, r,n") | ¢.

There is a graphical interpretation of the semantics of EX and C which we shall
find useful in the sequel. Fix an interpreted system M. We say a point (r',n’) in M
is reachable from a point (r, n) in k steps if there exist points (rg, ng), ..., (Fi, 7x)
such that (r, n)=(ry, ny), (r',n')=(rs, ny), and for all j=0, .., k—1 there exists i
such that (r;, n;) ~,(r;y 1, n;.1). We say (r,n’) is reachable from (r,n) if it is
reachable in k steps for some k. It is easy to check that (M, r,n) = E*p iff
(M,r',n")[=¢p for all points (r',n’) reachable from (r,n) in k steps, and
(M, r,n) = Co iff (M, r',n’) = ¢ for all points (r', n') reachable from (r, n).

We remark here that we could have presented the semantics in a slightly different
way, more closely related to the standard Kripke semantics for knowledge (see, for
example, [HM2]). Instead of associating to each point (r, n) the global state r(n),
we could view points as more abstract entities, without this additional structure. An
interpreted system would now consist of a set of runs, a truth assignment #, and
equivalence relations ~ |, .., ~,, on the points. The semantics of formulas such as
K, could be defined using these equivalence relations just as above. This approach
was taken in an earlier version of this paper [HV] and is taken by Lehmann
[Lel]. The two definitions are equivalent in an obvious way: once we associate a
global state with each point in such a way that two points are indistinguishable to i
iff they are equivalent. We will use this observation in a number of our proofs
global state with each point in suchna way that two points are indistinguishable to i
iff they are equivalent. We will use this observation in a number of our proofs
below. We have chosen to use global states here in order to emphasize the
intuitions coming from distributed systems. This choice also allows us to define
branching time semantics in a natural way.

Given an interpreted system M = (R, ), we say that '€ R extends the point
(r,n)e RxN if r'(n’)=r(n’) for all n"<n; ie, if r and r' go through the same
sequence of global states up to time 7. With this definition, we can now give seman-
tics to branching time formulas as follows:

s (M,r,n)=300¢ iff (M, r',n+1) |= ¢ for some run ' extending (r, n)
* (M, r,n) EVOe iff (M,r',n+1) | ¢ for all runs r’' extending (r, n)

* (M, r,n) =3¢ Uy iff for some run ' extending (r, n) there exists some
n'>zn such that (M,r,n') =y, and for all n” with n<n”<n’, we have

(M’ r” n”) F (P
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(M, r,n) |= Yo Uy iff for all runs r’ extending (r, n) there exists some n’ > n
such that (M, ', n') = , and for all n” with n<n" <n’, we have (M, r',n") = .5

As usual, we define a formula ¢ to be valid with respect to a class @ of interpreted
systems iff (M, r, n) |= ¢ for all interpreted systems M e 9, runs r in M, and times n.
A formula ¢ is satisfiable with respect to 9 iff for some Me 9, r, and n we have
(M, r,n) |= ¢. It will often be more convenient for us to consider the satisfiability
problem rather than the validity problem in proving lower bounds.

We now turn our attention to formally defining the classes of interpreted systems
discussed in the Introduction.

We say processor i does not forget in M = (R, n) if all runs r, r'€ R and times n,
n', k, if (r,n) ~,(r', n’) and k < n, then there exists k’ < n’ such that (rnk)~,(r, k).
In order to motivate this definition, define processor i’s history at the point (r, n) to
be the sequence /, .., [, of states that processor i takes on in run r up to time n,
with consecutive repetitions omitted. For example, if from time 0 through 4 in run r
processor i goes through the sequence /, /, I, I, I of states, its history at (r, 4) just

L, I', . Roughly speaking, processor i does not forget if it “remembers” its history.
More precisely we have

LEMMA 2.1.  Processor i does not forget in a system R iff for all runs r, r' e R, if
(r,n} ~,(r', n’) then processor i's history is the same at (r,n) and (r', n’).

Proof. The fact that remembering the history implies no forgetting is immediate

from the definition. The converse can be proved by a straightforward induction on
n+n'. |}

This lemma shows that no forgetting requires an unbounded number of local
states in general, since processor i may have an infinite number of distinct histories
in a given system. There is one more observation about systems where processors
do not forget that we frequently use; this is captured in the following lemma.

LEMMA 2.2. If processor i does not forget in R and (r,n) ~;(r,n’), then
(r,n) ~(r,n") for all n” with n<n" <n'.

Proof. We proceed by induction on n. Note that since (r, n) ~,(r,n') and
n” < n', by definition of no forgetting there must be some k < n such that (r, k) ~;
(r,n"). If n=0, we must have k =n. If n> 0, then if k = n we are done, while if k < n,

¢ The notion of branching time we have defined here differs slightly from that defined in [LR ] and an
earlier version of this paper [HV]. In these papers, the set of runs has a tree-like structure, which
guarantees that the set is limit closed. As defined here, the set of runs is not necessarily limit closed,
making it more like Abrahamson’s MPL [Ab] than CTL (see [(Em. EH2] for a detailed discussion of
this issues). In our framework, we can say that a set R of runs is limit closed if, for all runs r, the fact
that for all n there is a run r,e R extending (r, n) implies that re R. By imposing the additional
condition of limit closure on our classes of runs, we get precisely the classes considered in [LR]. This
condition has no impact on the complexity of the decision procedure, although it does slightly affect the

axioms for the logic. In practice we would not want to impose this condition since it is easier to consider
issues of fairness without it.
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Fi1G. 2. A system where processor i does not forget.

by the induction hypothesis (where k plays the role of n, n plays the role of n”, and
n” plays the role of n’), it follows that (r, n) ~,(r, k), and by transitivity we get

(r,n) ~,(r,n"). 1

- A system where processor i does not forget is shown in Fig. 2, where the vertical
lines denote runs (with time O at the top) and all points that i cannot distinguish
are enclosed in the same region.

In a system where processor i does not learn, we have the opposite situation: If
(r,n) ~;(r',n'), then for all k= n there must be some k' =>n’ such that (r, k) ~;
(r', k'). A system where processor i does not forget and does not learn is shown in
Fig. 3. With no learning, the equivalence relations do not refine. Note how i goes

(- A

FiG. 3. A system where processor i does not forget and does not learn.
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through the same sequence of states in all runs it cannot distinguish (modulo stus-
tering, ie., the same state repeating at consecutive points). (We remark that if we
consider no learning but allow forgetting, the situation is slightly more complicated.
If processor i cannot distinguish (r, 0) and (r’, 0), then there may be a set S of states
such that i is in every state of S infinitely often in both runs r and r’, but it does not
go through the states in the same sequence in r and r’.)

In a synchronous system, we assume that every processor has access to a global
clock that ticks at every instant of time, and the clock reading is part of its state.
Thus, in a synchronous system, each processor always “knows” the time. More for-
mally, we say a time is synchronous in R if for all processors i and all runs r, r', if
(r,n) ~.(r',n’), then n=n". We remark that in a previous version of this paper
[HV], we took a slightly weaker definition: we required that for all runs r, if
(r,n) ~,(r,n’) then n=n". Let us call a system that satisfies that latter condition
weakly synchronous. Note that the definition of weakly synchronous only considers

chrony is important in some of our proofs.) Observe that in a synchronous system
where (r,n) ~, (r, n), an easy induction on n shows that if i does not forget and
n>0, then (r,n—1) ~i(r',n—1), while if i does not learn, then (r,n+ 1) ~,
(r,n+1).

Finally, we say that a system R has a unique initial state if for all runs r, ' € R, we
have r(0) = r'(0). Thus, if R is a system with a unique initial state, then we have
(r,0) ~, (7, 0) for all runs r, ' in R and all processors i

We say that M= (R, m) is an interpreted system where processors do not forget
(resp. processors do not learn, time is synchronous, there is a unique initial state)
exactly if R is a system with that property. As we mentioned in the Introduction, we
use the notation € to represent the class of all interpreted systems, and add the
subscripts nf, nl, sync, and uis to denote particular subclasses of .

3. Lower BOUNDS FoR CKL,,,, AND CKB

(m)

In this section we prove the results claimed in the Introduction on the complexity
of the validity problem for CKL,, and CKB,,,.

We begin with a brief review of the notions of [ 1! and its dual 2_1. Further details
can be found in [Rog] or any other standard textbook of recursive function theory.

Formulas of second-order arithmetic with set variables consist of formulas of first-
order arithmetic, augmented with expressions of the form xe X, where x is a num-
ber variable and X is a set variable, together with quantification over set variables

over N:
VX(0eX A Vx((xeX=x+ leX)=>Vx(xeX))).
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A TT; sentence (resp. 3"} sentence) of second-order arithmetic with set variables is
one of the form VX, ---VX,¢ (resp. 3X, ---3X, ), where ¢ is a formula of second-
order arithmetic with set variables that has no quantification over set variables. A
set A of natural numbers is in [T} (resp. 3°}) exactly if there is a I'1} sentence (resp.
2] sentence) y(x) with one free number variable x and no free set variables such
that ae A iff Y(a) is true. []}-hardness and []!-completeness are defined in the
obvious way (the reduction is via one—one recursive functions). It is well known
that JTj-complete sets are not recursively enumerable (cf. [Rog]). In particular, it
follows from the fact that the validity problem for both CKL,,,, and CKB,,,, m=>2,
is [T}{-complete that there can be no complete (recursive) axiomatization for these
languages.

For all the [T} lower bound proofs, we use the following result, due to Harel,
Pnueli, and Stavi [HPS]. We say that a Turing machine A is recurrent if, when
started on the empty tape, it has an infinite computation that reenters its start state
infinitely often. Let Ay, A, .. be a recursive enumeration of the nondeterministic
Turing machines with one tape, infinite to the right.

PROPOSITION 3.1.  The set {n| A, is recurrent} is 3.!-complete.

We now state and prove our first [T} lower bound result, which focuses on syn-
chronous systems. We then show how the result can be extended to classes of
systems that are not necessarily synchronous. The matching upper bound results
are relatively straightforward; the proof can be found in part II of this paper.

THEOREM 3.2.  The validity problem for CKL,,, and CKB,,), m=2, is []}-hard
with respect to the following classes of interpreted systems: Cnt,syncys Giot,sync,uis)»
(g(nl,syncp and (g(nf,nl,sync)'

Proof. The idea is to show how to encode the computation of an arbitrary
Turing machine in a CKL,,, formula. Roughly speaking, we show that given a
one-tape, infinite to the right, nondeterministic Turing machine A, we can construct
a CKL, formula ¢, such that for an interpreted system Me Gt syncy (TESP.
@t sync,uis) Clnlsyncy> Entnisync)) WE have (M, r,0) = ¢, iff, for each n, the “nth
level” of M (i.e., the points of M of the form (7, n)) encodes a possible situation
after n steps of a computation of A when started on a blank tape, in a sense to be
made clear below.

