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Abstract

This paper starts with the project of finding a large subclass of NP which exhibits
a dichotomy. The approach is to find this subclass via syntactic prescriptions. While,
the paper does not achieve this goal, it does isolate a class (of problems specified by)
“Monotone Monadic SNP without inequality” which may exhibit this dichotomy. We
justify the placing of all these restrictions by showing that classes obtained by using
only two of the above three restrictions do not show this dichotomy, essentially using
Ladner’s Theorem. We then explore the structure of this class. We show all problems
in this class reduce to the seemingly simpler class CSP. We divide CSP into subclasses
and try to unify the collection of all known polytime algorithms for CSP problems and
extract properties that make CSP problems NP-hard. This is where the second part
of the title — “a study through Datalog and group theory” — comes in. We present
conjectures about this class which would end in showing the dichotomy.

1 Introduction

We start with a basic overview of the framework explored in this paper; for an
accompanying pictorial description, see Figure 1. A more detailed presentation of
the work and its relationship to earlier work is given in the next section.

It is well-known that if P#£NP, then NP contains problems that are neither solvable
in polynomial time nor NP-complete. We explore the following question: What is the
most general subclass of NP that we can define that may not contain such in-between
problems? We investigate this question by means of syntactic restrictions. The logic
class SNP is contained in NP, and can be restricted with three further requirements:
monotonicity, monadicity, and no inequalities. We show that if any two out of these
three conditions are imposed on SNP, then the resulting subclasses of SNP are still
general enough to contain a polynomially equivalent problem for every problem in NP,
and in particular for the in-between problems in NP. We thus address the question by
imposing all three restrictions simultaneously: The resulting subclass of SNP is called
MMSNP.
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We examine MMSNP, and observe that it contains a family of interesting problems.
A constraint-satisfaction problem is given by a pair I (the instance) and T (the
template) of finite relational structures over the same vocabulary. The problem is
satisfied if there is a homomorphism from I to T. It is well-known that the constraint-
satisfaction problem is NP-complete. In practice, however, one often encounters the
situation where the template T is fixed and it is only the instance I that varies. We
define CSP to be the class of constraint-satisfaction problems with respect to fixed
templates; that is, for every template T', the class CSP contains the problem Pr that
asks for an instance I over the same vocabulary as T' whether there is a homomorphism
from I to T'. The class CSP is contained in MMSNP. We show that CSP is in a sense
the same as all of MMSNP: Every problem in MMSNP has an equivalent problem in
CSP under randomized polynomial time reductions.

The class CSP in turn has some interesting subclasses: the graph-retract, digraph-
homomorphism, and partial order-retract problems. We show that in fact every problem
in CSP has a polynomially equivalent problem in each of these three subclasses, so that
all three of them are as general as CSP. Some special cases were previously investigated:
For CSP with a Boolean template it was shown that there are three polynomially
solvable problems, namely Horn clauses, 25AT, and linear equations modulo 2, while
the remaining problems are NP-complete; For the graph-homomorphism problem, it
was shown that bipartite graph templates are polynomially solvable and non-bipartite
graph templates are NP-complete. Could it then be that every problem in CSP is
either polynomially solvable or NP-complete?

Some representative problems that were previously observed as belonging to
CSP are k-satisfiability, k-colorability, and systems of linear equations modulo ¢; a
polynomially solvable problem that can be less obviously seen to belong to CSP is
labeled graph isomorphism. We notice here that at present, all known polynomially
solvable problems in CSP can be explained by a combination of Datalog and group
theory. More precisely, we define bounded-width problems as those that can be defined
by Datalog programs, and subgroup problems as those whose relations correspond to
subgroups or cosets of a given group; both subclasses are polynomially solvable. Two
decidable subclasses of the bounded-width case are the width 1 and the bounded strict
width problems; in fact the three polynomially solvable cases with a Boolean template
are width 1, strict width 2, and subgroup, respectively.

We finally observe that the only way we know how to show that a problem is not
bounded-width requires the problem to have a property that we call the ability to count,
once a problem has the ability to count, it seems that it must necessarily contain the
general subgroup problem for an abelian group as a special case; when a new type of
subset of a group, which we call nearsubgroup, is also allowed in a subgroup problem,
the resulting problem reduces to subgroup problems, at least for solvable groups; and
if an allowed non-subgroup subset is not a nearsubgroup, then the subgroup problem
becomes NP-complete. Does this sequence of observations lead to a classification of
the problems in CSP as polynomially solvable or NP-complete?

2 Preliminaries

A large class of problems in Al and other areas of computer science can be
viewed as constraint-satisfaction problems [9, 30, 36, 37, 38, 39, 41]. This includes
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problems in machine vision, belief maintenance, scheduling, temporal reasoning, type
reconstruction, graph theory, and satisfiability.

We start with some definitions. A vocabulary is a set V = {(R1,k1),..., (R, ke)}
of relation names and their arities. A relational structure over the vocabulary V
is a set S together with relations R; of arity k; on the set S. An instance of
constraint satisfaction is given by a pair I,T of finite relational structures over the
same vocabulary. The instance is satisfied if there is a homomorphism from I to T,
that is, there exists a mapping h such that for every tuple (z1,...,2;) € R; in I we
have (h(x1),...,h(zx)) € R; in T. Intuitively, the elements of I should be thought
of as variables and the elements of 1" should be thought of as possible values for the
variables. The tuples in the relations of I and 7T should be viewed as constraints on
the set of allowed assignments of values to variables. The set of allowed assignments
is nonempty iff there exists a homomorphism from I to 7. In what follows, we shall
use the homomorphism and variable-value views interchangeably in defining constraint
satisfaction problem.

It is well-known that the constraint-satisfaction problem is NP-complete. In
practice, however, one often encounters the situation where the structure 7' (which
we call the template) is fixed and it is only the structure I (which we call the instance)
that varies.

For example, the template of the 3SAT problem has domain {0, 1} and four ternary
relations Cp, C1,Co,Cs that contain all triples except for (0,0,0) in the case of Cy,
except for (1,0,0) in the case of Cy, except for (1,1,0) in the case of Co, and except for
(1,1,1) in the case of C5. The tuples in the instance describe the clauses of the problem.
For example, a constraint Cs(z,y, z) imposes a condition on the three variables z,y, z
that is equivalent to the clause TV 7y V z.

As a second example, the template of the 3-coloring problem is the graph Kj; i.e.,
it has domain {r,b, g} and a single binary relation E that holds for all pairs (x,y) from
the domain with x # y. The tuples in the instance describe the edges of the graph.
Thus, the variables x1,z9,..., 2, can be viewed as vertices to be colored with r,b, g,
and the constraints F(xz;,x;) can be viewed as describing the edges whose endpoints
must be colored differently. If we replace the template K3 by an arbitrary graph H,
we get the so-called H-coloring problem [20].

As a third example, given an integer ¢ > 2, the template of the linear equations
modulo ¢ problem has domain {0, 1,...,¢— 1}, a monadic constraint Z that holds only
for the element 0, and a ternary constraint C' that holds for the triples (z,y, z) with
x4+y+z=1 (mod q). It is easy to show that any other linear constraint on variables
modulo ¢ can be expressed by introducing a few auxiliary variables and using only the
Z and C constraints.

In this paper we consider constraint-satisfaction problems with respect to fixed
templates. We define CSP to be the class of such problems. It is easy to see that
CSP is contained in NP. We know that NP contains polynomially solvable problems
and NP-complete problems. We also know that if P#£NP, then there exist problems in
NP that are neither in P nor NP-complete [31]. The existence of such “intermediate”
problems is proved by a diagonalization argument. It seems, however, impossible to
carry this argument in CSP. This motivates our main question:

Dichotomy Question: Is every problem in CSP either in P or NP-complete?



Our question is supported by two previous investigations of constraint-satisfaction
problems that demonstrated dichotomies. Schaefer [44] showed that there are
essentially only three polynomially solvable constraint-satisfaction problems on the
set {0, 1}, namely, (0) 0-valid problems (problems where all-zeros is always a solution,
and similarly 1-valid problems); (1) Horn clauses (problems where every relation in the
template can be characterized by a conjunction of clauses with at most one positive
literal per clause, and similarly anti-Horn clauses, with at most one negative literal per
clause); (2) 2SAT (problems where every relation in the template can be characterized
by a conjunction of clauses with two literals per clause); (3) linear equations modulo
2 (problems where every relation in the template is the solution set of a system of
linear equations modulo 2). All constraint-satisfaction problems on {0, 1} that are not
in one of these classes are NP-complete. The NP-complete cases include one-in-three
SAT, where the template has a single relation containing precisely (1,0,0), (0,1,0), and
(0,0,1), and not-all-equal SAT, where the template has a single relation that contains
all triples except (0,0,0) and (1,1,1).

Hell and Nesettil [20] showed that the H-coloring problem is in P if H is bipartite
and NP-complete for H non-bipartite. Bang-Jensen and Hell [7] conjecture that this
result extends to the digraph case when every vertex in the template has at least one
incoming and at least one incoming and at least one outgoing edge: if the template is
equivalent to a cycle then the problem is polynomially solvable, otherwise NP-complete.

The issue that we address first is the robustness of the class CSP. We investigate
the dichotomy question in the context of the complexity class SNP, which is a subclass
of NP that is defined by means of a logical syntax [28, 40], and which, in particular,
includes CSP. We show that SNP is too general a class to address the dichotomy
question, because every problem in NP has an equivalent problem in SNP under
polynomial time reductions. Here two problems are said to be equivalent under
polynomial time reductions if there are polynomial time reductions from one to the
other, in both directions. We then impose three syntactic restrictions on SNP, namely
monotonicity, monadicity, and no inequalities, since CSP is contained in SNP with
these restrictions imposed. It turns out that if only two of these three restrictions
are imposed, then the resulting subclass of SNP is still general enough to contain an
equivalent problem for every problem in NP.

When all three restrictions are imposed, we obtain the class MMSNP: monotone
monadic SNP without inequality. This class is still more general than CSP, because
it strictly contains CSP. We prove, however, that every problem in MMSNP has an
equivalent problem in CSP, this time under randomized polynomial time reductions
(we believe that it may be possible to derandomize the reduction).

Thus, CSP is essentially the same as the seemingly more general class MMSNP. In
the other direction, there are three special cases of CSP, namely, the graph-retract, the
digraph-homomorphism, and the partial-order-retract problems, that turn out to be as
hard as all of CSP, again under polynomial time reductions. The equivalence between
CSP and classes both above and below it seems to indicate that CSP is a fairly robust
class.

We then try to solve the dichotomy question by considering a more practical
question:

Primary Classification Question: Which problems in CSP are in P and which are
NP-complete?



In order to try to answer this question, we consider again Schaefer’s results for
constraint-satisfaction problems on the set {0, 1} [44]. Schaefer showed that there are
only three such polynomially solvable constraint-satisfaction problems. We introduce
two subclasses of CSP, namely bounded-width CSP and subgroup CSP, respectively, as
generalizations of Schaefer’s three cases. Bounded-width problems are problems that
can be solved by considering only bounded sets of variables, which we formalize in terms
of the language Datalog [46]. Both Horn clauses and 2SAT fall into this subclass; we
show that linear equations modulo 2 do not. Subgroup problems are group-theoretic
problems where the constraints are expressed as subgroup constraints. Linear equations
modulo 2 fall into this subclass. Not only are these subclasses solvable in polynomial
time, but, at present, all known polynomially solvable constraint-satisfaction problems
can be explained in terms of these conditions.

Assuming that these conditions are indeed the only possible causes for polynomial
solvability for problems in CSP, this poses a new classification problem:

Secondary Classification Question: Which problems in CSP are bounded-width
problems and which are subgroup problems?