In order to understand the idea (and the difficulties!) of our construction, it is
instructive to recall the proof that two-dimensional temporal logic is []i-hard
[HPV, Har]. In two-dimensional temporal logic, the structures are two-dimen-
sional grids, infinite to the right and downwards. Thus, a point in a structure is Jjust
a pair (i, j) of natural numbers. There are four temporal operators: O, (1., Oy,
and Uy. The formula O, ¢ says that ¢ is true one step to the right, while Ll ¢ says
@ is true everywhere to the right. Similarly, O, ¢ says that ¢ is true one step down,
while [J4¢ says that ¢ is true everywhere below the given point. Thus, for example,
M, i)l O,p il (M,i+1,j)F ¢ and (M,i,j)E Ogue if (M,i,j) = ¢ for all
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S 2j. It is easy to encode the computation of Turing machines in this structure.
Every row represents an ID (instantaneous description); consecutive rows represent
consecutive ID’s of the computation. Using [y we can easily say the start state
appears infinitely often in the computation.

In CKL,,, we can use O and O to play the same role as O, and 4. It might
seem that we could use X, to play the role of O, and then C could play the role of
U,. This will not quite work. The problem is that, since ~, is an equivalence
relation, K, has the property that K, p= K K, p. Intuitively, you can not get
anywhere by taking many X, “steps” that you could not already get to by taking
one K, step. We solve this problem by using the modal operators K, and KX,
together with a special primitive proposition p,, (which is used to mark the fact that
a change has taken place) to play the role of O,. We replace a formula of the form
O, ¢ by one of the form Ki(~p,=K)(p,= 9)) Thus, taking a X, step to a point
where ~p, holds, followed by a K, step to a point where p,, holds, corresponds to
taking a O, step. (This is why we need at least two processors to get our [}
result.) We then use C to play the role of U,, as suggested above.

Another difference between systems and structures of two-dimensional temporal
logic is that the latter have the “grid” property. For every pair (i, j), (i+1, j) of
consecutive nodes at the “jth level,” there is a corresponding pair (i, j + 1),
(i+1, j+1) of consecutive nodes at the (/+ 1)th level. This property is crucial to
being able to encode the fact that consecutive ID’s “match up right.” No forgetting
and no learning each give us half of the grid property in synchronous systems. With
no forgetting we have (r, n + 1) ~,(r', n+1) implies (r, n) ~ (7', n), while with no
learning we have (r, n) ~, (v, n) implies (r,n+1) ~, (', n+ 1). Showing that either
half of the grid property suffices to encode the computation of a Turing machine
makes up the heart of our proof. (This is exactly why we cannot straightforwardly
apply the techniques of [HPV, Har], as is done, for example, in [RS].)

We proceed as follows. For the remainder of this proof, we fix a Turing machine
A. Suppose A has state space S and uses tape alphabet I. We use the special sym-
bol # to denote the left-hand end of the tape, and b to denote a blank cell of the
tape. We assume that #, b¢ I Let CD (for cell descriptor) be I'u {b, #}u
(I'x S). Thus, an ID is always of the form # xbbb..., where x is a finite string of sym-
bols in CD. Corresponding to every symbol ce CD we have a primitive proposition
p.-Ife=<y,5s>e xS then the primitive proposition p_ is meant to denote a cell of
the tape which has symbol y and is currently being read by the head, while A is in
state s. Finally, as mentioned above, we use a special primitive proposition p, to
mark the change to a new cell.

@, will consist of the conjunction of a number of formulas, which we now
describe. Let ¢, be the formula:

R SACTR )

Thus, if (M, r, ny) = ¢,, then for all n> no, exactly one cell descriptor holds of any
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point reachable from (r, n). (Our comments here and below hold whether M is in

gan.sym:)’ (g(nf.sync,uis)’ g(nl,sync)’ or (g(nf,nl,sync)' )
Let ¢, be the formula

UC{ps=0py) A (~p,=0 ~P4)).

If (M, r, no) = @,, then the truth value of p,, is constant below any point reachable
from (r, n) for n>n,.
Next, let ¢; be the formula

UC(~K ps A ~Ky~p,).

If (M, r, ny) |= @5, then for any (v, n) reachable from (r, n), n=n,, there are points
(ry, n) and (r,, n) such that (v, n) ~, (r,, n), (r'n) ~,(ry,n), (M,ry,n) k= ~p,,
and (M, ry,n) k= p,.

Given an interpreted system M, a run r in M, and k>0, we will say a level k
alternating sequence of runs starting with (r, no) is a sequence r,, r,, ... of runs such
that (a) r=r,, (b) (rysno+k) ~, (ryjc1,mo+k), (c) (ry+1sno+k) ~,
(ry+2, mo+ k), (d) (M, ry,no+k) = py, (€) (M, Fyj+1, Mo+ k) = ~p,.

Af (M, r, ny) = @3, then for all k>0 there will be an infinite level & alternating
sequence of runs starting with (r, n,). Moreover, if (M, r, n) = ¢, and M is in
€nt,syncys Gt sync, uisy» OF Gar nl,sync)> then the half of the grid property that holds with
no forgetting guarantees that if ry, r,, ... is a level k + 1 alternating sequence of runs
starting with (r, ny), then it is also a level k alternating sequence of runs. (This is
true since no forgetting implies that for all j, if (risk+1) ~.(rjsy, k+1) then
(rjs k) ~;(r; 4y, k).) Similarly, if M is in €at,sync) OF Blar nt,sync)> then if 7o, 7, ... is a
level k alternating sequence of runs starting with (r, ny), then it is also a level k + 1
alternating sequence of runs.

We intend to encode ID’s (instantaneous descriptions) of the Turing machine A
along these alternating sequences of runs. The kth ID of some computation of A
will be encoded at the points of a level k alternating sequence of runs that satisfy
P4. More formally, what we are aiming for is to find a formula ¥ such that if
(M, r,ng) = ¥ then the following property holds:

There is a computation comp of A started on the empty string such that
for all k>0, there exists a level k alternating sequence of runs ro, r, ..
starting  with  (r,n,), such that for all ceCD, we have
(M, ry, nyg+ k) k= p, iff c is in the jth cell after the kth step of comp. (*)

The situation that we are trying to capture in (*) is shown in Fig. 4, where ¢,
denotes the contents of the jth cell after the kth step of comp. The lack of the full
grid property will make it somewhat more difficult to find such a formula ¥, but we
now show it can be done.
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(1)

fromo+1)

(romg+2)

FiG. 4. Encoding a computation by (*).

Suppose s, is the initial state of A. Let @4 be the formula

Pe APsnNK(~p,=K,(p, =Py A Ki(~p, =>Ky(ps=p,))))
ANC(psnpy=K,( ~Pa=Ky(p,=p,)).

|
i ¢4 guarantees that the computation “starts right,”
t

with a blank tape and A in state
So- (Note that the last conjunct forces blanks everywhere past the second cell.)

We now have to make sure that consecutive ID’s in the computation match up
, right. It is well known that we can characterize a Turing machine by giving a
= function which, given three consecutive cells in an ID, describes the set of possible

: corresponding three cells in the next ID. Thus, given the Turing machine A and L, J,
k € CD with there is a function N such that

N, j, k)= {{c, d, e | if i, J> k describes three consecutive cells in a given ID then

{c, d, e) is a possible description of the corresponding cells
in the next ID}.

Let ¢ be the formula

DC< A ((pdAp,-AKl(~pd=K2<p4=>p,«K,<~pA=K2(pA=>pk))))>

i,j ke CD

eodoe) € N, j. k)

= \/ Ofp, A Kl("‘PA:Kz(PA:”Pd/\ K1(~pA:K2(pA=>pe)))))))~
i Let ¥ be the conjunction of ¢, through g¢;.
|

LEMMA 33 I.f ME %(nf.sym:) (resp' qg(nl.nl.sync)’
(M, r,ny) k= y, then (*) holds.

Proof. We first consider the case where wi
(g(nl,sync) or (g(nf,nl.sync)' By Ps3,

(g(nf,sync. uis)» %nl.sync)) and

¢ have no learning, so that M is in
there is some level 0 alternating sequence of runs
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starting with (r, ng), say ro, ry, ... As observed above, by ¢, together with the
assumption of no learning, ro, 7,, .. is actually a level k alternating sequence of runs
starting with (r, n,) for all k. By ¢, and ¢, at level 0 this sequence encodes the
initial ID, where the tape is blank and A starts in state so. Using ¢, and ¢, it is
easy to show by induction on k that there is a computation comp of A such that at
level k, this sequence encodes the kth step of comp.

If M is in Gagaync) OF Fafsync,uisy WE have to work a little harder. In fact, we first"
prove the following version of (*):

For all level k alternating sequences of runs rq, 7y, .. starting with
(r, ny), there exists a computation comp of A started on the empty string
such that for all /<k and all ce CD, we have (M, ry, no+1) k= p.iff c is
in the jth cell after the /th step of comp. (**)

(**) is proved by induction on k. The case k =0 follows immediately from ¢, and
@4. For the general case, suppose rg, ry, ... is a level k+1 alternating sequence of
runs starting with (r, ny). From the assumption of no forgetting, it follows using ¢,
that ro, r,, .. is also a level k alternating sequence of runs. From the induction
hypothesis, it follows that this latter sequence of points encodes the kth step of
some computation of A. Now from ¢, and ¢, it follows that (ro, ng+k+1),
(ry, no+k+ 1), ... does indeed encode the (k + 1)th step of some computation of A.
This completes the proof of (**).