The main issue here is that it is not clear whether membership in these subclasses
of CSP is decidable.

Our results provide some progress in understanding the bounded-width and
subgroup subclasses. For example, for the bounded-width problems, our results provide
a classification for the 1-width problems in CSP (these are the problems that can be
solved by monadic Datalog programs). We also identify a property of problems, which
we call the ability to count. We prove that this property implies that the problem
cannot be solved by means of Datalog. Once a constraint-satisfaction problem has the
ability to count, it is still possible in many cases to solve it by group-theoretic means.

While all known polynomially solvable problems in CSP can be reduced to the
bounded-width and group-theoretic subclasses, not all such problems belong to those
classes from the start. For example, we show that under some conditions non-subgroup
problems can be reduced to the subgroup subclass. These conditions are stated in terms
of the new notion of nearsubgroup, and delineating the boundary between polynomially
solvable and NP-complete group-theoretical problems seems to require certain progress
in finite-group theory.

The remainder of the paper is organized as follows. Section 3 introduces the logic
class MMSNP as the largest subclass, in some sense, of SNP, that is not computationally
equivalent to all of NP. Section 4 introduces the class CSP as a subclass of MMSNP
which is essentially equivalent to MMSNP. Section 5 studies three subclasses of CSP, the
graph retract, digraph homomorphism, and partial order retract problems, essentially
equivalent to all of CSP. Section 6 considers classes of problems in CSP that are
polynomially solvable. Section 6.1 considers the bounded width problems which are
those that can be solved by means of Datalog, and their relationship to two-player
games. Sections 6.1.1 and 6.1.2 examine two special subclasses of the bounded width
case for which membership is decidable, namely the width 1 case with its connection
to the notion of tree duality, and the strict width [ case with its connection to the
Helly property. Section 6.2 examines which problems are not of bounded width via a
notion called the ability to count. Section 6.3 considers the group-theoretic case, and
introduces the notion of nearsubgroup in an attempt to understand the boundary
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between tractability and intractability. Section 7 explores further directions for a
possible complete classification.

3 Monotone Monadic SNP

The class SNP [28, 40] (see also [11]) conmsists of all problems expressible by an
existential second-order sentence with a universal first-order part, namely, by a sentence
of the form (35")(Vx)®(x, S,S"), where ® is a first-order quantifier-free formula. That
is, ® is a formula built from relations in S and S’ applied to variables in x, by means
of conjunctions, disjunctions, and negation. Intuitively, the problem is to decide, for
an input structure S, whether there exists a structure S’ on the same domain such
that for all values in this domain for the variables in x it is true that ®(x, S, S”") holds.
We will refer to the relations of S as input relations, while the relations of S’ will
be referred to as existential relations. The 3SAT problem is an example of an SNP
problem: The input structure S consists of four ternary relations Cy, C1, Cs, C3, on the
domain {0, 1}, where C; corresponds to a clause on three variables with the first i of
them negated. The existential structure S’ is a single monadic relation T' describing
a truth assignment. The condition that must be satisfied states that for all =1, zs, x3,
if Cy(z1,x2,23) then T(x1) or T(x2) or T(x3), and similarly for the remaining C; by
negating T'(x;) if j < i. We are interested in the following question:

Which subclasses of NP have the same computational power as all of NP?

That is, which subclasses of NP are such that for every problem in NP there is
a problem in the subclass equivalent to it under polynomial time reductions. More
precisely, we say that two problems A and B are equivalent under polynomial time
reductions if there is a polynomial time reduction from A to B, as well as a polynomial
time reduction from B to A. It turns out that every problem in NP is equivalent to a
problem in SNP under polynomial time reductions. This means that for every problem
A in NP, there is a problem B in SNP such that there is a polynomial time reduction
from A to B, as well as a polynomial time reduction from B to A. In fact, we now
show that this is the case even for restrictions of SNP. We start by assuming that the
equality or inequality relations are not allowed in the first order formula, only relations
from the input structure S or the existential structure S’. For monotone SNP without
inequalities, we require that all occurrences of an input relation C; in ® have the same
polarity (the polarity of a relation is positive if it is contained in an even number of
subformulas with a negation applied to it, and it is negative otherwise); by convention,
we assume that this polarity is negative, so that the C; can be interpreted as constraints,
in the sense that imposing C; on more elements of the input structure can only make
the instance “less satisfiable”. Note that 3SAT as described above has this property.
For monadic SNP without inequalities, we require that the existential structure S’
consist of monadic relations only. This is again the case for 3SAT described above. For
monotone monadic SNP with inequality, we assume that the language contains also the
equality relation, so both equalities and inequalities are allowed in ®. (If we consider
that equalities and inequalities appear with negative polarity, then only inequalities
give more expressive power, since a statement of the form ‘if = y then ®(z,y)’ can
be replaced by ‘®(z,x)’.)



We have thus taken the class SNP, and we are considering three possible syntactic
restrictions, namely monotonicity, monadicity, and no inequalities. We shall later be
especially interested in SNP with all three syntactic restrictions imposed. However,
for now, we are only considering the cases where only two of these three syntactic
restrictions are simultaneously imposed.

Theorem 1 FEvery problem in NP has an equivalent (under polynomial time reduc-
tions) problem in monotone monadic SNP with inequality.

Proof. Hillebrand, Kanellakis, Mairson and Vardi [26] showed that monadic Datalog
with inequality (but without negation) can verify a polynomial time encoding of
a Turing machine computation; the machine can be nondeterministic. A Datalog
program is a formula ® that consists of a conjunction of formulas of the form
Ro(x0) < Ri(x1) A -+ A Ri(xk), where the x; may share variables. The relation
Ry cannot be an input relation, and monadicity here means that Ry, as a relation that
is not an input relation, must be monadic or of arity zero; furthermore an R; may be
an inequality relation. There is a particular Ry of arity zero that must be derived by
the program in order for the program to accept its input; this means that the input
is rejected by the Datalog program if (3R)(¥x)(®(R,S,x) A =Rg). Notice that this
formula @’ is a monotone monadic SNP with inequality formula. Here S describes the
computation of a nondeterministic Turing machine, including the input, the description
of the movement of the head on the tape of the machine, and the states of the machine
and cell values used during the computation. We would now like to assume that the
computation of the machine is not known ahead of time; that is, only the input to the
machine is given, the movement of the head and the cell values are not known, and are
quantified existentially. Unfortunately, the description of the movement of the head
does not consist of monadic relations, and may depend on the input to the machine.
We avoid this difficulty by assuming that the Turing machine is oblivious, i.e., the
head traverses the space initially occupied by the input back and forth from one end
to the other, and accepts in exactly n* steps for some k. We can then assume that the
movement of the head is given as part of the input, since it must be independent of
the input for such an oblivious machine. Thus only the states of the machine and cell
values used during the computation must be quantified existentially, giving a monotone
monadic SNP with inequality formula that expresses whether the machine accepts a
given input. A particular computation is thus described by a choice of states and
cell values, which are described by monadic existential relations that are then used as
inputs to the Datalog program. The condition that must be satisfied is that if a state
is marked as being the (n*)th state (this is determined by a deterministic component
of the machine), then it must also be marked as being an accepting state (this depends
on the nondeterministic choice of computation). The monotone monadic SNP with
inequality formula will thus reject an instance if it does not describe an input followed
by the correct movement of the head for the subsequent oblivious computation, accept
the instance if the number of cells allowed for the computation is smaller than n*, and
otherwise accept precisely when the machine accepts. []

Theorem 2 FEvery problem in NP has an equivalent (under polynomial time reduc-
tions) problem in monadic SNP without inequality.



Proof. Since the existence of an equivalent problem in monotone monadic SNP with
inequality for every problem in NP was previously shown, it is sufficient to remove
inequalities at the cost of monotonicity.

To remove inequalities at the cost of monotonicity, introduce a new binary input
relation eq, augment the formula by a conjunct requiring eq to be an equivalence
relation with the property that if an input or existential monadic relation holds on
some elements, then it also holds when an element in an argument position is replaced
by an element related to it under eg; finally replace all occurrences of x # y by —eq(z, y).
Thus the formula no longer contains inequalities, but it contains an input relation that
appears with both positive and negative polarity, i.e., it is no longer monotone. The
formula is therefore a monadic SNP without inequality formula. []

Theorem 3 FEvery problem in NP has an equivalent (under polynomial time reduc-
tions) problem in monotone SNP without inequality.

Proof. Since the existence of an equivalent problem in monotone monadic SNP with
inequality for every problem in NP was previously shown, it is sufficient to remove
inequalities at the cost of monadicity.

To remove inequalities at the cost of monadicity, the intuition is that up to
equivalence, certain marked elements form a succ path with pred as its transitive
closure. Introduce a monadic input relation special, a binary input relation succ, a
monadic existential relation marked, a binary existential relation eq, and a binary
existential relation pred. Require now every special element to be marked, and every
element related to a marked element under succ (in either direction) to be marked.
Require that pred be transitive but not relate any element to itself, that two elements
related by succ be related by pred (in the same direction), that eq be an equivalence
relation, that any two special elements be related by eq, that pred be preserved under
the replacement of an element by an element related to it by eg, and that if two elements
are related by eq and if each has a related element under succ (in the same direction),
then these two other elements are also related by eq. Finally, restrict the original
formula to marked elements, replace x # y by —eq(z,y), and consider that a relation
holds on some elements if it is imposed on elements related to them by eq. Note that
on elements that are forced to be marked, the relations eq and pred can be defined in
at most one way, giving a succ path (up to egq, with pred as its transitive closure). []

JFrom these three theorems, by Ladner’s result [31] that if P#NP then there exist
problems in NP that are neither in P nor NP-complete, it follows that:

Theorem 4 If P # NP, then there are problems in each of monotone monadic
SNP with inequality, monadic SNP without inequality, and monotone SNP without
inequality, that are neither in P nor NP-complete.

We now consider the class MMSNP, which is monotone monadic SNP, without
inequality. That is, in MMSNP we impose all three restrictions simultaneously (instead
of just two at a time as in the three subclasses of SNP considered above). It seems
impossible to carry out Ladner’s diagonalization argument in MMSNP. Thus, the
dichotomy question from the introduction applies also to this class.

It will sometimes be convenient to use the following alternative definition for
extended MMSNP. If a relation, whether an input relation or an existentially quantified
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relation, appears with both positive and negative polarity, then it must be monadic.
We now show that every problem in extended MMSNP can be transformed into
a computationally equivalent problem in regular MMSNP. We can then remove all
existential relations that are not monadic, replacing them by ‘true’ if they appear
with positive polarity and by ‘false’ if they appear with negative polarity. To ensure
that every input monadic relation appears only with negative polarity, we replace all
occurrences of an input monadic p(x) with positive polarity by —p'(z), where p’ is a
new input monadic relation, require that —(p(z) A p'(x)) for all z, and then restrict
each universally quantified z to range over elements z satisfying p(z) V p/(z).

4 Constraint Satisfaction

Let S and T be two finite relational structures over the same vocabulary. A
homomorphism from S to T is a mapping from the elements of S to elements of T
such that all elements related by some relation C; in S map to elements related by C;
in T'. If T is the substructure of S obtained by considering only relations on a subset of
the elements of .S, and the homomorphism A from S to T is just the identity mapping
when restricted to T', then h is called a retraction, and T is called a retract of S. If
no proper restriction 7" of S is a retract of S, then S is a core, otherwise its core is a
retract T that is a core. It is easy to show that the core of a structure S is unique up
to isomorphism.