By ¢, it follows that for all &, there is some level k alternating sequence starting
with (r, n,). We can now construct a tree whose nodes at depth k consist of all kth
steps of computations encoded by level k alternating sequences in M starting with
(r, no). We put an edge between a depth k node and a depth k + 1 node exactly if
there is a computation comp such that these nodes encode the kth and (k + 1)th
steps of comp. It is easy to see that the tree so constructed is finitely branching and,
by (**) and the fact that we have level k alternating sequences for all k, it has
arbitrarily long paths. By Kénig’s lemma, there must be an infinitely long path in
the tree. (*) now follows. §

We are almost done. We just need one more formula to say that A is recurrent;
ie., that there is some computation comp where A reenters the start state s,
infinitely often. Note that it would be consistent with ¥ that several computations
of A were being simultaneously encoded by different level & alternating sequences of
runs. Since we want to make sure that there is one particular computation comp
where A does reenter the start state infinitely often, we require that infinitely often
all the computations being encoded by M are in the start state. This is the job

of ¢g:
DO(~C~< AV p‘.)/\C~< \V p(.>).
celx {sp} celx {sij|li#0}

(Recall that ¢ is the dual of O, so that Oy is an abbreviation for ~O~y.) Let
@, be the conjunction of ¢, through ¢s.
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LEMMA 34, Ty Jormula ¢, is satisfiable in an interpreted system M € Gnt.sync)

(resp. Gt nlsync)s €af sync, vis)> Cnt,sync)) If A, when started on q blank tape, admiqs an
infinite computation which reenters its start state infinitely often,

Proof.  Suppose (M, r,n) = ¢ a for some interpreted system Me %, sync) (Tesp.
Eint ol sync) B at.sync, uis) @nl.sync)). By Lemma 3.3, it follows that (*) holds. Thus, A7
encodes a computation of A in the sense of (*). Moreover, s guarantees that in
this infinite computation, A enters the start state inﬁnitely often.

Conversely, Suppose that A is recurrent. We first construct an interpreted system
M,=(R, n )€, nlsync) fOT two processors and a run ro of M such that
(M, ro, 1) = @, Since 7 nsync) = Gng sync) M ‘f(n,_sync,, this also gives us the desired

result for Cint. sync) and Cn, sync)-

We take R, to consist of the Tuns ro, ry, ry, .... Let the processor’s local states be
of the form (/on) (j and n integers), and define ri{n)= (Lj24 n), (Fj127, ny>.
Thus, we have (ry,n) ~, (ry+1,n) and (rys1,n) ~, (r+2,n). Note that this

interpreted System M, in the sense of (*). In particular, we define 7, so that:

1. For c€CD, we have that P. s true at the point (rysn+1)iff ¢ is in the jth
cell after the nth step of the computation of comp,

2. p,is true at points of the form (ry,n) and false at points of the form
(rz41,n). It is now €asy to check that (A1, ", )= @,. »

In order to deal with &, sync,uis)» We slightly modify the system R a S0 that there g
a unique initial state, For all r,eR,, we take r{0)= <0, 0. This guarantees that
there is a unique initia] state, and we still have that (M, r, 1) F @,.. (Note that
by adding this unique initial state, we have lost the property of no learning, so that
this trick would not work for %}nr.m,sync, uis)-)

The [T} lower bound on validity for the language CKL,,,, m22, now follows,
We briefly sketch the modifications required to deal with CKB,,,,. We first replace
all occurrences of O (resp. OJ) in i, i=1,..,5, by VO (resp. YO). Call the
resulting formulag ®?, and let ¥, be the conjunction of these formulas. We leave it
to the reader to check that the analog of Lemma 33 holds for y,. Let p¢ be
VDVO(~C~(VPE“{MPP) ANC~(Veery {siti=0y Pc)), and let ®% be the con-
Jjunction of @4 through @t. Then the analog of Lemma 3.4 holds for 5. (However,

note that we need v o in ¢? rather than 3¢ in order to guarantee recurrence if we
allow learning.) [ |

propositions (since the number of primitive Propositions used to encode the
computation of A in the proof above is greater than the number of States in A).
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However, it is easy to see that we can encode the computation of arbitrary Turing
machines using only two primitive propositions and a slightly more sophisticated
encoding. There are also some situations where we may want to restrict the inter-
preted system so that the truth value of primitive propositions is stable along all
runs; ie., for all primitive propositions p, the formula Op v O ~p is valid. This is
one of the assumptions considered, for example, in [FHV2]. Ron Fagin has
pointed out that even with this assumption, our [T} lower bound still holds,
although we seem to require at least three agents in this case. The idea is to replace
each use of a primitive proposition P in our encoding by the formula X 1~Kyp. We
omit details here. |

For the classes €uys Cintans and € ), Where we no longer assume time is
synchronous but do still assume that we have no forgetting, it is easy to modify the
previous proof to again get a [ i lower bound. In fact, we can do this in a uniform
way; we construct a formula that essentially forces synchrony. More formally, we
have

PROPOSITION 3.5. For aqll Sormulas ¢ in CKL,,, (resp. CKB,,), there is a
Jormula sync, such that ¢ is satisfiable with respect to Cat.sync) (resp. €y, al,sync)»
Bat,sync,uis)) I and only if ¢ A sync,, is satisfiable with respect to b (resp.
g1nl’,n|)’ g(nf,uis))'

Proof. Let ¢ be a formula in CKL,,. Let tick be a new primitive proposition
(not appearing in ¢), and let sync,, be the formula:

C O ((tick = C tick) A (~ tick = C ~ tick))
A C O ((tick = O ~tick) A (~ tick = Otick)).

Thus, sync,, says that the truth value of tick is always common knowledge, and that
its truth value changes at consecutive points along any run (we can think of a
change in the value of tick as denoting one tick of a global clock). Note that the
only dependence of sync,, on ¢ is in the choice of the primitive proposition tick.

Now suppose that ¢ is satisfied in some interpreted system M in €(ntsync) (TESP.
B\t nt,sync)> Gt sync.uis))- Since tick does not appear in ¢, we can assume without loss
of generality that rick is true at all points in M of the form (r, 2n) and false at all
other points. Clearly ¢ A sync,, is then satisfied in M. This gives us one direction of
the result.

For the converse, suppose M = (R, ) is in Cuny and (M, ry, np) = @ A sync,, for
some point (ro, ny) in M. We now show that sync,, essentially forces the system to
be weakly synchronous. For suppose not. Then there must be two points (r, n) and
(r,n’) with n’>n such that (r, n)~;(r,n’), for some agent i. Because we are
assuming no forgetting, by Lemma 2.2 it follows that (r,n)~, (r,n") for all n” with
n<n"<n'. (Note the key use of no forgetting here.) Since tick changes its truth
value at every step, in particular, it must be the case that rick has different truth
values at (r, n) and (7, n+ 1). But we have just shown that (r, n) and (r,n+1)are
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indistinguishable, which contradicts the assumption that the truth value of tick is

common knowledge. Thus, the system (or at least that part of it below points
reachable from (7o, ng)) is weakly synchronous. It is also not hard to show that in

the weakly synchronous part of M, if (r,n) ~i(r's n') and n>0, then (r,n—1) ~:
(r',n —1) Thus, we have the situation shown in Fig. 5. We can now convert the
weakly synchronous system to a synchronous system by chopping off the prefixes of
runs.

Formally, we proceed as follows. Let R’ consist of all runs reachable from (7o, Mo)
and, for all re R', let (r, n,) be the first point in r reachable from (7o, 1o)- Let fbea
function on the runs in R’ defined by f (r)(n)=r(n,+ n). Thus, f(r) is the result of
chopping off the prefix of r before 1, and relabelling the points s0 that we start with
0. Let M’ = (f(R"), n'), where ' (f(r),n)= n(r,n,+n)forre R'. An easy induction
now shows that for re R’ and all formulas y, we have (M, f(r),n) By iff

(M,r,n+n,)F Y. We next show that for r,r'e R and k>0, if (r, n,+k)~;
(r',n,+ k'), then k =k'. We prove the result by induction on k. Tt suffices to show
he case k =0 the result is

that k < k’; equality follows by the symmetry of ~, Fort
immediate by the definition of n,.. Suppose k > 0. By the assumption of no forget-

ting, it follows that r(n, +k—1) ~; r'(n, + k") for some k" <k'. By the induction

hypothesis, it follows that k— 1 <K”. Now we must only show that in fact k" <k’

and we will get k<K', as desired. Note that if k" =k’ (the only other possibility),

then by the transitivity of ~, we get rin,+ k—1)~,;r(n.+ k). Observe that

since the formula sync, is prefixed by cO, it follows from the construction
that (M,r,n,+k— 1) k= sync,. Suppose, without loss of generality, that
(M,r,n,+k— 1) [ tick. Since sync, forces the truth value of tick to alternate along
a run, it follows that (M, r,n, +k— 1) = tick. But sync, also forces the truth value
of tick to be common knowledge, which contradicts the observation that
rin,+k—1)~; r(n, + k). This proves the desired result.

It now easily follows that (f(r), k) ~ (fr'), k) implies k =K' Moreover, we get
that processors do not forget in M’, since if (f(r),n) ~.( f(r'), n) and k <n, then
by construction we have (r, n,+n) ~i (r',n, +n). Since processors do not forget in
M, we must have some k' such that (r, n,+ky~(r, n, +k'). By the previous
observation we have k=K', so that (f(r), k)~ (f(r'), k). Thus M € Gat.sync):

(70 +7)

FiG. 5. An interpreted system M where (M, rq, no) = SYnCo-
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A similar proof works in the case of M € g n)- For the case M € 6yt uis)» WE
proceed as above, and then add an initial state as in the proof of Lemma 3.4.
Finally, if ¢ is in the language CKB,, we construct sync, using VO and VO
rather than [ and O. §

COROLLARY 3.6. The validity problem for CKL,, and CKB,, m=> 2, is
[1!-hard with respect to the following classes of interpreted systems: €y, Gns,m)> and

(g(nf,uis)'

Proof. Consider the formula ¢, A sync,,. By Proposition 3.5, this formula is
satisfiable with respect to %y (resp. €ut,ni)> €ar,uis)) iff ¢, is satisfiable with respect
t0 €(nt.sync) (TESP- C(at.nlsync)> @af.sync.uisy)» and by the proof of Theorem 3.2, this
holds iff A is recurrent. This observation gives us the lower bound. i

In the formula ¢, A sync,, above, we make heavy use of the nexttime operator
(O). As Lamport has argued [Lal], it is somewhat unreasonable to have a
nexttime operator in the language if we are considering asynchronous systems. In
fact, this use of the nexttime operator is unnecessary. The reader is referred to the
Appendix for details.

In the previous proof where we eliminated the assumption of synchrony, we
made heavy use of our assumption of no forgetting. The proof does not go through
if- we only assume no learning. Nevertheless, as we now show, we can still make use
of these ideas in the presence of no learning.

Given an interpreted system M, we say a point (r, n) in M is i-repeating if there
exist infinitely many n’ > n such that (r, n) ~, (r, n’).

LEMMA 3.7. Let M =(R, nt) be an interpreted system in €y, (resp. C o, uis)) and
letr, reR.

1. Ifng<ny<n,, (r,ng) ~;(r,nz), and it is not the case that (r,ny) ~; (r, ny),
then both (r, ny) and (r, n,) are i-repeating.

2. If(r,n) ~;(r,n’), n<n’, and (r,n’) is not i-repeating, then (r,n) ~;(r,n"
for all n" withn<n"<n'.

3. If (r, n) is i-repeating and n' > n, then (r, n') is i-repeating.

4. If (r,n) ~,;(r',n"), then (r,n) is i-repeating iff (r',n’) is i-repeating.

Proof. For part 1, we extend ng, n,, n, to a sequence {(n;>, j=0, such that
n,<n,, (rny)~(r ne), and (r,ny .,) ~,(r,n,). The existence of such a
sequence is almost immediate from the assumption of no learning. For example,
since (r, no) ~; {r, n,) and n,; >n, by assumption, there must exist n; > n, such that
(r,n,) ~;(r,n;). We cannot have ny;=n, since it is not the case that (r, n,) ~;
(r, n,). The rest of the construction continues in the same way. The existence of such
a sequence shows that (r, ny) and (r, n,) are both i-repeating.

For part 2, note that if n <n” <n’ and it is not the case that (r, n) ~; (r, n"), then
by part 1, (r, n') is i-repeating, contradicting our original assumption.



216 HALPERN AND VARDI

For part 3, observe the result is immediate if (r, n) ~, (r, n’). If not, since (r, n) is
i-repeating, there must exist n”>n’ such that (r,n) ~,(r,n"). The result now
follows from part 1.

For part 4, suppose that (r,n) is i-repeating. We now show that (r/,n’) is
i-repeating. Suppose not. Then there is some k' >n' such that for all n"2Kk’, it is
not the case that (', n’) ~, (', n”). By the assumption of no learning, there is some
k = n such that (r, k) ~,(r’, k'). Since (r, n) is i-repeating, it must be the case that
for some !>k, we have (r, ) ~,(r, n). By the assumption of no learning again, we
must have some !’ > k' such that (r, [) ~; (', I'). By the transitivity of ~, it follows
that (r',1’) ~,(r’,n’). But this contradicts our choice of k. Thus, (r',n’) is
i-repeating. Part 4 now follows by the symmetry of ~;. 1

Note that, among other things, this lemma tells us that in the non-i-repeating
part of a run, we essentially have the property described in Lemma 2.2. This was
the main property we needed to force synchrony in Proposition 3.5. We cannot
quite force synchrony in systems with no learning, but we can come close enough to
get the [T} lower bound, as the following result shows.

THEOREM 3.8. The validity problem for CKL,,,, and CKB,,,,, m=2, is T1i-hard
with respect to €.

Proof. We slightly modify the construction of ¢, given in Theorem 3.2 to again
get a formula ¢4 that encodes the computation of the TM A in the nonrepeating
part of runs. We proceed as follows. '

Let g be a new primitive proposition (not appearing in ¢,) and let nonrep be an
abbreviation g A O [0 ~gq. It is easy to see that K (nonrep) is true at the point (r, n)
only if (r, n) is not i-repeating.

Essentialy the same argument used in Proposition 3.5 shows that the formula
sync,,, constructed in that proof also forces weak synchrony in the nonrepeating
part of any interpreted system in €. Formally, if M €4, (r,n) ~,(r,n'), (r,n’)
is not an i-repeating point, and (M, r, n) = sync,,,, then n= n'. To see this, suppose
by way of contradiction that n’ > n. Note that by part 2 of Lemma 3.7, we must
have (r, n) ~,(r, n+ 1). Since sync,, forces the truth value of tick at {r, n) to be
common knowledge and to change at every step, this leads us to a contradiction,
just as in the proof of Proposition 3.5. The situation is now essentially that
described in Fig. 5.

At this point there are still two problems to be dealt with before we can run
through the proof of Theorem 3.2. The first is that we cannot now delete the prefix
of each run as we did in the proof of Proposition 3.5 in order to get a synchronous
system. The problem is that we may well have (r,n) ~,(r',n") and (r,n) ~,
(', n"), with n’ #n". (As the proof of Proposition 3.5 shows, this can not happen if
we make the assumption of no forgetting; it can happen with no learning.) It turns
out that weak synchrony is enough for our purposes; we just need to appropriately
modify the statement (*) from the proof of Theorem 3.2.




f

REASONING ABOUT KNOWLEDGEAND TIME 217

A more serious problem is that we cannot use the formula nonrep to force all the
points in a run to be non-i-repeating. The reason is that [ K(nonrep) is
unsatisfiable (in fact, Cl(nonrep) is unsatisfiable). We deal with this problem by
offsetting the computation by one run at each step. More precisely, we construct oY

. such that if M €%, and (M, ro, o) k= ¢, then the following variant of property
' (*) holds. (The reader should compare the conditions below to those defining a
level k alternating sequence of runs.)

There is a computation comp of A started on the empty string and a sequence

(Fos Mo)s (risny), (r2, 2), of points such that for all k=0 we have
(rapny+k) ~y (’2,'+1,"2j+1+k)s (rgj+ 1512541 +k) ~, (ryr2hize2t k)
(M’ r2jv n2j+k) F: Pda (Ma r2j+l’ n2j+l+k) ': ~PA’ and fOI’ all CGCD,
we have (M, ag; 4y Magjr iy T K) k= p. iff ¢ is in the jth cell after the kth
step of comp. (+)

The situation that we are trying to capture in (+) is shown in Fig. 6, where ¢
denotes the contents of the jth cell after the kth step of comp.
We construct @3 as follows. Let ¢, be the formula:

OC(sync,,) A BC((py A P4 = E(nonrep))
A (p4 A E(nonrep) = K\(~p4=> Ko ps= E(nonrep))))).
As our comments above indicate, the first conjunct of @ forces weak synchrony in

the nonrepeating part. The second conjunct of ¢, says that along any sequence
encoding an ID, all relevant points are nonrepeating.

Pa ~Pa 2, ~Pa Py
lc 10

Fi. 6. Encoding a computation by (+).
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Let ¢ be the variant of ¢ that offsets the computation by one step:

ac /\ (psApin Ki(~ps=Kyps=p; A Ki(~ps=Kxp4 =pi))))

i,jkeCD

= \/ OK(~ps=Ky(ps=pc A K\(~p,4

(c.d,e)eN(i‘j,k)
= Ky)(py=pan Ki(~ps=Ka(ps=>pI)N))

Let ¢,, i=1,2,3,4,6 be as in the proof of Theorem 3.2, and let o2 be the
conjunction of @,, @5, and ¢, i=1,2,3,4, 6. Now a similar argument to that used
in the proof of Theorem 3.2 shows that @3 is satisfiable with respect to ), iff Ais
recurrent. The result now follows. The standard modifications now enable us to

deal with CKB,,, as well. |

As we remarked in the Introduction, the combination of no learning and unique
initial state leads us to some anomalous situations with regard to the complexity of
the validity problem. As we pointed out in the proof of Lemma 34, the
straightforward trick used to add a unique initial state to a system does not work if
we require no learning (and are dealing with more than one processor). Indeed, if
we consider the classes G ug a1 sync.uis) AN (a1 sync. uis)» it is easy to show that we get
no more expressive power with many agents and common knowledge than we do
with just one agent. More formally, it is easy to show

PROPOSITION 3.9. 1. Gns.al,sync, uis) = Gint.sync,uis)*
2. Any formula ¢ in CKL,, (resp. CKB,,,) is equivalent in interpreted systems
in €t sync.uis) (resp. %ot ni.sync.uis)) 10 the formula @' that results by replacing all
occurrences of K;, i=2, E, and C by K,.

Proof. Clearly we have % . n, sync.uis) = Ginlsync. uis) - For the opposite inclusion,
consider an interpreted system M = (R, 1) € €a1 sync,uis)- The assumption of unique
initial state guarantees that for all r, r'e R and all processors i, we have that
(r,0) ~, (r', 0). Since the system is synchronous and there is no learning, it is easy
to show by induction on n that we have (r, n) ~ (', n) for all n. It immediately
follows that processors do not forget. Moreover, an easy induction on the structure

of ¢ proves the second part. |l

Thus, the lower bound for the validity problem with respect to % n sync.uis) and
@ of. i sync,uis) fOT the language CKL,,, (resp. CKB,,)) is the same as the lower
bound for KLy, (resp. KB,)), namely EXPSPACE. (We prove this lower bound in
the next section; the matching upper bound is proved in the sequel to this paper.)

On the other hand, if we drop the assumption of synchronous time, the situation
changes drastically. Ladner and Reif [LR] prove that for interpreted systems in
B\ot.n1.uisy» €VEN the language KB, is undecidable. In particular, they show that the
computation of a nondeterministic Turing machine can be encoded by a KB,) for-
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mula. They do their encoding by laying out the computation of the TM vertically
down one run, rather than using many runs as we do in the proof of Theorem 3.2.
(We remark that we also encode computations vertically in the proofs of our non-
elementary bounds in the next section.) It is straightforward to add a conjunct to
their formula so that we actually encode the recurrence problem. Other trivial
modifications allow us to do the encoding by a KL ,, formula. We omit the details
here. As a consequence we get:

THEOREM 3.10. The validity problem for KL,,,, and KB,,,,, m 22, with respect to
(g(nf, nl, uis) is H{-hard,

CoroLLAR 3.11. The validity problem for CKL,, and CKB,,, m=>2, with
respect t0 G i uisy is [1}-hard.

By combining the ideas of Theorem 3.8 and those in Ladner and Reif’s proof, we
can also prove a tight bound for validity with respect to %, .- At first glance, it
might seem that we could just force the run along which the computation of the
TM is encoded to be nonrepeating, and then proceed as before to encode the non-
recurrence problem and get a []! lower bound. However, as we pointed out in the
proof of Theorem 3.8, if we consider the formula K(nonrep) that we used to force a
point to be non-i-repeating, (J K (nonrep) is unsatisfiable. Thus, we cannot use this
formula to force a whole run to be non-i-repeating, but only a finite prefix of that
run. This problem is not just a consequence of the way we defined the formula non-
rep. As we show in the sequel to this paper, a formula is satisfiable with respect to
Gty (1€3D. €01, uisy) iff it is satisfiable with respect to an interpreted system in €,
(resp. b, uis)) in which only a finite prefix of every run is non-i-repeating, for each
agent i. The fact that only a finite prefix of a run is non-i-repeating suffices to allow
us to encode the halting problem in a formula, using the techniques of Ladner and
Reif. As a consequence we get:

THEOREM 3.12.  The validity problem for KL,,,, and KB,,,,, m > 2, with respect to
Bint,uis) 1S co-r.e-hard.

COROLLAY 3.13. The validity problem for CKL,, and CKB,,,, m=2, with
respect 10 € uisy IS co-r.e-hard.