A constraint-satisfaction problem (or structure-homomorphism problem) will be
here a problem of the following form. Fix a finite relational structure T over some
vocabulary; T is called the template. An instance is a finite relational structure S
over the same vocabulary. The instance is satisfied if there is a homomorphism from
S to T. Such a homomorphism is called a solution. We define CSP to be the class
of constraint-satisfaction problems. We can assume that 7' is a core and include a
copy of T in the input structure S, so that the structure-homomorphism problem is a
structure-retract problem.

Remark: It is possible to define constraint satisfaction with respect to infinite
templates. For example, digraph acyclicity can be viewed as the question of whether a
given digraph can be homomorphically mapped to the transitive closure of an infinite
directed path. We will not consider infinite templates in this paper. If we allow infinite
structures 7', then the constraint-satisfaction problems are just the problems whose
complement is closed under homomorphisms, with the additional property that an
instance with satisfiable connected components is satisfiable. Note that all problems in
monotone SNP, without inequality, have a complement closed under homomorphisms.

It is easy to see that CSP is contained in MMSNP. Let T be a template. Then
there is a monadic monotone existential second-order sentence ¢ (without inequality)
that expresses the constraint-satisfaction problem defined by T'. For each element a
in the domain of the template T, we introduce an existentially quantified monadic
relation Tp; intuitively, T,(z) indicates that a variable x has been assigned value a by
the homomorphism. The sentence ¢ says that the sets T, are disjoint and that the
tuples of S satisfy the constraints given by 7. (It turns out that a single monadic 7" is
in fact sufficient to describe constraint-satisfaction problems in MMSNP.)

It can be shown that CSP is strictly contained in MMSNP. Nevertheless, as the
following two theorems show, in terms of the complexity of its problems, CSP is just
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as general as MMSNP.

We begin with a simple example of a monotone monadic SNP problem that is not
a constraint-satisfaction problem: testing whether a graph is triangle-free. If it were
a constraint-satisfaction problem, there would have to exist a triangle-free graph to
which one can map all triangle-free graphs by a homomorphism. This would require
the existence of a triangle-free graph containing as induced subgraphs all triangle-free
graphs such that all non-adjacent vertices are joined both by a path of length 2 and a
path of length 3 (since a homomorphism can add edges or collapse two vertices); there
are 22(") such graphs on n vertices, forcing T to grow exponentially in the size of S.
On the other hand, this monotone monadic SNP problem can be solved in polynomial
time, and is hence equivalent to a trivial constraint-satisfaction problem.

A more interesting example is the following: testing whether a graph can be colored
with two colors with no monochromatic triangle (it can easily be related to the triangle-
free problem to show that it is not a constraint-satisfaction problem). However, it can
be viewed as a special case of not-all-equal 3SAT, where each clause is viewed as a
triangle, and it is essentially equivalent to this NP-complete constraint-satisfaction
problem.

Theorem 5 Every problem in MMSNP is polynomially equivalent to a problem in
CSP. The equivalence is by a randomized Turing reduction from CSP to MMSNP and
by a deterministic Karp reduction from MMSNP to CSP.

Proof. In fact, we can use a Karp reduction if we only consider connected instances
of the constraint-satisfaction problem; disconnected instances require simply a solution
for each connected component. It may be that the construction can be derandomized
using quasi-random hypergraphs.

The general transformation from monotone monadic SNP to constraint satisfaction
problems is an adaptation of a randomized construction of Erdds [10] of graphs with
large girth and large chromatic number. Consider a monotone monadic SNP problem
that asks for a input structure S whether there exists a monadic structure S’ such that
for all x, ®(x,S,5"). We write ® in conjunctive normal form, or more precisely, as a
conjunction of negated conjunctions. We can assume that each negated conjunction
describes a biconnected component. For consider first the disconnected case, so that
we have a conjunct of the form —(A(x) A B(y)), where x and y are disjoint variable
sets. We can then introduce an existential zero-adic relation p, and write instead
(A(x) — p) A (B(y) — —p). The case where A and B share a single variable
z is treated similarly; we introduce an existential monadic relation ¢, and replace
—(A(x,2) AN B(y,z)) by (A(x,z) — q(z)) A (B(y,z) — —q(z)). If the conjunction
cannot be decomposed into either two disconnected parts, or two parts that share a
single articulation element z, we say that it describes a biconnected component. Before
carrying out this transformation, we assume for each negated conjunction that every
replacement of different variables by the same variable is also present as a negated
conjunction. For instance, if —A(x,y, z,t,u) is present, then so is —A(z,x, z, z, u).
This must be enforced beforehand, since biconnected components may no longer be
biconnected when distinct variables are collapsed. We also assume that if an input
relation R appears with all arguments equal, say as R(z,z,x), then it is the only input
relation in the negated conjunction; otherwise, we can introduce an existential monadic
p, replace such an occurrence of R by p(z), and add a new condition R(x,z,z) — p(x);
in other words, « is in this case an articulation element.
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The next transformation is the main step; we enforce that each negated conjunction
contains at most one input relation, and that the arguments of this input relation are
different variables. For each negated conjunction, introduce a relation R whose arity is
the number of distinct variables in the negated conjunction. Intuitively, this relation
stands for the conjunction C of all input relations appearing in the negated conjunction.
We replace the conjunction C by the single relation R; also, if the corresponding
conjunction C’ for some other negated conjunction is a sub-conjunction of C, then we
include the negated conjunction obtained by replacing C’ with the possibly longer C,
using new variables if necessary, and then replace C' by R. Here we are not considering
the case where it might be necessary to replace two arguments in R by the same
argument; this will be justified because such instantiations were handled beforehand.

We must argue that the new monotone monadic SNP problem of the special form is
equivalent to the original problem. Clearly every instance of the original problem can
be viewed as an instance of the new problem, simply by introducing a relation R on
distinct input elements whenever the conjunction C' that is represented by R is present
on them in the input instance.

On the other hand, the converse is not immediately true. If we replace each
occurrence of R by the appropriate conjunction C, then some additional occurrences
of R may be implicitly present. Consider, for example, the case where triangles
E(z,y) AN E(y,z) A E(z,z) have been replaced by a single ternary relation R(z,y, z).
Then an instance of the new problem containing R(z1,y1,x2), R(x2,y2,23) and
R(x3,ys, 1) also contains the triangle represented by R(x3,x2,x1), when each R is
replaced by the conjunction that it stands for.

To avoid such hidden occurrences of relations, we show that every instance of the
new problem involving the R relations can be transformed into an equivalent instance
of large girth; the girth is the length of the shortest cycle. Fix an integer k larger than
the number of conjuncts in any conjunction C' that was replaced by an R. We shall
ensure that for any choice of at most k occurrences of relations R; of arity r; in the
instance, the total number of elements mentioned by these k occurrences is at least
143 (r; — 1), so the girth is greater than k; this implies that such k occurrences define
an acyclic sub-structure, so any biconnected R’ implicitly present in the union of k
such occurrences must be entirely contained in one of the R;, and then the condition
stated by R’ was already stated for this R; as well.

The transformation that enforces large girth is as follows. Given an instance of
the new monotone monadic SNP problem on n elements, make N = n® copies of each
element, where s is a large constant. If a relation R of arity r was initially imposed
on some r elements, then it could a priori be imposed on N” choices of copies. Impose
R on each such choice with probability N'="*¢ where € is a small constant. We thus
expect to impose R on N1'T¢ copies. If R has arity » = 1, impose R on all copies of the
element.

Finally, remove all relations that participate in a cycle with at most & relations, i.e.,
minimal sets of relations R; of arity r; involving ¢ < >~(r; — 1) elements all together.
Now, given such a cycle, it must correspond to a cycle that existed before the copies
were made. The number of possible such short cycles is at most n® for some constant
a. Each such short cycle could occur in N* choices of copies. For each such choice,
the probability that it occurs is J[J N'~"it¢, so the expected number of occurrences
is noNtJ[ N1-rite < No/sthe — N€¢ and hence no more than twice this much with
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probability at least 1/2 by Markov’s inequality.

It is clear that if before making copies, the instance had a solution, then it will have
a solution after making copies as well: this new instance maps to the original instance
by a homomorphism, and the solution is obtained by making existential relations hold
for the copies precisely when they hold for the copied element. To obtain a converse,
suppose that the new instance has a solution. If we consider the N copies of a particular
element, if there are d existential monadic relations, then at least N/ 2¢ of the copies
agree on which existential monadic relations are true or false. If we select these copies,
for each of the n elements, then the expected number of copies of a relation R of arity
ris (N/24)" N1=7+¢ = N1*¢/b for some constant b, and hence the probability that the
number of copies is not even half this much is only eV /¢ for some constant ¢ by the
Chernoff bound, since the occurrences of copies are independent. The total number of
occurrences of relations R in the instance is n”, and the number of possible choices of
subsets of size N/ 2¢ for the copies of the elements involved is at most 2"V, and hence
the probability that some choice of subsets will involve only N'*€/2b copies of some
relation is at most n™2"Ne=N'"/ ¢, hence very small. Once N'*¢/2b copies are present,
the removal of 2N of them is insignificant, provided s is large enough and e is small
enough. Therefore any choice of values for monadic relations that appears on N/2% of
the copies will give a solution for the original problem.

This completes the proof that the modified monotone monadic SNP problem is
equivalent to the original problem, under randomized polynomial time reductions.
The new problem is very close to a constraint-satisfaction problem. In fact, it is a
constraint-satisfaction problem if there are no zero-ary existential relations: Construct
the structure T by introducing one element for each combination of truth assignments
for existential monadic relations on a single element, except for those combinations
explicitly forbidden by the formula; impose a relation R on all choices of elements
in T except for those combinations explicitly forbidden by the formula. To remove
the assumption that there are no existential zero-ary relations, do a case analysis
on the possible truth assignments for such relations, and make 7' the disjoint union
of the T; obtained in the different cases. The only difficulty here is that we must
ensure that a disconnected instance still maps to a single 7;, so we introduce a new
binary relation that holds on all pairs of elements from the same T;, and consider
only connected instances of the constraint-satisfaction problem. This concludes the
proof. As mentioned before, solving disconnected instances is equivalent to solving all
connected components of the constraint-satisfaction problem. []

Remark: To derandomize the construction would require, given constants k,d and
a structure T, to find a structure S that maps to T' by a homomorphism, with S of size
polynomial in 7', such that the girth of S is at least k and if a structure S’ is obtained by
selecting a fraction 27¢ of the inverse images of each element of 7' and the substructure
of S they induce, then S’ maps onto T, in the sense that every occurrence of a relation
in T is the image of an occurrence in S’. It would be of interest to carry this out for
graphs. In general, it is sufficient for fixed r, k to construct in time polynomial in n an
r-graph on N = n*("%) vertices of girth greater than k and such that any choice of r
disjoint sets of size N/n shares an r-edge. (In an r-graph G = (V, E) the r-edges E are
a collection of subsets of V' of size r.) The case of graphs is r = 2. The key question
seems to be whether the construction of Erdés can be derandomized, i.e., whether
given a fixed integer k, for integers mn, there is a deterministic algorithm running in
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time polynomial in n that produces a graph of size polynomial in n, chromatic number
at least n, and girth at least k.

The construction in the preceding reduction from monotone monadic SNP to
constraint-satisfaction problems can also be used to show the following result, which
will be proven useful later. The containment problem asks whether given two problems
A and B over the same vocabulary, every instance accepted by A is also accepted by
B.

Theorem 6 Containment is decidable for problems in extended MMSNP.