We remark that the observations made above also allow us to prove that these
bounds are tight, and we do so in the sequel to this paper.

Finally, we consider the situation for classes of interpreted systems where we do
not assume either no forgetting or no learning. Here the validity problem becomes
much easier.

THEOREM 3.14.  The validity problem for CKL,,,, and CKB,,,,, m = 2, with respect
10 €, Bisyncy> Csyne,uisy» and €5, is EXPTIME-hard.
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Proof. The result follows immediately from the fact that even without temporal
operators, the logic with at least two agents and common knowledge is EXPTIME-

hard [HM21. 1|

We remark that Fischer and Immerman independently proved the EXPTIME
result for CKB,,,, with respect to ¢ [FI2].

4. Lower BounDs FOR KL ,,, AND KB,

In order to prove the complexity results discussed in the Introduction for classes
of interpreted systems with no learning or no forgetting, we first show how we can
use formulas to encode “yardsticks” of the type used by Stockmeyer. Again we start
with synchronous systems. Our yardsticks are going to be of length f1 (k, n), where
£(0, n)=n, and f(k+ 1, n)= f(k, n) 2/*". Note that f(k, n)=ex(k, n) for all k>0
and n> 1. (Also note that there is some constant ¢ such that f(k, n) <ex(k, cn) for
all k>0 and n>1.) For each k>1 and n>1 we construct a formula ¢, , that
forces a proposition p, to act as a yardstick of length f(k, n), in the sense that it is
true exactly f(k, n) steps apart. The situation is shown in Fig. 7. More precisely,

LEMMA 4.1. For all k and n, there is formula ¢, ,, of KL 3, with |@, ,| = O(k +n)
and ad(@,,)=k—1, such that for all interpreted systems M € Bnisyncy (resp.
(g(nl,sync)’ (g(nf,nl‘sync))» we have

if (M, r,ny) = @, then there is some N with 0 < N < f(k, n) such that
for n=ng, (M, r,n') k= pi iff B =ny+ N+ jf(k, n) for some j>0. (1)

Moreover, ¢, , is satisfiable with respect to € nt.sync) (resp. G, syncys iut, o, sync))-

(’ak,n
Py
Py

Fic. 7. Encoding yardsticks with ¢, , and p,.
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Proof. We construct ¢, , by induction on k. In the course of our construction
we will also need formulas ¢} , which are just like ¢, , except that all occurrences
of K, are replaced by K, and vice versa. By symmetry, it will be easy to check that
1. satisfies (1).

We now describe the construction of ¢, ,. The idea is to partition every run into
segments of length n, and to view each such segment as an »-bit binary counter. We
then force consecutive counters to differ by 1 modulo 2”. Thus, the counter will take
on consecutively all the values from 0 to 2" — 1. The formula p, will be true exactly
when the counter is at 0, and thus will be true every f(1, n) = n2" steps. We proceed
as follows.

We first define some abbreviations. Let O'y and O <!y both the abbreviations
for the formula Oy, let O*y denote OO !y for k>1, and let O <%y denote
O A O<k=Y). It is easy to see that O <%y is equivalent to O A --- A Oky;
however, note that as we have defined it, the formula O <"p has length O(n) (since
p is a primitive proposition), whereas the length of Op A --- A O"p is O(n?).

We use p, to mark the beginning of a counter. Let o, be the formula

O((po<> O"po) A (Po=> O =""'~pg)) A Opy.

Intuitively, o, says that the distance between the points where p, holds is precisely
n, that p,, is followed by n— 1 occurrences of ~p,, and that p, holds at some point
of the run.

We use the proposition b, to encode the bits of the counter, where b, encodes a
1, and ~b, encodes a 0. Thus, p, A b, followed by n—1 occurrences of ~b,
encodes the number 2"~ . We now want to force consecutive counters to differ by 1
modulo 2". Recall that if c=c¢,_,---¢o and d=d,_,---d, are two n-bits binary
numbers, then d is the successor of ¢ modulo 2” precisely when the following holds:
c;=d,; iff ¢;=0 for some 0<j<i;ie., the ith bits in ¢ and d are the same iff some
bit ¢; in ¢ with j<iis 0.

Let a, be the formula

L{O(bo U po) = (bo=> O"~bg) A (~by= O"by))
A O(~O(bg U po) = (bg= O"bp) A (~bg=> O"~by)).

Intuitively, the first conjunct of «, says that if, for some i, all the bits ¢;, j<i,in a
counter are 1, then the jth bit of the next counter is different. The second conjunct
says that if some bit ¢;, j <1, is 0, then ith bit of the next counter is the same.

Finally, we want to force p; to be true exactly if the counter is at 0. Let a4 be the
formula

U(pr<>(po A ~bo A O(~bo U po)))-

It is easy to see if we now define ¢, , to be the conjunction of a,, a,, and «,, then
it has the required property ().
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The construction of ¢, , , , proceeds along very similar lines. We partition runs
into segments of length f(k, n), using p, to mark the beginning of each segment.
Again, we view each of these segments as an f(k, n)-bit binary counter, using the
proposition b, , , to encode the bits, and force consecutive counters to differ by 1
modulo 27", The formula p, , , will be true exactly when the counter is at 0, and
thus will be true every f(k+1,n)=f(k,n)2/*™ steps. The only thing that
prevents the definition of ¢, ,.; , from being identical to that of ¢, , is that we now
cannot mark off segments of length f(k, n) using O/ in the same way we did in,
for example, a,, since the resulting formula would then be much too big. Our
construction uses nested K;’s and the fact that we are in an interpreted system with
no forgetting and/or no learning to measure this distance in a more succinct way.
The idea is to distribute yardsticks across runs accessible by the ~ ; relation in such
a way that at every step, there is some accessible run whose counter is at 0. This is
the job of the formula §,, defined as

O(Ki(qx = @ien) A ~Ki~ (pi A i) A Ki(©C = qu)).

Recall that @}, is the result of reversing the roles of X, and X, in ¢, ,. We can
think of the proposition g, in the formula f, as denoting a run that encodes a
counter. Thus, the first conjunct of 8, says that those runs by accessible by the ~
relation where g, is true encode counters; the second conjunct says that there is
always some run accessible by the ~ , relation where the counter is 0; and the third
conjunct says that if g, is true at any point in the future, then it is true at the
present. By the induction hypothesis, the alternation depth of f, is k. As we shall
see, all the other conjuncts that make up ¢, , will have alternation depth 0 or 1.
Let B, be the formula

OWbe 1= Kibe ) A (~bey 1=K ~by,y)).

Thus, B, forces b, ., and ~b,,, to be uniform across all accessible runs at any
given level.
We are now in a position to give an analog to a,. Let §, be the formula

O(O(by o1 Upi) = (b1 = Ki(pi A = O(~pr U(pe A ~bi41))))
Al~bey 1 = Ki(pe A= O(~pe U(pi A b 1 D))
O(~Obrs 1 Upi) = by 1 = Ki(px A 4= O(~p U(pe A bri1)))
Al~be 1= Ki(Pe A @ = O(~p U(p A ~br 1))
Intuitively, the formula K (p; A g, = O(~px U(pi A ~bi,1))) iIn the first con-
junct of B, plays the same role as O"~b, in the first conjunct of «,. To see this,
SUppOSC Melg(nf,sync) (resp~ %(nl,sync)’ %(nf,nl.sync))- MOI‘COVCI’, SUppOSC (M, r, n()) F
B, A B, A By and, for some n’ > ng, we have (M, r,n') = byt A O(bey Upy) We

want to show that (M, r, n' + f(k, n)) = ~b, . The argument now splits into two
cases, depending on whether processors do not learn or do not forget.
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If processors do not learn (ie., M is in €1 syne) OF Batnlsyne))s then by f,, we
know that there exists a run r such that (r,n')~, (,n') and (M, r',n") =
Di A Gx A @), Since processors do not learn, it must also be the case that
(r,n' + flk,n)) ~, (r',n' + f(k,n)). By induction hypothesis, we know that
(M, r',n’ + f(k, n)) = px and that (M, r,n' +i) = ~py for 0<i< f(k, n). By B,
we have (M, r,n'+flk,n)E ~bii:. Finally, by p,, we also have
(M, r,n’ + f(k,n)) = ~by ., as desired. .

If processors do not forget (ie, M € €Cns.syncy)> then we essentially run through
the same arguments as above, backwards. This time, by B,, we know that
there is another run » such that (r,n'+f(k,n)) ~, (r',n'+ f(k,n)) and
(M, r',n' + f(k, n)) & px A i Since processors do not forget, it must also be the
case that (r,n’) ~,(r,n’). By B, again, we have that (M,r’,n’) & ¢, (by the
&g, = ¢, clause) and hence that (M, r',n') = @i By the induction hypothesis,
we know that (M, 7', n’) = p, and (M, r',n' +1i) E ~p, for 0<i< f(k, n). By B,
(M, r',n' + f(k,n)) E ~by . Finally, by B,, we also have (M, r, n' + f(k,n)) =
~by , 1, as desired. Similar proofs work for all the other conjuncts.

Finally, let §, be

O(pesr1<> (P A ~bep A O(~biw1 UpW)))

Thus, B, forces p,.,, to be true exactly when the counter is 0.

Let @ .1 b€ By A B2 A B3 A By Tt is now easy to check that ¢, , , satisfies (1),
that ad(@, . 1..) =k, and that |¢, , ol =0k +1+n)

Next we must show that ¢, , is satisfiable. We proceed by induction on k, but we
use a stronger induction hypothesis: For each i>0 there is an interpreted system M
in %ot nisyncy Such that for some run r of M we have that (M, r,0) = ¢, and
(M, r, i) & p.. Since ‘ﬂ(n,_n,,sync,=(€(n,,sync,n(€(n,‘sync,, the result also holds for the
other classes. The proof is by induction on k.

Fix i>0. For k=1, M consists of a single run r. We let (M, r, j) E po iff
j=1i(mod n). Thus, the points where p, is true partition r into segments of length n
starting at rem(i, n), where rem(i, n) is the remainder of the division of i by n. Now
we set the truth value of b, in such a way that the segments encode an n-bit counter
and the segment between i and i +n— 1 encodes 0. Finally, we let (M, r, j) k= p, iff
j=1i (mod f(1, n)). Thus, (M, r,0) k= ¢,,and (M, r,i) E p,.

Suppose we have proved the claim for ¢ ,. By symmetry the claim also holds for
@k.n- For 0<I< f(k, n), let M, be an interpreted system with run set R, such that
for some r,€ R, we have that (M,, r;, 0) k= @k, and (M,,r,]) = p,. Note that g,
does not occur in @y ,, SO We can assume that its truth values in M, is undefined.
We let (M), r,, j) = g, for all j>0 and (M,, r,j) = ~gq, for r#r, and j>0. We
construct M = (R, n) by taking R to be the union of the R;’s (which we take to be
disjoint). We assume that the processor’s local states in each of the R/s are distinct
except that processor 1’s local state is the same in r, (/) and r, () for j=0 and
0</,, I, < f(k, n). Thus, the equivalence relation ~ . in M is just the union of the
equivalence relations in M, while the equivalence relation ~ in M is the union of
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the equivalence relations ~,; in M, augmented by the pairs {(r,, j), (ry, j)) for
j=0and 0</y, [, < flk, n). Since in ¢} , every knowledge subformula is governed
by a K,, it follows that (M, r;, 0) E ¢, for all runs r,in M. Moreover, since every
conjunct of ¢}, is prefixed with 0J, it actually follows that (M, r;, n') F @ , for
all n>0. Finally, since g, holds only on the r/s, it is easy to check that our
construction guarantees that (M, r;, 0) E B, for all the r/s.

We now define truth values for b,,, and p,,,. Choose some [ with I=i
(mod f(k, n)). For this choice of / we have (M, r,, j) = pi iff j=1i (mod f(k, n)). By
the induction hypothesis, the points where p, is true partition r, into segments of
length f(k, n) starting at rem(i, f(k, n)). We set the truth value of b, ., in the run r,
in such a way that these segments encode an f(k, n)-bit counter and the segment
between i and i + f(k, n) encodes 0. For other runs r in M we let (M, r, J)E brgs
iff (M, r,, ) be,,. Thus, we have (M, r,;,0) = B, A B;. Finally, we let
(M7 rvj)#=pk+l iff ]=l (mOdf(k+17 n)) ThliS, (M7 rl’O)}’: DPr+1.n and
(M, r,, i) = Px+- This completes the proof. 1

THEOREM 4.2. Any algorithm that decides whether the KL, (resp. KB,,)),
m>2, formula ¢ is valid must have the following complexity for infinitely many
formulas @ with respect to the following classes of interpreted systems.

L. %ot nisync) AN Ginisyncy: SPACE ex(ad(@), ¢ |@|) for some constant ¢ > 0.
2. Biorsync) ANA Gog sync,uis)” time ex(ad(@) + 1, ¢ |@|) for some constant ¢ >0,

Proof. As in the proof of Theorem 3.2, the idea is to encode the computations of
a Turing machine. For part 1, given a Turing machine A that uses space at most
ex(k, |x|) on input x, we show how to uniformly construct a family of formulas y, ,
in KL, such that (1) ad(y, )=k, (2) for some constant ¢>0, we have
|74, =c x|, and (3) @, is satisfiable with respect to g a1, sync) (resp. Gat.syncy) 1T A
accepts x. We then show how to modify the construction to deal with part 2.

Again we assume that A has state space S and tape alphabet I, and we let CD be
the set of cell descriptors as before. We assume without loss of generality that there
is a unique accepting state gq,, so that A accepts x iff it reaches state g, at some
point in its computation. Fix an input x with |x| =n, so that x=x, ---x,. We know
that on input x no more than space ex(k, n) is used in the computation, so we take
all ID’s to have length f(k, n)>ex(k,n) (padding with blanks if necessary),
separated by #. The crucial difference between this proof and that of Theorem 3.2
is that now we encode the computation of A vertically along the run, using the
yardstick ¢ ,.

The first conjunct of y, . is the analog of ¢, in Theorem 3.2. Let y, be

oV mpr~ (), )

If (M,r,n')}=y,, then at most one cell descriptor holds at every point in runs
reachable by ~, from (r, n’) and cell descriptors are uniform across ~ ;.
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Since we are using p, to delimit ID’s, we want p, to be true at the beginning of
the run and at all later points exactly f(k, n) apart. It is here that we need to use
our yardsticks. Let 7, be

Pa
A OK(qe = @kn) A ~K; ~ (Px A qi) A K\(Cqr=qx)
ADPy=Ki(pie A Gx=O(~pi A ~P2) U (Px AP

Note that the second line in this formula is exactly the formula f,, and has the job
of distributing yardsticks. The third line essentially uses these yardsticks in much
the same way as they are used in the formula f; to guarantee that the distance
between the points, where p, is true is f(k,n). Thus, if M € Ga,syncy aNd
(M, r,n') = 79, A 7,, then for all r' such that (r,n') ~,(r,n’) we have that
(M, r', j) = p, iff j=iflk,n) for some i=0.

We now describe the formulas that force run segments to encode successive ID’s
of A. Since we are encoding the computation of A on input x, the first ID is of the
form # (x,, o) X3+ x,b"®M~" (recall that b is the blank symbol and s, is the
start state). Let y; be

Py A O(p(xl,so) A O(sz A O( A O(px,, A o(pb Up#)))))

y; forces the first segment to encode the starting ID.

To enforce correct transitions we again use the fact that it suffices to examine
triples of cells descriptors, and encode this information in the function N. (Recall
that N is the function from the proof of Theorem 3.2 that, given three consecutive
cells in an ID, describes the set of possible corresponding three cells in the next ID.)
Since all ID’s are of length f(k, n), in order to compare corresponding triples of cell
descriptors, we have to compare cells that are f(k, n) cells apart. Let y, be

D( A (p:A Op,;a OOp)

i, j,le CD

=V KupeAde=O(~pe U(pe A pe A Opu A oom))).
‘ (e,died € NG, D

7. guarantees that the transitions behave according to N and that they are correct.
This follows from the fact that the cell descriptors are uniform over accessible runs
| and from the properties of p,.

, Finally, we must say that we have an accepting computation. Recall that A
accepts x iff it eventually goes into state s,. Let y; be

0( V pc)
ceMx {sq}

Let y, , be A, c;<s7:- Note that ad(y)=k. It is also easy to check that y, , is
satisfied by an interpreted system in Gag i, sync) (F€SP. €(al,sync)) iff A accepts x. If A
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accepts x, consider an interpreted system satisfying ¢, +1,n» @8 constructed in the
proof of Lemma 4.1. As the construction shows, we can actually assume that
(M, r,0) = ¢, 1., for some run r of M. We can now easily lay out the computation
of M along run r in such a way as to satisfy Ya.x- More precisely, we define the
truth values of the primitive propositions p,, c e CD, so that we can divide each run
r' with (', 0) ~, (r, 0) into a sequence of segments of length f(k, n) encoding the
ID’s of an accepting run of A on input x. Since y, requires that the truth values of
P, ¢€CD, are uniform across all ~, accessible runs and there is no learning, we
must lay out the same computation along all runs. (Note that the fact that
(M, r,0) = ¢, ,, guarantees that §,, which is part of y,, is also satisfied.)

Conversely, it is easy to see that if M € Gintntsync) (1€SP. Bnisync)) and
(M, r,n) = ¢, ., then, by y,, we can partition run r into segments of length f(k, n)
starting at (r, n) so that each segment encodes an ID. By y, and y,, this sequence
of ID’s is actually a computation of A on input x, and by 7s, it is an accepting
computation. The lower bound for Eint.nt.sync) ADd Gy gy, in the case of KL,
m =2, immediately follows.

To get the result for KB,,,,, again we replace occurrences of [J by V(O and O by
VO, and the occurrence of © in ys by V<. We leave it to the reader to check that
this has the desired effect. (We remark that since we are working in systems with no
learning, replacing the ¢ in y; by 3¢ also works, as the interested reader can
verify. )

To get the lower bound in the case of Eint,sync) AN Bng yne uis) fOr the language
KL, m>2, we encode alternating Turing machines (ATMs) [CKS]. The
difference between this case and the previous case is that the possibility of learning
allows us to simultaneously encode different runs of the ATM, in a sense we make

\ precise. We first review the necessary definitions.

In an ATM, there is a subset U< S of universal states. The states in S — U are
existential states. There is an accepting state S,. At each configuration the machines
has two possible moves. Thus, every ID has two successors. It is convenient to
assume that the machine starts in a universal state and alternates at every step, that
is, if the ID B is a successor of the ID a, then the state of « is existential iff the state
of B is universal. An ATM A accepts input x if there is an infinite tree, called an
accepting computation tree of A on x, labeled by ID’s such that

1. the root of the tree is labeled by the initial ID of A on X,

2. if a node u is labeled with an existential ID a, then # has one child that is
labeled by a successor of a,

3. if a node u is labeled by a universal ID «, then u has two children labeled
by the two successors of a, and

4. every infinite path through the tree is eventually labeled with an accepting
ID.

It is known that a language L is accepted by a deterministic Turing machine
within time O(2%"), where S(n) > log(n), iff L is accepted by an alternating Turing
machine in space O(S(n)) [CKS]. Thus, ASPACE(ex(k, n)) = TIME(ex(k + 1, n)).
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As before, given an ATM A which runs in (alternating) space ex(k, n) and an
input x, we construct a formula &, , which is satisfiable with respect t0 €1 sync) iff A
accepts x.

The idea now is to encode different possible computations (i.e., paths in the com-
putation tree) along different runs. Thus, we have to force the properties we
required last time to hold on all ~, accessible runs, not just one. We accomplish
this by prefixing relevant formulas by K,. Thus, we take d,, 6,, J3, and J, to be as
K.v., K,v,, K,75, and K,ys, respectively. Besides adding the K,, we have to
slightly modify y, to take into account the alternation. Since an ID has two possible
successors, we now have two transition functions rather than one; call them N, and

N,. Let é5 be

KO A ((p,-AOijOOp,)

i, jleCD

- V Kilpi A 4= O(~px U (s A P A Opy n OOP) )
1<g9<2,{c,de)>e Ny jl)
5 guarantees that all transitions behave according to either N, or N,.

We now need a formula that guarantees that when we are in a universal state,
both transitions occur. In order to do this, we introduce a new primitive
proposition p, to indicate whether or not we are in a universal state. Let o4 be the
formula

p. A K O(p, =K, p,)
AK,O(O~py,=(p,< Op,))
A K, O(Op g = (pu< O ~pL))

The first conjunct of &4 says the initial state is universal, the second conjunct says
that p, is uniform over ~, accessible runs, the third conjunct says that the truth
value of p, is constant throughout an ID, while the fourth conjunct says that it
changes between consecutive IDs.