Proof. This problem becomes undecidable when the antecedent of the containment
is generalized to monotone binary SNP (using Datalog to encode Turing machines as
before). To decide whether A is contained in B for monotone monadic SNP problems,
first assume that A and B are written in the canonical form involving biconnected
components from the above proof. Also remove the existential quantifier in A (since it
is in the antecedent of an implication), so that A is now a universal formula which is
monotone except for monadic relations. Now, if B has an instance with no solution that
satisfies A, then making copies of elements of the instance as before, we can assume
that the only biconnected components that arise are those explicitly stated in the
conditions for B, so go through the forbidden biconnected components stated in A and
remove all negated conjunctions in B that mention them (since the stated condition will
never arise on instances satisfying A). Here we must assume that B stated explicitly
for each element mentioned in a negated conjunction which monadic relations are true
or false. Now we can assume that A holds, and we are left to decide whether B is a
tautology; this can be decided by considering the instance consisting of one element
for each possible combination of truth and falsity of monadic input relations, and then
imposing all other kinds of relations on all elements. []

5 Graphs, Digraphs, Partial Orders

We have seen that CSP has the same computational power as all of MMSNP. We ask
the following question:

Which subclasses of CSP have the same computational power as all of CSP?

The graph-retract problem is an example of a constraint-satisfaction problem. Fix
a graph H, and for an input graph G containing H as a subgraph, ask whether H is a
retract of G. (Note that when G and H are disjoint, we get the graph homomorphism
or H-coloring problem mentioned in the introduction [20].)

The digraph-homomorphism problem is another example of a constraint-satisfaction
problem: this is the case where the template is a digraph. For an oriented cycle (cycle
with all edges oriented in either direction), the length of the cycle is the absolute value
of the difference between edges oriented in one direction and edges oriented in the
opposite direction. A digraph is balanced if all its cycles have length zero, otherwise
it is unbalanced. The vertices of balanced digraphs are divided into levels, defined by
level(v) =level(u) + 1 if (u,v) is an edge of the digraph.

A partial order is a set with a reflexive antisymmetric transitive relation < defined
on it. If reflexive is replace by antireflexive, we have a strict partial order. We may
also consider homomorphism and retract problems for partial orders.
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Theorem 7 FEvery constraint-satisfaction problem is polynomially equivalent to a
bipartite graph-retract problem.

Proof.  First ensure that the structure 7' defining the problem in CSP is a core.
This ensures that each element in T is uniquely identifiable by looking at the structure
T, up to isomorphisms of T, i.e., we can include a copy of T in an instance S and
then assume that the elements of the copy of T" in S must map to the corresponding
elements of T'. Next, assume that 7' can be partitioned into disjoint sets A; so that
for each relation Cj, the possible values for each argument come from a single A;, and
the possible values for different arguments come from different A;; this can be ensured
by making copies A; of the set of elements of 7" and allowing an equality constraint
between copies of the same element in different A;. Now, the bipartite graph H consists
of a single vertex for each A; which is adjacent to vertices representing the elements of
Aj; a single vertex for each relation C; which is adjacent to vertices representing the
tuples satisfying C;; a bipartite graph joining the tuples coming from each C; to the
elements of the tuples from the A;; and two additional adjacent vertices, one of them
adjacent to all the elements of sets A;, and the other one adjacent to all the tuples for
conditions Cj.

To see that the resulting retract problem on graphs is equivalent to the given
constraint-satisfaction problem, observe in one direction that an instance of the
constraint-satisfaction problem can be transformed into an instance of the retract
problem, by requiring each element to range over the copy A; (just make it adjacent
to the vertex for A; in H), and then to impose a constraint C; of arity r on some
elements, create a vertex adjacent to the vertex for C;, and make this vertex adjacent
to r vertices, each of which is adjacent to the vertex for the appropriate A; (the r
values for j are distinct); then make sure that the value chosen in A; is the same as
the value for the intended element in A;, using an equality constraint. In the other
direction, an instance of the retract problem can be assumed to be bipartite, since H
is bipartite; furthermore, each vertex can be assumed to be adjacent to either an A; or
C;, since all other vertices can always be mapped to the two additional vertices that
were added for H at the end of the construction. Then each vertex adjacent to vertex
Aj can be viewed as an element ranging over A;, and each vertex adjacent to vertex
C; can be viewed as the application of C; on certain elements. []

Given a bipartite graph H, we say for two vertices x,y on the same side of H that x
dominates y if every neighbor of y is a neighbor of x. We say that H is domination-free
if it has no x # y such that x dominates y.

Theorem 8 Fvery constraint-satisfaction problem is polynomially equivalent to a
domination-free K3 3-free K3 3\{e}-free bipartite graph-retract problem.

Proof. We first show that every constraint-satisfaction problem is equivalent
to a K33-free K33\{e}-free bipartite graph-retract problem. We then show how
domination-freedom can in addition also be achieved.

We know that every constraint-satisfaction problem can be encoded as a bipartite
graph-retract problem. To achieve K3 3-freedom and K3 3\{e}-freedom, we encode the
bipartite graph-retract problem again as a bipartite graph-retract problem, by reusing
essentially the same reduction.

So we are given a bipartite graph-retract problem with template H = (S,T, E),
which we shall show polynomially equivalent to another bipartite graph-retract problem

15



with template H' = (U,V, F). We introduce five new elements r, s,t,s’,t', and define
HbyU={r}uSUT, V ={st,s,}UE, and F = ({r} x {,#'}UE))U (S x
{s,HU(T x{t,t'}) U{(u,e) :ue SUT,e € E,u € e}.

Let G = (S',T',FE’) be an instance for H. (We can assume G bipartite since it
otherwise cannot map to H, and that we know that S’ maps to S and T’ maps to T
because is connected to the subgraph H, any other component of G can be mapped
to a single edge of H.) We define an instance G' = (U’, V', F’) for H' by letting
U ={r}usS'uT V' ={s,t s t'} UFE' and defining F’ by letting r be adjacent to
all of E', s adjacent to all of ', t adjacent to all of T’, and each e € E’ adjacent to
the two vertices in S’ UT" it joins in G. It is immediate in the instance G’ for H' that
S” must map to S, T to T, and E’ to E with of e € E/ mapping to the element of E
joining the images of the two vertices incident on e in G, so the retractions mapping
G to H and those mapping G’ to H' correspond to each other.

In the other direction, let G = (U’,V', F’) be an instance for H'. Since st/
dominate s,t respectively, no element need ever be mapped to s,t, other than s,t
themselves. So we can require that the neighbors of s,f map to elements of S,T
respectively, and then remove s,¢ from H' and G’. We can then assume that every
element of U’ that is not required to map to S or T maps to r, since r is adjacent to
what remains of V. We can now remove r from H’ and G’. Now if a vertex in V' is
only adjacent to vertices that map to S we map it to s, if only to vertices that map
to T we map it to t/, and if to both it must map to E, thus defining a retract problem
instance for H.

It only remains to show that H' is K3 3-free and K3 3\{e}-free, and then to enforce
dominance-freedom. Suppose that H' contains Hy which is either a K33 or a K33\ {e}.
Then every vertex v in Hy must belong to the 3-side of a K3 5. This immediately gives
v # s,t because any pair of neighbors of s is only adjacent to s, s’, and similarly for ¢.
So we can remove s,t in looking for Hy. Two vertices in S, T respectively share only
one neighbor, so Hy involves at most one of S,T, and we can remove one them, say
T. Two vertices in S have only s’ as a common neighbor, so Hy can have at most one
vertex u in S. But this leaves only two vertices r, v in one side, so there is no Hy.

The last step enforces dominance-freedom. Suppose that z dominates y. Let Hy be
the graph consisting of an 8-cycle Cs = (1,2, 3,4,5,6,7,8), a 4-cycle Cy = (1/,2/,3,47),
and additional edges joining each i’ to both 7 and ¢ +4. We join Hy to H', with y =1’
as common vertex in H; and H’. This does not introduce any new dominated vertices,
and y is no longer dominated. Furthermore H; contains no K3z2. So we only need
to show that joining an Hp at a vertex y gives an equivalent retract problem. If an
instance for H' maps to H’, it also maps to H' with H; joined; if it maps to H' with
H, joined, since no vertices are forced to map to H; other than y, we can map all
of Hq to y and one of its neighbors in H’, so the instance maps to H’. In the other
direction, consider an instance for H’ with H; joined. Certain vertices are required
to map to specific vertices in Cg. If a vertex is adjacent to two vertices at distance 2
in Cg, then it must map to their unique common neighbor in Cg. So if a vertex v is
adjacent to vertices in Cg, we may assume it is adjacent to either just one vertex in
Cs or two opposite vertices in Cf§; in either case, we may assume that such v maps to
the unique vertex in C4 having these adjacencies, and remove Cg from the template.
So the template is now H’ with Cy joined at a vertex y = 1’. Now for 3/, we may
insist that its neighbors map to {2',4'}, and no other vertex maps to 3’ since 1’ now
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dominates 3/, so we may remove 3’ from the graph. Then if a vertex is labeled 2/, 4,
or {2/,4'}, its neighbors must map to 1’, and we may remove 2’ and 4’ from the graph
since every neighbor of ¥y = 1’ in H’ now dominates them. So we have reduced the
instance for H' with H; joined to an instance for H’ alone, as desired. []

Theorem 9 Fvery constraint-satisfaction problem is polynomially equivalent to a
balanced digraph-homomorphism problem.

Proof. We encode the graph-retract problem as a balanced digraph-homomorphism
problem. Draw the bipartite graph with one vertex set on the left and the other on
the right, and orient the edges from left to right. What remains is to distinguish the
different vertices on each side; we describe the transformation for vertices in the right,
a similar transformation is carried out for vertices in the left. In an oriented path, let 1
denote a forward edge and 0 a backward edge. If there are k vertices 0,1,...,k—1 on
the right, attach to the ith vertex an oriented path (110)"1(110)*~"'11. The intuition
is that none of these paths maps to another one of them, and that if a digraph maps
to two of them, then it maps to (110)’9_le17 hence to all of them. Furthermore, the
question of whether a digraph maps to an oriented path is polynomially solvable, see
sections 5.1.1 and 5.1.2. []

Theorem 10 FEvery constraint-satisfaction problem is polynomially equivalent to an
unbalanced digraph-homomorphism problem.

Proof. First assume that the given constraint-satisfaction problem consists of a
single relation R of arity k; multiple relations can always be combined into a single
relation by taking their product, adding their arities. Now, define a new constraint
satisfaction problem whose domain consists of k-tuples from the original domain; thus
R is now a monadic relation. In order to be able to state an equality constraint
among different components of different tuples, define a ‘shift’ relation S(t,t') on tuples
t = (v1,22,...,25_1,y) and ¢ = (2,21, 22,...,7,_1); one can use such shifts to state
that certain components of certain tuples coincide.

We have thus reduced the general constraint-satisfaction problem to a single
monadic and a single binary relation. It is clear that any instance of the original
problem can be represented using tuples on which the constraint R is imposed, and
the relation S allows us to state that components of different tuples take the same
value; similarly, the new problem only allows us to impose constraints from the original
problem. We wish to have a single binary relation alone, i.e., a digraph. Define the
following dag D. It has vertices corresponding to the tuples from the constraint-
satisfaction problem just constructed. For each relation S(¢,t") that holds, introduce a
new vertex joined by a path of length 1 to ¢ and by a path of length 2 to t. For each
relation R(t) that holds, introduce a new vertex joined by a path of length 3 to t. This
completes the dag.