In order to capture the alternation in A, we encode different paths in the com-
putation tree of A along different runs in the system. We could not do this when we
had no learning, since we insist (in formula y, and §,) that the values of p, for
ceCD are uniform across ~ , accessible runs. But once we have learning, we can
have the equivalence relations refine, allowing us to encode different paths. Let 64
be

KO A ((p,,Ap,-AOp,-AOOp,)

ijleCD

= /\ ~Ki~(pr A gk

1€¢<2, (e, dede Ngli,j,1)

= O(~px U (pe A pe A Opan oom))).
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Thus, 8, says that when we are in a universal state, there are accessible runs that
encode both possible tramsitions. Note that the formula 6, A 4, is not satisfiable
with respect to €, a1, sync)-

Let 6, , be the conjunction of §, through é,. A similar argument to that above
can now be used to show that 9, . is satisfiable with respect to €, snc) iff A accepts
input x. We encode different paths in the computation tree, which are ~,
equivalent as long as the computations agree. A slight modification, along the lines
sketched in Lemma 3.4, suffices to deal with €, . uis)- We simply add a new first
state to every run in which the global states is the same. We leave details to the
reader. Finally, to deal with KB,,,,, we again replace OJ, O, and ¢ by VO, VO,
and vO. |

Observe that the formula ¢, , (and thus ¢ ,) does not have any occurrences of
K, or K,. Thus, the formula needed to encode TMs (resp. ATMs) that run in space
ex(1, |x|) involves only K,, and not K,. This gives us the following immediate
corollary to the preceding theorem.

COROLLARY 4.3. Any algorithm that decides whether the KL, (resp. KB )
SJormula ¢ is valid must have the following complexity for infinitely many formulas ¢
with respect to the following classes of interpreted systems:

L (g(nf,nl‘sync)’ (g(nl,syncn (g(nl.syncvuis)’ (g‘(nf,nl.sync.uis): space ex(l, c I(pl) for some
constant ¢ >0 (i.e., exponential space)

2. Btsyner A Biog sync.uis): time €x(2, ¢ |@|) for some constant ¢>0 (ie.,
double-exponential time).

Proof. The only cases that are not immediate from the previous proof are
Gt sync.uisy AN Bap ni sync.uis) (Which are actually the same case, as observed in
Proposition 3.9). This case follows from the observation that the standard trick for
dealing with a unique initial state—that of adding a new initial state to each
run—now works. (It does not work if we have many agents since then adding the
initial state imposes extra constraints on the system.) We leave details to the
reader. |

Remarks. 1. Sistla and German [SG] have independently proved
EXPSPACE-completeness for their logic IPTL, which is essentially the same as
KL, interpreted over interpreted systems in %, nf ync)-

2. We can avoid the use of the until operator in this proof, using only the O
and [J operators, by appropriately encoding a formula of the form ¢ U . The idea
is to introduce a new primitive proposition ¢ to encode where ¢ Uy is true, and
adding the conjuncts O(g= <) and O(g<=y¢ v (¢ A Oq)). We leave it to the
reader to check that this works.

Again, in the presence of no forgetting, it is easy to drop the assumption that
time is synchronous.
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PROPOSITION 4.4. For any formula @ in KL, (resp. KB,), m>2, there is a
formula sync,, such that ad(sync,)=ad(¢), |sync,| < c || for some constant ¢ >0,
and ¢ is satisfiable with respect to € sync) (resp. Gatntsyncy>  Elat,sync,uis)) iff
@ A sync,, is satisfiable with respect to Gary (resp. Gt nys Ciotuisy)-

Proof. The details are essentially the same as those of Proposition 3.5, except
that now we cannot use C, and we must be careful in terms of the length and the
alternation depth of sync,. The idea is to replace C by the appropriate number of
alternation of K’s. Given g, let tick be a primitive proposition not appearing in ¢.
We define sync, for subformulas of y by induction on the structure of Y as

» For a primitive proposition p, let sync, = true
* SYNCy . 4 = SYAC yy = SYRCy A SYRCy,
s Sync_, =Synco, =Syncy

« syncg,, = K;O((tick = K, tick) A (~ tick = K tick) A (tick = O ~ tick) A
(~tick = Otick) A syncy).

The proof that this works is similar to that of Proposition 3.5. Of course, sync,
does not force the whole system to be synchronous, but only those runs relevant to
our argument. But this clearly suffices for our purposes. We leave details to the
reader. |}

As an immediate corollary we get

COROLLARY 4.5. Any algorithm for checking if the KL, (resp. KB,,,) formula ¢
is valid must have the following complexity for infinitely many formulas ¢ with
l respect to the following classes of interpreted systems:

1. Suimy: space ex(ad(e), c |@|) for some constant ¢>0 (and ex(1, clo|) if
m=1)

2. Gy Coruisy: time ex(ad(p) + 1, clol) for some constant c>0 (and
ex(2, ¢ lol) f m=1).

We can again avoid the use of the nexttime operator in this proof. See the
Appendix for details.

We next consider the complexity of the validity problem for €, and €., .is)- We
can combine the ideas of Theorem 3.8 and Theorem 4.2 to get:

THEOREM 4.6. Any algorithm that decides whether the KL, (resp. KB,,)
formula ¢ is valid with respect 10 €y, (resp. € uisy) must take space ex(ad(e), c l@|)
for some ¢ >0 and infinitely many formulas ¢.

Proof. We modify the construction of the yardsticks ¢, , by adding the clause

! nonrep = K,(nonrep) to the construction of ¢, ,. (Of course, this means the clause
nonrep = K,(nonrep) is now added to the definition of ¢ ,, and these clauses will

be nested in the definition of ¢, , for k>1). We also add the conjunct sync,,, from
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Proposition 4.4. This forces weak synchrony in the nonrepeating part of the runs,
so that in the nonrepeating part, (the modified) ¢, , forces p, to act like a
yardstick.

Finally, we modify the definition of the formula y; in the construction of ¢, of
Theorem 4.2 to

(nonrep)U( \V pl.>.

cel x{s;}

This forces the run to be nonrepeating until we reach an accepting state. Thus, in
the part of the run that is relevant to the lower bound proof, the yardstick
construction works right. This gives us the desired lower bound. |

As a corollary to the proof, we again get:

COROLLARY 4.7. Any algorithm that decides whether the KL, (resp. KB )
Jormula ¢ is valid with respect to €, (resp. €. 4is)) takes space ex(1, ¢ |@|) for some
constant ¢ > 0 and infinitely many formulas ¢ (i.e., exponential space).

We remark that in the last section we already discussed the complexity of KL,
and KB, in €. i) and €c a4 (recall that the results here depended on the
proofs of Ladner and Reif), so all that remains is to discuss the cases where we do
not assume no learning and no forgetting. Just as in the case of CKL,,, and
CKB,,,,, the complexity goes down dramatically in these cases. Note that the next
theorem is the only one in which there is a difference between branching time and
linear time.

THEOREM 4.8. 1. The validity problem for KL,, m=1, with respect to €,
Csync)> Bisync,uis)> and Gy is PSPACE-hard.

2. The validity problem for KB,,,, m> 1, with respect to €, € sync)> Glsync, uis)s
and €,y is EXPTIME-hard.

Proof. The result follows immediately from the fact that even without
knowledge operators, linear time logic is PSPACE-hard [HR, SC] while branching
time logic is EXPTIME-hard [EH1]. It is interesting that the difference here again
comes between being able to encode deterministic TMs that run in polynomial
space and alternating TMs that run in polynomial space. ||

5. CONCLUSIONS

We have carefully examined the complexity of reasoning about knowledge and
time, indicating how different constraints on the system and different choices of
modalities may affect the complexity. We have completely characterized the com-
plexity of the validity problem for a number of combinations of parameters of
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interest. We have presented the general framework and lower bound proofs here;
the upper bound proofs will appear in a sequel to this paper.

The most significant conclusion we can draw from these results is that by making
the assumption that processors do not forget, we greatly complicate the process of
reasoning about knowledge and time. While no forgetting is obviously an
unrealistic assumption, it is an assumption that is often implicitly made in proofs
and specifications. For example, we do not usually say explicitly that the processor
still remembers the initial value of the variable x. However, this assumption is often
unnecessary. In fact, in almost all cases where no forgetting is implicitly assumed,
the assumption can in fact be dropped (only the values of a few variables, which
take on only finitely many possible values, really need to be remembered). Our
results suggest that, if possible, it may be worthwhile not to make the assumption
of no forgetting. (This approach may have the added advantage of making clear
exactly how much storage is needed for the algorithm.)

As already mentioned in [HM1], one use that can be made of such a formal
model of knowledge and time is in specifying protocols. Once we can specify
protocols, we can perhaps use techniques similar to those of [EC, MW] to syn-
thesize a protocol from its specifications. If we use a logic like CKL,, as a
specification language, the observations above suggest that we should not assume
no forgetting unless it is absolutely necessary; instead, we should explicitly encode
into the specification formula the facts that are not forgotten.

Another line of research inspired in part by the considerations of this paper is
that of describing what states of knowledge are attainable in distributed systems.
We have given a somewhat abstract notion of model here and have not concerned
ourselves, for example, with the mechanics of the transition between global states. If
we consider concrete distributed systems, we may want to put restrictions on the
possible transitions that can occur or on the possible initial states that arise. As is
shown in [FHV2], such restrictions can have a critical impact on the properties of
knowledge. Even if we project away time, and only consider formulas involving
K/s, the S5 axioms for knowledge discussed in the previous section, while still
sound, may not be complete. Again assumptions such as no forgetting can make a
big difference. We refer the interested reader to [FHV2] for more details.

While we have done a relatively exhaustive analysis of the possibilities here, there
is perhaps one further complexity issue that might be investigated: that of taking
the only temporal modalities to be O3 and its dual < in the linear time case (and
v[1, 30, and their duals in the branching time case). In this case we do not have
either the nexttime operator or the until operator in the language. Sistla and Clarke
have shown that the validity problem for linear time temporal logic with just []
and ¢ is NP-complete [SC]. (See [SZ] for a further discusion of the advantages
of using just the [0 and < operators.) We conjecture that even with knowledge
operators in the language, the complexity still becomes much simpler without O
and U. However, since this gives us yet another ninety-six logics to consider, we
leave the question for others to look into.
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APPENDIX: REMOVING THE NEXTTIME OPERATOR

In this appendix we show how to avoid the use of the nexttime operator in our
lower bound results. We first focus on the case with common knowledge and then
show how to modify the proof to deal with KL, and KB,,. Formally, we prove
the following result.