We show that the digraph homomorphism problem for D is equivalent to the original
constraint-satisfaction problem. In one direction, given an instance of the original
problem involving S and R, tag each element with a reverse path of length 2 followed
by a path of length 1 followed by a reverse path of length 2. This ensures that the
element can be mapped precisely to vertices in D representing elements of the domain;
note here that we are using the fact that each ' is related to some ¢ by S in the domain
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of the constraint-satisfaction problem. To state S(¢,¢') and R(t) on such elements, use
incoming paths of length 1, 2, 3 as above for D. In the other direction, suppose that
we have an instance of the digraph homomorphism problem. We can assume that the
instance is a dag, since D is a dag. We can also assume that if a vertex has both
incoming and outgoing edges, then it has only a single incoming and a single outgoing
edge, because this holds in D, so we could always collapse neighbors to enforce this.
The input dag now looks like a bipartite graph (A, B, P), with disjoint (except at their
endpoints) paths of different lengths joining vertices in A to vertices in B (all in the
same direction). We can assume that the paths have length at most 3, since D has no
path of length 4. We can also assume that a vertex at which a path of length 3 starts
necessarily starts just this path, because this is the case in D. We can also assume that
a vertex can at most start a single path of length 2, since this is the case in D. We also
assume that a vertex starts at most a single path of length 1; the only way two different
paths of length 1 could go in different directions would be if one of them mapped on
the path of length 2 out of an out-degree-2 vertex v in D; but then, since the endpoint
has no outgoing edges, all its neighbors would necessarily map to v, and so we could
have mapped this endpoint to the other neighbor of v along the path of length 1. We
can also assume that the only vertices that will map to an attached path of length 3
are vertices on a path of length 3; the reason is that if a directed graph containing no
path of length 3 can be mapped to a reverse path of length 3, then it can be mapped
to a reverse path of length 2 followed by a path of length 1 followed by a reverse path
of length 2, and this configuration can be found in D from a fixed endpoint of a path
of length 3 without using this path (we used this same configuration before). We can
now assume that vertices in A and B map to vertices in the two corresponding sides
of the bipartite graph corresponding to D. For vertices in B, this is clear if they have
incoming paths of length 3, or of length 2 since we have assumed that they do not map
to a vertex inside a path of length 3, or of length 1 since we can assume that they
do not map to a vertex inside a path of length 2; the same is then clear for vertices
in A. But then the vertices in B can be viewed as elements of the original constraint
satisfaction problem and the vertices in A can be viewed as imposing constraints on
them. []

Theorem 11 FEvery constraint-satisfaction problem is polynomially equivalent to a
bipartite graph-retract problem, but now only allowing 3 specific vertices of the template
H to occur in the input G (but not just 2 vertices, which is polynomially solvable).

Proof. We encode a digraph-homomorphism problem The encoding introduces three
special vertices 7, b, g, which may occur in G, three additional vertices r’, ¥, ¢’ (which
cannot appear in (), a vertex a adjacent to ', b, ¢, replaces each vertex of the dag
with a vertex adjacent to r, replaces each edge in the dag with a path 0,1,2,3,4,5,6 of
length 6, where the intermediate vertices in positions 2 and 4 are adjacent to b and g
respectively, while those in positions 1, 3,5 are adjacent to a, and finally links 7/, ¥, ¢’
to all the vertices linked to 7,b, g respectively. The proof is here a straightforward
encoding argument.

A bipartite graph with just two distinguished vertices can always be retracted to
just a path joining the two vertices, namely a shortest such path; this is then the core,
which defines a polynomially solvable problem. []
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Theorem 12 FEvery constraint-satisfaction problem is polynomially equivalent to a
balanced digraph-homomorphism problem, but mow for a balanced digraph with only
5 levels (but not just 4 levels, which is polynomially solvable).

Proof. The digraph-homomorphism problem can be encoded as a balanced digraph-
homomorphism problem with only 5 levels. Given an arbitrary digraph without self-
loops, represent all vertices as vertices at level 1, and all edges as vertices at level 5.
If vertex v has outgoing edge e, join their representations by an oriented path 111011.
If vertex v has incoming edge e, join their representations by an oriented path 110111.
If neither relation holds, join their representations by an oriented path 11011011. The
key properties are that neither of the first two paths map to each other, and that a
digraph maps to the third path if and only if it maps to the first two. Now given a
digraph, we can decompose it into connected components by removing the vertices at
levels 1 and 5. Each such component either maps to none of the three paths (in which
case no homomorphism exists), or to all three of them (in which case it imposes no
restriction on where the boundary vertices at levels 1 and 5 map), or to exactly one
of the first two paths (in which case it indicates an outgoing or incoming edge in the
original graph). Thus every instance of the new problem can be viewed as an instance
of the original problem, given the fact that mapping digraphs to paths is polynomially
solvable, see sections 5.1.1 and 5.1.2. []

Another case of interest is that of reflexive graphs, i.e., graphs with self-loops. The
homomorphism problem is not interesting here, since all vertices may be mapped to a
single self-loop. We consider the reflexive graph-retract problem, as well as two other
related problems. The reflexive graph-list problem is the homomorphism problem where
in addition we may require that some vertex maps to a chosen subset of the vertices
in the template. The reflexive graph-connected list problem allows only subsets that
induce a connected subset of the vertices in the template. The following results are
from Feder and Hell [15, 16].

Theorem 13 FEvery constraint-satisfaction problem is polynomially equivalent to a
reflezive graph-retract problem. The reflexive graph-retract problem is NP-complete
for graphs without triangles other than trees. The reflexive graph-list problem is
polynomially solvable for interval graphs, NP-complete otherwise. The reflexive
graph-connected list problem is polynomially solvable for chordal graphs, NP-complete
otherwise. The graph-retract problem for connected graphs with some self-loops is NP-
complete if the vertices with self-loops induce a disconnected subgraph.

For partial orders and strict partial orders, the homomorphism problem is easy, since
the core is either a single vertex, in the case of partial orders, or a total strict order, in
the case of strict partial orders. We examine the corresponding retract problem. For
strict partial orders, even if the strict partial order is bipartite, the problem is equivalent
to the bipartite graph-retract problem and hence to all of CSP. For partial orders, there
are applications to type reconstruction, see Mitchell [37], Mitchell and Lincoln [38],
O’Keefe and Wand [39]. Pratt and Tiuryn [41] showed that the bipartite partial order-
retract problem is polynomially solvable if the underlying graph is a tree (in fact in
NLOGSPACE), NP-complete otherwise. We can give here an alternative proof of this
result here. If the underlying graph is a tree, we have a directed reflexive graph whose
underlying graph is a tree. If we then associate a boolean variable with each subtree,
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the problem is just a 2SAT problem, because if a set of subtrees pairwise intersect, then
they jointly intersect. For the NP-completeness result, define an undirected reflexive
graph on the same set as the bipartite partial order, making x,y adjacent if there exist
s,t such that s < x,y < t; in this case, this means that x < y or y < x. This gives
a reflexive graph-retract problem on a graph without triangles and not a tree, which
is NP-complete by the preceding theorem. We examine now the general case. Let the
depth of a partial order be the number of elements in a total sub-order.

Theorem 14 FEvery constraint-satisfaction problem is polynomially equivalent to a
partial order-retract problem, even if only the top and bottom elements of the partial
order can occur in an instance. The equivalence holds even for depth 3 partial order-
retract problems.

Proof. We prove the equivalence to the domination-free bipartite graph-retract
problem, which was shown equivalent to all of CSP above. We shall assume that only
the top and bottom elements of the partial order can be used in an instance; to extend
the result to the case where all elements can be used, we can simply consider the core
of the partial order. Let H = (S,7T, E) be a domination-free bipartite graph. Define
the corresponding partial order P = (@, <) as follows. Let @ be the set of all bipartite
cliques A x B C E, with A,B # (. Let Ax B< A xB' if AC A and B' C B. If
N (v) denotes the set of neighbors of v in H, then the bottom elements are {a} x N(a)
for a € S and the top elements are N(b) x {b} for b e T.

Given an instance G for H, we can assume that G is bipartite since H is bipartite,
and that G and H share at least a vertex since otherwise G can be mapped to a single
edge in H, so that we know which side of G maps to S and which to T. Replace
adjacency in G with < from the side mapping to .S to the side mapping to 7T, replace
any occurrence of an H vertex in G by the corresponding bottom or top element in P,
and ask whether this partial order maps to P. We can assume that top and bottom
elements map to top and bottom elements respectively, and on these elements the <
relation in P corresponds to edges in H, so solving the problem on P solves the instance
G for H.

In the other direction, given an instance R for P, where R and P only share top
and bottom elements of P, we can assume that such elements are also top and bottom
in R, since everything below a bottom element must map to that bottom element and
everything above a top element must map to that top element. We can also assume
that top and bottom elements in R map to top and bottom elements in P. To map such
elements, determine the bipartite < relation on them, and map them by solving the
problem as a bipartite graph-retract problem for H, with the natural correspondence
between bottom and top elements of P and vertices in the S,T sets of H. Clearly, if
the bipartite graph-retract problem does not have a solution, neither does the partial
order-retract problem. If the bipartite graph-retract problem has a solution, it only
remains to map the middle vertices. If a middle element is between bottom and top
elements that were mapped to subsets A C .S and B C T, map that middle element to
A X B in P, completing the retraction.

In order to prove the depth 3 result, we first determine the core of the partial
order. Clearly the core must contain every {a} x N(a) for a € S and every N(b) x {b}
for b € T, because these elements can be used in an instance. As a result, it must
also contain all maximal bipartite cliques A x B, because such maximal bipartite
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cliques are the only bipartite cliques above the corresponding elements {a} x N(a)
for a € A and below the corresponding elements N (b) x {b} for b € B. Notice that the
maximal bipartite cliques are precisely those bipartite cliques A x B with A = N(B)
and B = N(A), where N(C) denotes here the vertices adjacent to all of C. We now
observe that the maximal bipartite cliques are indeed the entire core, because the
mapping f(A x B) = N(N(A)) x N(A) is an appropriate retraction.

Having identified the core of the partial order as the partial order on maximal
bipartite cliques, we use the fact that the domination-free bipartite graph can also be
assumed to be K3 3-free and K3 3\{e}-free. Now, if Ay x By < Ay x By < A3z x By <
Ay x By for maximal bipartite cliques, then the containments on the A; and those on
the B; must be strict, so |A;| > i and |B; > 5 — 4. In particular, Ay X By must contain
a K53 and A3 x Bz must contain a K3, and furthermore their union must contain a
K3 3\{e} by maximality of the bipartite cliques. This establishes the depth 3 claim.
Notice also that K3 3-freedom implies that a bipartite clique A x B must have |A| < 2
or |B| < 2, and since for maximal bipartite cliques A and B uniquely determine each
other, the partial order has size polynomial in the size of the bipartite graph. []

Therefore, the dichotomy question for MMSNP is equivalent to the dichotomy
question for CSP, which in turn is equivalent to the dichotomy questions for graph-
retract, digraph-homomorphism problems, and partial order-retract problems.

6 Special Classes

Schaefer [44] showed that there are only three polynomially solvable constraint-
satisfaction problems on the set {0,1}, namely Horn clauses, 2SAT, and linear
equations modulo 2; all constraint-satisfaction problems on {0,1} that do not fit
into one of these three categories are NP-complete. For general constraint-satisfaction
problems, we introduce two classes, namely bounded width and subgroup, and examine
two subclasses of the bounded width class, namely the width 1 and bounded strict
width classes. These are generalizations of Schaefer’s three cases, since Horn clauses
have width 1, 2SAT has strict width 2, and linear equations modulo 2 is a subgroup
problem. At present, all known polynomially solvable constraint satisfaction problems
are simple combinations of the bounded-width case and the subgroup case.

Remark: A similar situation of only three polynomially solvable cases was observed
for Boolean network stability problems by Mayr and Subramanian [35], Feder [12]; the
three cases there are monotone networks, linear networks, and nonexpansive networks,
in close correspondence with Horn clauses, linear equations modulo 2, and 2SAT
respectively; it is the generalization of the nonexpansive case to metric networks that
leads to characterizations along the lines of the bounded strict width case described
below.

We describe the work on network stability in the context of constraint-satisfaction
in more detail here. Say that a template is functional if all relations have some arity
k + 1 with k,1 > 0 and are described by a function f(z1,z2,...,2k) = (Y1,Y2,- -, Y1),
called a gate, where the x; are called inputs and the y; are called outputs. A network
stability problem is a constraint-satisfaction problem where the template is functional,
and where the input structure has the property that every element participates in
exactly two relation occurrences, one as an input and one as an output. The input
structure is then called a network. The work in [35, 12] established the following.
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Theorem 15 FEvery network stability problem over a Boolean functional template is
NP-complete, with the exception of the following polynomially solvable cases:

(0) Functional templates where every relation contains the all-zero tuple (or every
relation contains the all-one tuple).

(1) Monotone functional templates, where every output y; of every gate is a
monotone function of the inputs x;. For the general case with AND and OR gates,
the problem is P-complete and determining whether there is a solution other than the
zero-most and one-most solutions is NP-complete.

(2) Linear functional templates, where every output y; of every gate is a linear
function of the inputs x; modulo 2.

(8) Adjacency-preserving functional templates, where every gate f has the property
that changing the value of just one of the x; inputs can affect at most one of the
y; outputs. Here the set of solutions can be described by a 2SAT instance because
the median of three solutions, obtained by taking coordinate-wise majority, is also a
solution.

The case (3) extends to a non-Boolean domain case by assuming that the template
has an associated distance function on the elements satisfying the triangle inequality,
such that for every gate f, if f(x1,x2,...,2k) = (Y1,Y2,...,y1) and f(x],xh,...,x)) =
(Y192, -, Y1), then 3d(y;,y;) < X d(wi,x;). The functional template is then called
nonexpansive and the associated network is metric; this case is also polynomially
solvable. Here the structure of the set of solutions is a strict width 2 problem because
the solutions form a 2-isometric subspace, where the corresponding 2-mapping property
is obtained with the imprint function, yielding the 2-Helly property (see [12] for the
definitions of 2-isometric subspace and imprint function).

It is the structure presented in this theorem and its connection to Schaefer’s work
that initially led to the work presented here. In this paper, we are not considering
special type instances, such as network stability or planar graph coloring: the template
is fixed, the instance is not constrained.

6.1 Bounded-Width Problems

A problem is said to have bounded width if its complement (i.e., the question of non-
existence of a solution) can be expressed in Datalog. More precisely, it is said to have
width (1, k) if the corresponding Datalog program has rules with at most [ variables in
the head and at most k variables per rule, and is said to have width [ if it is has width
(I, k) for some k. For a related notion of width, see Afrati and Cosmadakis [4].

Datalog is the language of logic programs without function symbols [46]. The
following Datalog program checks that an input graph is not 2-colorable:

oddpath(X,Y) :— edge(X,Y)
oddpath(X,Y) :— oddpath(X,Z),edge(Z,T),edge(T,Y)
not2colorable  :— oddpath(X, X).

In this example, edge is an input binary relation, oddpath is a binary relation
computed by the program, and not2colorable is a 0-ary relation computed by the
program. The first rule says that a single edge forms an odd path, the second rule
tells that adding two edges to an odd path forms an odd path, and the third rule says
that the input graph is not 2-colorable if the graph contains an odd cycle. In Datalog
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programs for constraint-satisfaction instances we assume that there is a distinguished
predicate p of arity zero (not2colorable in the above example) that must be derived
when no solution exists for the instance. We say that such a program solves the
problem.

The example above shows that 2-colorability has width (2, 3), since it can be solved
by a Datalog program with at most 2 variables in rule heads and at most 3 variables
per rule. Also, 3SAT-Horn can be shown to have width 1. It is not hard to show
that bounded-width problems are in monotone SNP without inequality. Furthermore,
problems of width 1 are in MMSNP.

It is easy to see that all bounded-width problems are in P, since the rules can derive
only a polynomial number of facts. Thus, we would like to know:

Which problems in CSP have bounded width?

The predicates from the instance are called EDB predicates, and the new auxiliary
predicates are called IDB predicates. Given a Datalog program with EDB predicates
corresponding to the constraints of a constraint-satisfaction problem defined by a
template T, we assign to each predicate in the program a relation on values from
T. The EDB predicates already have an assigned relation in 7. For IDB predicates,
we initially assign to them the empty relation, then add tuples as follows. Given a rule,
involving at most k variables, we consider the assignments of values from T to these k
variables such that the constraints imposed on them by the current relations assigned
to predicates in the body of the rule are satisfied. For these satisfying assignments
for the body, we consider the induced assignments on the at most [ variables in the
head, and add all these tuples to the relation associated with the head of the rule.
This process of adding tuples over values from T to the relations associated with IDB
predicates must eventually terminate, mapping each IDB to a relation on values from
T.

The relation associated with the distinguished p at the end of this process must be
the empty relation. Otherwise, we could design an instance that has a solution yet for
which p can be derived, simply by viewing the derivation tree that made p nonempty
as an instance, contrary to the assumption that the Datalog program only accepts
instances with no solution.

Even if we know that a constraint-satisfaction problem has width (I, k), there could
be many Datalog programs that express the complement of the problem. Thus, it seems
that to answer the question above we need to consider all possible (I, k)-programs.
Surprisingly, it suffices to focus on very specific Datalog programs.

Theorem 16 For every constraint satisfaction problem P there is a canonical Datalog
(1, k)-program with the following property: if any Datalog (1, k)-program solves P, then
the canonical one does.

Proof. Intuitively, the canonical program of width (, k) infers all possible constraints
on [ variables at a time by considering k variables at a time. This canonical
program infers constraints on the possible values for the variables in the instance,
both considered [ at a time and k at a time, as follows. Initially, all constraints from
the instance can be viewed as constraints on variables, k at a time. Now, a constraint
on k variables can be projected down to a constraint on an [-subset of these k variables.
In the other direction, a constraint on an [-subset can be extended up to a constraint
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on the k variables. This process can be iterated, and if a constraint on variables ever
becomes the empty set, we can infer that the instance has no solution. This inference
process can easily be described by a Datalog (I, k)-program, and in fact the inferences
carried out by this canonical program contain all inferences performed by any Datalog
(1, k)-program, with the interpretation of IDB’s as relations on values from 7' defined
above. []

Consider now the following two-player game on the structures S, the instance, and
T, the template. Player I selects k variables, and asks Player 11 to assign to them values
from T'. Then Player I keeps [ out of these k assigned variables, extends this set of [ to
a new set of k, and asks Player II to assign values to the new k—1 variables, back to the
earlier situation with k assigned variables. The game proceeds from there as before.
Player I wins if at some point, some of the k assigned values violate a constraint from
the instance.

Theorem 17 The canonical (I, k)-program for a constraint-satisfaction problem ac-
cepts an instance precisely when Player I has a winning strategy in the associated
(1, k)-two-player game.

Proof. Suppose the canonical program accepts an instance (such an instance
necessarily fails to have a solution). Consider the corresponding derivation tree. Each
node of the tree corresponds to a relation on at most k£ elements from .S. This relation
has an associated set of tuples from T" as defined above. Player I traverses a path from
the root to a leaf; at each step he holds a tuple that is not in the associated set. He
starts at the root, where the relation has arity zero; there he holds the arity-zero tuple,
which does not belong to the associated empty set. In general, at a given node v where
Player I holds a tuple of arity at most [ not in the associated set, Player I selects the
rule corresponding to the node v and its children, and asks Player II to assign values to
the remaining variables in the rule, up to a total of at most k. It cannot be that all the
resulting assignments to at most [ variables corresponding to the children of the node
v are tuples in the sets associated with them, because then the original tuple would
have been in the set associated with v. So Player I can select some child of v such that
the assignment to its at most [ variables is not in the associated set. When a leaf is
reached, Player I holds an assignment violating a given constraint in the instance.

For the converse, suppose that Player I has a winning strategy. The playing of
the game depending on the moves by Player II can then be viewed as a tree. For
instance, at the root, after Player I has made its initial choice k elements, the children
correspond to the possible choices of [ elements out of these k that can be made by
Player I, depending on the assignment of values to the k elements by Player II. At
the next level, the extension of the [ assigned values to a tuple of k£ variables chosen
by Player I is again considered, until at the leafs we have assignments to at most [
variables that violate a constraint. This tree is then precisely a derivation tree by
which the canonical program can accept the instance. []

For related games, see Afrati, Cosmadakis, and Yannakakis [5], Kolaitis and Vardi
[29], and Lakshmanan and Mendelzon [32].

This notion of bounded width for constraint-satisfaction problems can also be
extended to allow infinite Datalog programs (allowing infinitely many IDB’s, infinitely
many rules, and infinitely many conjuncts per rule); such programs have been studied
before under the name L“. For constraint-satisfaction problems on a finite domain,
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infinite programs are no more powerful than finite programs; the reason here is that
the canonical program has IDB’s corresponding to constraint sets, but there are only
finitely many possible constraint sets.

Remark: For constraint-satisfaction problems, it can be shown that Datalog is
equivalent to Datalog(#,—), finite or infinite. This equivalence holds more generally
for problems closed under homomorphisms, finite and infinite cases separate. For such
problems, it turns out that monadic SNP with inequality is no more powerful than
monotone monadic SNP without inequality, and the same holds for (binary) SNP with
inequality compared with monotone (binary) SNP without inequality [13].

6.1.1 Width 1 and Tree Duality

Horn clauses have width (1, k), where k is the maximum number of variables per Horn
clause. To see this, express Horn clauses as implications with a conjunction of positive
literals in the antecedent and at most one positive literal in the consequent. An instance
has no solution if it implicitly contains a clause with an empty antecedent, which stands
for ‘true’ or 1, and an empty consequent, which stands for ‘false’ or 0. This situation can
be detected by Player I by selecting an appropriate clause with an empty consequent,
then Player II must assign value 0 to some variable in the antecedent, then Player I
selects some appropriate clause with this variable as the consequent, and so on, until
a clause with an empty antecedent is reached, then Player I wins.
Using the Theorem 16 and Theorem 6, we can prove:

Theorem 18 The questions of whether a constraint-satisfaction problem has width
(1,k) or whether it has width 1 are decidable.

Proof.  The canonical program describes in that case a monotone monadic SNP
problem, and we have seen that containment for such problems is decidable. In fact,
we have also seen that it is never necessary to look at conditions for a monotone monadic
SNP problem that do not define a biconnected component contained in biconnected
components of the statement of the problem, but these are only single relations in the
case of constraint-satisfaction problems, so we can assume that the Datalog program
looks only at single relations from the input, so k need not be larger than the largest
arity, hence width 1 is decidable. []

Let S be a connected structure. An element z is an articulation element if the
structure S can be decomposed into two nonempty substructures that share only z. If
we decompose a structure into substructures by identifying all its articulation elements,
we say that the resulting substructures without articulation elements are biconnected
components. A tree is a structure whose biconnected components consist each of a
single relation occurrence. Following and generalizing the terminology of Hell, Nesetfil
and Zhu [21], we say that a constraint-satisfaction problem defined by a template T
has tree duality if: A structure S can be mapped to T if and only if every tree that can
be mapped to S can be mapped to T'.

Theorem 19 A constraint-satisfaction problem has tree duality if and only if it has
width 1.

Proof. Trees are precisely the objects generated by derivation trees of Datalog
programs with at most one variable in the head and at most one EDB per rule. We
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observed in the proof of the previous theorem that if a problem has width 1, then it
has a Datalog program of this form. Then an instance S does not map to 7' if and
only if it is accepted by the Datalog program, i.e., some tree maps to .S but does not
map to T. Thus width 1 implies tree duality. Conversely, if tree duality holds, then
width 1 follows by considering the Datalog program that generates all the trees that
do not map to 7T; this is an infinite program, but we have observed before that infinite
programs can be transformed into finite ones for constraint-satisfaction problems, e.g.,
the canonical program from Theorem 16. []

In fact, as observed in the proof of Theorem 6, width 1 can be decided as follows.