THEOREM A.l.  For all formulas @ in CKL,, (resp. CKB,,,)), there is a formula
@y not involving the nexttime operator such that @ is satisfiable with respect to
€ ut.sync) (resp. € nt, 01, sync)» €int,sync.uis)) if and only if @ Is satisfiable with respect to

(g(nf) (resp' %}nf,nl)’ (g(nf,uis))'

Proof. Assume ¢ is in C KL, (the modifications for CKB,,, are
straightforward and left to the reader). Intuitively, the idea is to use a new primitive
proposition g (not appearing in ¢) to mark off sections of a run where the truth
values of all formulas are constant. These g-sections correspond to “points.”
Corresponding to a subformula of ¢ of the form Oy, we have the translated
formula that says that  is true at the next g-section,

More formally, we proceed as follows. Given a formula ¥, let ¥, be the formula
that results by recursively replacing all subformulas in Y of the form Oy’ by

(g=qU(~gA¥}))A(~g=~qU(qry))).

This formula captures the idea that ¥, is true in the next g-section. Let y < ¢
denote that ¥ is a subformula of ¢. Let ¢, be

@y A CU(g=Cgq)

x/\.j,sq, CO((g A l/’V:'//VU“‘q) A(~gn Y=y, Ug))
A CO(Og A O ~gq).

Note that the second conjunct says that the truth value of g is common knowledge
throughout the system (it is easy to see that CO(g= Cq) implies CO(~qg=
C~ g)), the third conjunct says that the truth value of ¥ for all subformulas y of ¢
is constant until the truth value of g changes, and the fourth conjunct says that the
truth value of ¢ at any point does eventually change.

We now show that ¢ is satisfiable with Tespect t0 Bnpoync) (resp. €lat, o, sync)s
iat,sync. uis)) 1T @ is satisfiable with respect to €., (resp. Garns Gt uis))-

Suppose that ¢ is satisfiable in some interpreted system M in ot sync) (rESP.
Blnt.alsync)s Bt sync.uis))- Let M, be identical to M except that the truth value of ¢
changes at consecutive points along every run in M. Clearly M € Gty (resp. Gng oy
©(nt,uis))- The last three conjuncts of ¢, are then trivially satisfied at every point in
M. A straightforward induction on the structure of formulas shows that for all
subformulas ¢ of ¢, we have (M, r,n) =y iff (M, r,n) = ¥,. Thus, ¢, is
satisfiable in M.
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For the converse, suppose that ¢ is satisfiable in some interpreted system
M= (R, ) in Gup (resp. Cngni)» Caruisy)- Suppose that (M, ro, ny) E ¢y. Let R
consist of all the runs in R with points reachable from (r,, n,). For every run rekR,
let (', n.) be the first point in 7’ reachable from (ry, ny). We can now define the kth
g-section of r' in a straightforward way. For example, if (M, r',n,) = q, then the
first g-section consists of all the points (r',n,), .., (r',n,.+n) such that
(M, r',n,+i)l=qgfor0<i<n, and (M, r',n,.+n+1) | ~q. The second g-section
consists of all the points (#, n, +n+ 1), ., (©, n. +n + k) such that
(M,r',n,+n+j)=~q for 1<j<k and (M,r',n,+n+k+1) l=¢g. We omit a
formal inductive definition here. The third conjunct of ¢, guarantees that for all
subformulas ¥ of ¢, the truth values of ¢, will be constant in every g-section of r'.
The fourth conjunct guarantees that every run in R’ has infinitely many g-sections.
Using the second conjunct we can now show that the g-sections respect the ~
equivalence relations in the following sense:

LEMMA A2. Suppose r,, r,€R’, (ry,n,) ~;(ry,ny), and (ry, n,) is in the kth
g-section of r,, then (ry, n,) is in the kth g-section of r,. Moreover, if (ry, n,) is the
first point in the kth g-section of ry, then (ry, n;) ~; (rs, ns), where (ry, n3) is the first
point in the kth g-section of r,.

_Proof. We proceed by induction on k. Without loss of generality we can assume
that (M, r,, n,) = q. The case k=0 breaks down into two subcases. First suppose
that (r,, n,) is the first point in the Oth g-section of r,. Let (r,, n3) be the first point
in the Oth g-section of r,. Clearly n, <n,, so, by our assumption of no forgetting, it
follows that for some point n,<n,, we must have (r,, ny) ~;(r,, n;). But, by
assumption, (r,, n,) is the first point reachable in r, reachable from (ro; n,), so we
must have n,=n,. Thus, (r,n,)~,(ry,n;). By transitivity, we also have
(ry, n3) ~,; (r3, n3), so, from the assumption that processors do not forget, we get
(ry, n') ~; (ry, ny) for all n” with ny <n’ <n,. Since the truth value of ¢ is common
knowledge, ¢ must be true at (r,, n3), (r3, n,), and at all points in between. Thus,
(r5, n3) and (r,, n,) must be in the same g-section. In particular, it follows that
(r5, n,) is in the Oth g-section.

Note that from the observations in the previous paragraph it follows that no
point in the kth g-section of r, can be indistinguishable by i from a point before the
first point in the Oth g-section of r,. (To see this, note that if not, we can use the
assumption of no forgetting to show that the first point in the Oth g-section of r, is
indistinguishable from a point previous to the first point in the first g-section of r,.
This would mean that a point previous to the first point in the first g-section of r, is
reachable from (ro, n,), and this is a contradiction.) A similar remark holds when
we reverse the roles of r; and r,.

Now consider the case where (r;, n;) is not necessarily the first point in the Oth
g-section. If (r,, n,) is not in the Oth g-section of r,, there is a point (r,, n,) between
the first point in the Oth g-section of r, and (r,, n,) such that (M, r,, n,) = ~q. By
the assumption of no forgetting, there must be a point (r(, n5) with ns<n, such
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that (r,, ns) ~,(r,, n,). By the observations of the previous paragraph, (r,, ns)
must be in the Oth g-section of r,. Thus, (M, ry, ns) = g. But this contradicts the
assumption that ¢ is common knowledge. Thus, it must be the case that (ra, ny) is
in the Oth g-section of r,.

For k >0 the proof is similar. Again, we first suppose (r,, n,) is the first point in
the kth g-section of r,. It must be the case that (r2, ny) is in the /th g-section for
>k (if we had / <k it would contradict the induction hypothesis). Thus, if (r,, n;)
is the first point in the kth g-section of r, we must have that ny;<n,. By the
assumption of no forgetting, it follows that there is some point (r,, n,) such that
(ry,ng) ~,(ry, ny) and n,<n,. By the induction hypothesis, it must be the case
that n,=n, (since a point cannot simultaneously be in two different g-sections).
The same arguments as above can now be used to show that (ry, ny) and (r,, n,)
are in the same g-section. The case where (r,, n,) is not the first point in the kth
g-section is similar to the case k = 0. We leave details to the reader. [ |

We now build an interpreted system where ¢ is satisfied by collapsing all
g-sections to single points. Given a run r e R, let fi (r) be the run such that f(r)(n) is
the global state at the first point in the nth g-section of r. Define n’ on points in
S(R')xN so that n'( f(r), n)=n(r, k), where (r, k) is the first point in the nth
g-section of r. Let M’ = ( f(R’), n’'). From Lemma A.2, it easily follows that f(R’) is
a synchronous system where processors do not forget. Moreover, if processors do
not learn in R, then they do no learn in f(R) either. If R has a unique initial state,
we can easily add one to f(R) as described in the proof of Lemma 3.4.

We leave it to the reader to check that for all subformulas ¥ of ¢ and all runs
reR', we have (M', f(r), n) = ¢ iff (M, r, k) = Y v, where (r, k) is the first point in
the nth g-section of r. (Here we use the third conjunct of ¢, which says that the
truth value of Y, is constant over every g-section for all subformulas Y of ). Thus,

(M, f(r), 0) = 0. 1

Using this result we can get the []! lower bound for Cony> Cnr,ny and € i) in
the language CKL,,,, (resp. CKB,,,,), m > 2, even without the nexttime operator in
the language. (Indeed, we can also use the ideas of the proof to eliminate the
nexttime operator in favor of the until operator even in synchronous systems,
although we omit details here.) We remark that although we do not know how to
replace occurrences of O by until, when we restrict attention to @ o1y, the ideas in
the proof of Theorem A.1 do apply to the nonrepeating part, so we can replace the
use of the nexttime operator in Theorem 3.8. Thus, the [T} lower bound for G
also holds even if we do not have the nexttime operator in the language.

We next turn our attention to the languages KL, and KB,

THEOREM A.3. For all formulas ¢ in KL, (resp. KBy,,), there is a formula "y
not involving the nexttime operator such that ad(gp,)= ad(o), o, <clo| for some
constant ¢>0, and ¢ is satisfiable with respect to Bt sync) (resp. @ nt,nl, sync)»
Cint.sync.uisy) if and only if @, is satisfiable with respect 10 Gy (resp. € g oys Cint uis))-
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Proof. The idea is to replace the use of C in ¢, by enough alternation Ks to
give us the result we need. We also have to be a little careful to make sure that
|o.] <c|p| for some constant ¢>0. In order to do this, we introduce a new
primitive proposition g,, for each subformula ¥ of ¢. We then inductively define the
formula ¢, for each subformula ¥ of ¢; ¢, will be g, A ¢,. Roughly speaking, ¥,
says that the truth value of ¢, is constant along g-sections, and defines the truth
value of ¢, in terms of that of g,. for subformulas y’ of . Let const(q,) be an
abbreviation for the formula

O(gArqu=q,U~q) A (~q Aqy= ~q, Uq)).

This formula essentially corresponds to the third conjunct in ¢.
We now construct i, inductively as follows:

* p,=const(g,) A O(Og A O ~¢q) for a primitive proposition p

* (~y)=const(g.y) A O(g.y=> ~qy) A Y,

c WAY)=const(gy ., )A DGy .y quAngu) Ay, Ay,

* (Oy),=const(goy) A O(((goy A Q) <=>qU(~q A qy)) A
oy A ~@)=>~qU(gr g ) A Y,

e U'/"):=°°n5t(q.pu¢,') A D(‘I.puw'°‘1w Ugu)a, Ay,

¢ (Kil/’)rzconSt(qK,-w) A DHgxy <> Kiqy) A Ky, A K;O(q<>K,q).

It is easy to see that || <c |¢| for some ¢ >0 and that ad(y,) = ad(y). Finaily,
we take ¢, =q, A @,. We leave it to the reader to check that ¢, has all the required
properties. The proof parallels that for ¢,. |

We remark that using these ideas we can also modify the Ladner and Reif proof
that we used as the basis of our undecidability results for the classes %, and
% (m.uis) and the languages KL,,,,, KB,,,, m =2, to eliminate the use of the nexttime
operator. We omit the details here.
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