Tree duality decision procedure:

Given a constraint-satisfaction problem with template T', let U be the structure
defined as follows. The elements of U are the nonempty subsets A of the elements
of T. For a relation R of arity k, impose R(Aj, Aa, ..., Ar), the A; not necessarily
distinct, if for every 1 < 4 < k and every a; in A; there exist elements a; in the
remaining A; such that R(ai,ag,...,a;) in T. Then tree duality holds if and only if
U maps homomorphically to T

For example, 2SAT will in particular enforce x Vy and TV7y on x = y = {0, 1},
hence no solution exists, showing that 2SAT does not have width 1. In general, the
question of whether a constraint-satisfaction problem has bounded width (or width [,
width (I, k), beyond the case [ = 1) is not known to be decidable.

We give here an alternative proof of the correctness of the above decision procedure
based on tree duality and its equivalence to the existence of a Datalog program for the
problem with one EDB relation per rule and at most one variable in the head of each
rule, that infers constraints on the possible values for elements of the structure.

Theorem 20 The above decision procedure correctly decides tree duality.

Proof. Suppose that tree duality holds. Consider the structure U defined in the
decision procedure whose elements are nonempty sets A. We show that U can be
mapped to T. Every tree that maps to U has elements that are nonempty sets A.
The tree can be mapped to T by choosing one element from the root of the tree, one
consistent element from each of its children, and so on. Thus, by the definition of tree
duality, U maps to T'. Conversely, suppose that U maps to T', and let S be a structure
such that every tree that maps to S maps to T. If we use the Datalog program on S,
then every element of S will be assigned a nonempty set A by the program, otherwise
the derivation tree would provide a tree that maps to S but not to 7. This gives a
mapping from S to U, and by composition from S to 1T'. Therefore tree duality holds.
0

Thus tree duality has a simple decision procedure. Consider the special case where
the template T is an oriented path (a path each of whose edges may be oriented in
either direction). This T was shown to have tree duality by Hell and Zhu [24]; in fact,
they showed that it satisfies the stronger path duality property that S maps to T if
and only if every oriented path that maps to S maps to T'. We give a simple proof of
tree duality via the above decision procedure. Suppose that the elements of the path
T are numbered 1,2,...,r in order. For every nonempty subset A of {1,...,r}, map
A to the least numbered element of A. If there is an edge from A to B, then the least
elements of A and B cannot be the same element a, since otherwise T would contain
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an edge from a to @ + 1 and one from a 4+ 1 to a. So either a is the least element of
A, a + 1 the least element of B, and T has an edge from a to a 4+ 1, or a is the least
element of B, a + 1 the least element of A, and 7" has an edge from a + 1 to a. Thus
T has an edge from the image of A to the image of B, as required.

A more general case is the case of oriented trees, which defines both polynomial
and NP-complete problems, as well as problems that have not yet been classified [22].

We say that a constraint-satisfaction problem defined by a template T with T a core
has extended tree duality if: A connected structure S with one element s preassigned
a value t in T" can be mapped to T if and only if every tree that can be mapped to S
can be mapped to T" in such a way that the elements of the tree that map to s end up
mapping to t. Just like tree duality could be decided by the existence of a mapping from
a particular structure U to T, extended tree duality can be decided by the existence
of a mapping from a particular structure U’ to T, where U’ is the substructure of U
consisting of the union of the connected components containing the singletons {t} for
t in T. The proof of correctness is similar to the tree duality case. Since the extended
tree duality property involves one special element s, and problems with tree duality
have width 1, problems with extended tree duality have width 2. (The converse is false,
e.g. 25AT.)

Theorem 21 For a constraint-satisfaction problem with template T, tree duality is
equivalent to the existence of a homomorphism from U to T. If T is a core, then
extended tree duality is equivalent to the existence of a homomorphism from the
substructure U’ to T. Problems with extended tree duality have width 2.

Say that two elements are related if they both belong to the same set A in the
connected component U’. A special case of extended tree duality for digraphs is the
case where there is a total ordering of the vertices of 7" such that if (a,b) and (c,d) are
two edges of T with a < b and ¢ < d, with a, ¢ related and b, d related, then (a,d) is
also an edge of T'. In this case we can map a nonempty set A in U’ to the least element
of A under the ordering. This case is essentially the same as the extended X-property
from [19, 21].

More generally, an (I, k)-tree is a structure given by a derivation tree of a Datalog
program whose rules have at most [ variables in the head and at most k£ variables per
rule. Combinatorially, a structure S is an ([, k)-tree if: There exists a tree ¢ whose
nodes are sets of elements of S of cardinality at most k, where a node and a child in ¢
share at most [ elements of S, the nodes in which an element of S participates form a
subtree of ¢, and each relation occurrence in S involves elements contained in a single
node of ¢. In the literature, when S is a graph and S is an (I, k)-tree, then it is said to
have tree-width k — 1 (see e.g. [34, 43]).

Along the general lines of duality of graph homomorphisms (see Hell, Nesetfil and
Zhu [23]), a constraint-satisfaction problem defined by a template T has (I, k)-tree
duality if: A structure S can be mapped to T if and only if every (I, k)-tree that can
be mapped to S can be mapped to 7. The following is immediate from the definition
of acceptance by a Datalog program.

Theorem 22 A constraint-satisfaction problem has (I, k)-tree duality if and only if it
has width (1, k).
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Recall from section 3 the definition of the length of an oriented cycle and of balanced
and unbalanced digraphs. Hell and Zhu [25] show that in the case where T is an
unbalanced cycle, it is sufficient to test oriented paths, which are (1,2)-trees, and
oriented cycles, which are (2,3)-trees; therefore unbalanced cycles define a problem
of width (2,3). The property that cycles of the instance S must satisfy is that their
length is a multiple of the length of T'. Therefore, in the special case where the length
is 1, cycles need not be tested, only oriented paths, and the problem has width (1,2).
We show here that unbalanced cycles have extended tree duality, hence width 2, and
that when their length is 1, they have tree duality, hence width 1. Suppose that a
cycle has length m > 1. Enumerate the vertices 0,1,...,k in order around the cycle,
where vertices 0 and k coincide, in such a way that there is a level function such that
every edge (i,7) satisfies level(j) =level(i) + 1, with level(0) = m, level(k) = 0, and
level(i) > 1 for i # k. Then define the total ordering mentioned above for extended
tree duality to be the lexicographical ordering on pairs (level(i),i). Notice that if two
elements are related, their levels must differ by a multiple of m. In the case where
m = 1, this imposes no restriction, i.e., we may use the structure U instead of U’. The
same construction can be used to establish tree duality for balanced cycles such that
if we denote by [ an occurrence of a lowest level element and by A an occurrence of a
highest level element, then the ordering [hlh does not occur when the cycle is traversed
once, so that the complete ordering of [ and h is [Th™.

In general, for an arbitrary constraint-satisfaction problem, if we only consider
instances that are (I, k)-trees with [, k fixed, then the problem is solved in polynomial
time by the canonical Datalog (I, k)-program, since this program has as derivation
trees precisely the (I, k)-trees that do not have a solution for the constraint-satisfaction
problem.

Theorem 23 On (I, k)-tree instances, constraint-satisfaction problems are polynomi-
ally solvable, for I,k fized.

For more general results on polynomially solvable problems in the case of graphs of
bounded tree-width, see e.g. [1, §].

6.1.2 Bounded Strict Width and the Helly Property

The canonical algorithm for problems of width (I, k) involved inferring all possible
constraints on [ variables at a time by considering k variables at a time. We may
in addition require that if this inference process does not reach a contradiction (the
empty set), then it should be possible to obtain a solution by greedily assigning values
to the variables one at a time while satisfying the inferred [-constraints. We say that
a constraint-satisfaction problem that can be solved in this way has strict width (I, k),
and say that it has strict width [ if it has strict width (I, k) for some k. It turns out
that strict width [ is equivalent to strict width (I, k), for all & > [, so we can assume
k=1+1.

This intuition behind strict width [ can also be captured in two other ways. First,
we can require that if we have an instance and after assigning specific values to some
of the variables we obtain an instance with no solution, then some [ out of the specific
value assignments chosen are sufficient to give an instance with no solution. We refer
to this property as the [-Helly property. Second, we could require that there exists a
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function g that maps [ + 1 elements from the domain of the structure T to another
element, with the property that if all but at most one of the [ + 1 arguments are equal
to some value b then the value of ¢ is also b, and, furthermore, for all constraints
C; in T, if we have [ 4+ 1 tuples satisfying C;, then the tuple obtained by applying ¢
component-wise also satisfies C;. We call this property the [-mapping property.

Theorem 24 Strict width 1, the [-Helly property, and the l-mapping property are
equivalent. These properties are polynomially decidable (for a fixed ).

Proof. The proof of the equivalence of the various formulations of bounded strict
width shows first that the correctness of the greedy (I, k)-algorithm implies that the
Helly property for I must hold. The reason is that the final step of finding a solution
uses only the inferred constraints on [ variables at a time, hence these constraints
must characterize precisely the solutions, showing that the Helly property for [ holds.
This in turn implies that the instance stating the existence of g must have a solution.
The reason is that [ out of the constant value assignments imposed on ¢ can always
be satisfied, because each of these constant value assignments has [ out of the [ + 1
arguments equal for g; there must be an argument position that is not the one
exceptional argument for any of the [ constant value assignments being considered;
so we can always return the value of this argument, satisfying all conditions. Since the
constant value assignments considered [ at a time are satisfiable, then all together they
must be satisfiable by the Helly property for I, hence g exists.

Finally, the existence of g implies the correctness of the greedy (I,1+1)-algorithm; it
implies in fact the correctness of a more restrictive algorithm that eliminates variables
one by one in arbitrary order (by considering just the [ + 1-subsets containing a chosen
variable to infer a constraint on the remaining [ variables) and assigns values in reverse
order. Consider the elimination of the first variable ;. We claim that any solution
2’ of the resulting instance on the remaining variables zs, ..., z, can be extended to a
solution for 1. We must show that there exists a value for x; satisfying all constraints
involving z1 in conjunction with z’. We first consider constraints involving only [ of the
variables in z’. If no value of x; satisfies the constraints involving x; and the chosen [
variables, then this would result in the inference step in forbidding the value assignment
on [ variables induced by z’, and 2z’ would not have been a solution of the resulting
instance. Therefore constraints involving only 1 and [ of the variables in 2’ can be
satisfied (we are including here in the inference step constraints obtained as projections
of constraints involving x; and variables possibly different from the chosen /). Consider
now constraints involving only x1 and k of the variables in 2/, for k > [ + 1, where we
assume inductively that £ — 1 can be handled. Consider [ + 1 particular variables out
of the chosen k from 2. For each choice of one variable (say the ith one) out of these
[+ 1, if we ignore it, then a value x% for x1 can be found by inductive assumption. But
then, we can set z; = g(xi,2%,... ,xl1+1) and satisfy the constraints on z; and all k
chosen variables. The reason is that any such constraint involves [ variables including
x1. One of the [—1 variables other than z1 may have been ignored in choosing x%, but a
value for it can be found since otherwise 2% would not have been considered consistent.
Furthermore, a variable was ignored in choosing at most one z%, so g applied to the [+1
values for this variable gives the correct majority value. Since the constraint is closed
under g, the value x1 obtained by applying g satisfies all the constraints, completing
the induction. To handle the elimination of subsequent variables analogously, it is only
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important to observe that the constraints obtained by the inference step are also closed
under g, since they are obtained by intersection and projection of constraints closed
under g. This proves the correctness of the algorithm.

Note that the existence of g is itself an instance of the constraint-satisfaction
problem, hence strict width [ is decidable and in fact polynomially decidable, for fixed
[. It is not known to be decidable when [ is not fixed. []

2-colorability is an example of a constraint-satisfaction problem with strict width 2.
If a graph is bipartite, but after having two-colored some of the vertices there is no two-
coloring consistent with this partial coloring, then either two vertices on different sides
of the bipartite graph were given the same color, or two vertices in the same side were
given different colors. Also, 2SAT has strict width 2, and so does integer programming
with two variables per inequality with variables ranging over a fixed range.

Feder [14] showed that digraph-homomorphism for oriented cycles is either
polynomially solvable or NP-complete. The proof is a good illustration of some of
the techniques we have been using up to this point; we give here a sketch of the proof.

Theorem 25 Fvery oriented cycle digraph-homomorphism problem is either polyno-
mially solvable or NP-complete.

Proof. (Sketch.) The case where a template is an oriented path, which we saw in
the previous section has width 1, also has strict width 2. To see this, number again
the vertices 1,2,...,r and consider the mapping g(x,y,z) = median(x,y, z). In the
case where the template is a directed graph that maps to a cycle C, it is sufficient to
consider only argument lists for g such that all arguments map to the same vertex in C.
For unbalanced oriented cycles, which we saw have extended tree duality, we also have
strict width 2; the argument considers the lexicographic ordering on pairs (level(i), ) as
before and uses the median(x, y, z) function on three arguments whose levels differ by
a multiple of the length of the cycle. The same argument applies to the balanced cycles
not containing the ordering [hlh as mentioned before, so that the complete pattern of
[ and h is [Th™. There is a family of balanced cycles that does not have extended tree
duality (it can encode 2SAT) yet has strict width 2: these are the balanced cycles with
two [ and two h elements that form the pattern [hih along the cycle. Consider the four
paths 1 = l1hqy, 2 = lshy, 3 = lsho, 4 = l1ho on the cycle; given three pathsi—1, 4, i+1
out of these four (modulo 4), the middle path is i. The mapping g(z,y, z), with the
three arguments at the same level, is defined as follows: (1) If z,y, z belong to three
different paths, return the one that belongs to the middle path; (2) If z,y, z belong to
the same path, return the one in the middle position on the path; (3) If exactly two
out of x,y, z belong to the same path, return the one of these two occurring earliest
on the path. In each of the classes of the form [ThTITh™, other than the polynomial
class [hlh, there are both polynomial and NP-complete templates that are cores; the
cases (lﬂﬁ')23 are NP-complete for cores. It is shown in [14] that the remaining case
[Th*ITh*, all problems are either in P or NP-complete, completing the classification of
oriented cycles; the proof uses the 2-Helly property for paths, which have strict width
2, and a generalization of Schaefer’s classification of boolean satisfiability to a k-partite
version [14, 44]. []

Problems with bounded strict width are a special case of bounded-width CSP. For
such problems we have a more efficient algorithm.
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Theorem 26 A simplified version of the canonical algorithm runs in parallel O*(n)
time using a polynomial number of processors (the O* notation ignores polylogarithmic
factors). In the case | = 2, this algorithm can be implemented in parallel O*(\/n) time,
because variables can be eliminated in parallel.

Proof. First, observe that the number of constraints that could be inferred is
O(n?). Therefore the number of steps that infer at least n!-5 constraints is only O(\/n).
Suppose that a step would infer only n'® constraints, i.e., only these many pairs of
values for pairs of variables are discarded. Suppose that we ‘charge’ such a pair of
values eliminated for two variables x;,z}, to a variable x; such that the inference on
these three variables causes the pair of values to be eliminated. Since there are n
variables, they are charged n%° eliminations each in average, and thus at least half of
them are charged at most 2n%% eliminations, involving at most 4n°% other variables.
But then, it must be possible to choose a set of n%®/8 variables that are charged only
2n05 eliminations each involving two other variables not in the set. But then these
n%5 /8 variables can be eliminated simultaneously, and hence this type of step need
only be performed only O(y/n) times as well. All inferences will thus be obtained by
the standard algorithm in O(y/n) steps (consider eliminating a chosen pair last). To
obtain a solution, either a value assignment for one variable restricts the values for
n%? others, or there are n pairwise unconstrained variables; alternatively, a maximal
independent set computation works. []

6.2 Problems with the Ability to Count

Which problems in CSP do not have bounded width? Say that a constraint-satisfaction
problem has the ability to count if the following two conditions hold: (1) The template
T contains at least the values 0,1, as well as a ternary relation C' that includes at
least the triples (1,0,0), (0,1,0), and (0,0,1), as well as a monadic relation Z that
includes at least 0; (2) If an instance consists of only the constraints C' and Z, with
all constraints partitioned into two sets A and B such that A contains one more C
constraint than B, and furthermore each variable appears in exactly two constraints,
one from A and one from B, then the instance has no solution.

Intuitively, we can think of C(z,y,2) as x +y + z = 1, and of Z(z) as x = 0, with
an obvious contradiction for instances of the special form, since adding the constraints
from A and subtracting those from B yields 0 = 1. Some problems of this form include
linear equations over an abelian group (finite or infinite), where 0 is the identity of the
group and 1 is any other element. In particular, this includes the problem for linear
equations modulo 2. Another example of such problem is linear programs over the
nonnegative reals. For this last case, inexpressibility in Datalog(#, succ) was shown by
Afrati et al. [5] using Razborov’s monotone circuit lower bound for matching.

We shall first show that if a constraint-satisfaction problem has the ability to count,
then it does not have polynomial size monotone circuits. We begin by citing Razborov’s
lower bound for matching [42]. In fact, Razborov’s lower bound is not just for matching:
it applies to any monotone problem such that certain particular instances are ‘yes’
instances, certain other instances are ‘no’ instances, and the remaining instances may
be either ‘yes’ or ‘no’. Matching is just a specific application of the result. The exact
statement of Razborov’s result is the following:

31



Theorem 27 Consider a monotone problem on bipartite graphs such that (1) if the
instance has a perfect matching, then the answer is ‘yes’, and (2) if the instance
contains a bipartite connected component with a different number of vertices in the
two sides, then the answer is ‘no’. Then monotone circuits for the problem have size
mQ(log m) )

The lower bound for matching is thus obtained by requiring a ‘yes’ answer for the
instances (1), and a ‘no’ answer for all remaining instances, not just instances (2). The
other extreme case is also interesting, namely the problem that requires a ‘no’ answer
for the instances (2), and a ‘yes’ answer for all remaining instances, not just instances
(1). This gives a lower bound for systems of linear equations over the integers, the
rationals, or the reals, as follows. View a complete bipartite graph with n vertices on
each side as an instance with n? variables corresponding to the n? edges. View each
vertex as stating the constraint that the sum of the variables corresponding to edges
incident on the vertex is equal to 1. If the bipartite graph is not complete, then each
missing edge is viewed as a constraint stating that the corresponding variable is equal
to 0. Now if an instance contains a bipartite connected component with k vertices in
the left side and &’ vertices in the right side, and with k& # £/, then the kk’ variables
corresponding to the possible edges joining the two sides must add to k according to
the left side, and to k' according to the right side, so an instance (2) is indeed a ‘no’
instance. On the other hand, if all connected components have k = k’, then we can
pair-up the k and &’ vertices in the two sides; for each such pair (u,v), there is an odd
length path from u to v, so we can assign to the edges on the path the values 1 and
—1 in alternation, so that the sum is 1 for edges incident on u, and on v, but 0 for
edges incident on all other vertices; doing this for all chosen pairs (u,v) and adding up
the values corresponding to the different paths gives a sum 1 for each of the k& and &’
vertices. So the answer is ‘yes’ for every instance other than (2).

This gives the basic idea for getting a monotone circuit size lower bound on problems
that have the ability to count, since both problems just considered have the ability to
count. However, the theorem cannot applied directly for other problems that have the
ability to count, such as linear equations modulo 2. Nevertheless, a result just slightly
stronger than Razborov’s will yield what we need: we just weaken (2) a little bit.

Theorem 28 Consider a monotone problem on bipartite graphs such that (1) if the
instance has a perfect matching, then the answer is ‘yes’, and (2) if the instance
contains a subgraph not connected to the rest of the graph with one more vertex on
the left than on the right, then the answer is ‘no’. Then monotone circuits for the
problem have size mS{108™m)

Proof. Razborov’s proof involves a choice of a random bipartite F_ on two vertex sets
A and B with m elements each by selecting random subsets A’ C A and B’ C B and
linking all vertices in A’ to all vertices in B’, as well as all vertices in A’ to all vertices
in B’. The random E_ is used to bound probabilities for three events, namely (stating
equations directly from [42]) P(E_ € [E]) > 27° (30), P(E_ € A(fm)) < m~/2 (31),
and P(E_ € S) < h(t,r,s,m) (32). We replace E_ by an event E’ chosen from a
smaller space, conditioning on |A’| = |B’| + 1 as well as |(|4’|) — (JA])| > s (the latter
for convenience only). Formula (30) measures the probability that a fixed matching
of size s will be contained in E_. To measure this for E’, we can first choose |A’|
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from the appropriate distribution, then assume that A’ and B’ are fixed while the s
edges of the matching are chosen at random. From the assumptions on |A’| and |B’|,
it is clear that the first of these edges will fall in E’ with probability at least 1/2, and
that if this has happened for the first 7 — 1 edges, then it will happen for the ith edge
with probability at least 1/2 as well, as long as i < s. Hence (30) can only become
stronger for E’'. Formula (31) measures the probability that E_ has a perfect matching;
but this probability is zero for E’. Only (32) becomes weaker; an E_ will satisfy the
conditioning with probability Q(1/y/m), so for E’ the bound increases by a factor of
\/m; this factor carries over to the final m°8™) lower bound on monotone circuit size
(where it is insignificant). []

This result can now be applied to linear equations modulo ¢, with ¢ > 2. Relate
linear equations to bipartite graphs as before. If the bipartite graph has a perfect
matching, then giving value 1 to the edges in the matching and value 0 to all other
edges satisfies the linear equations. If the bipartite graph has a subgraph not connected
to the rest of the graph with k vertices on the left and &’ on the right, and k¥ = k&’ + 1,
then the k&’ variables involved must add up to k and to &/, yet now k # k' holds even
modulo q. We are now ready to apply the theorem to any problem with the ability to
count.

Theorem 29 If a constraint-satisfaction problem has the ability to count, then
Q(logm)

monotone circuits for it have size m .
Proof. We first represent the complete bipartite graph with n vertices on each
side by a bipartite graph with vertices of degree 2 or 3, as follows. Replace every
vertex of degree n with a path on 2n — 1 vertices 0,1,2,...,2n — 2, with the n incident
edges attached to the n vertices in even positions, achieving thus the degree constraint.
Notice that in a perfect matching, the n — 1 vertices in odd positions must be matched
to n— 1 out of the n vertices in even positions, leaving exactly 1 vertex in even position
left to be matched to a vertex not on that path. Thus perfect matchings for subgraphs
of the complete bipartite graph and perfect matchings for subgraphs of the new graph
obtained by removing edges other than those on the paths are in 1-to-1 correspondence.
Similarly, subgraphs of the complete bipartite graph with one more vertex in the left
correspond to subgraphs of the new graph obtained by removing edges other than those
on the paths, also with one more vertex in the left.

So we have reduced the previous theorem to the case of graphs that are subgraphs of
a bipartite graph GG with vertices of degree at most 3. Now view each edge as a variable,
a vertex with three incident edges z,y, z as a constraint C(z,y, z), and a vertex with
two incident edges x,y as a constraint C'(x,y, z), where z is an auxiliary variable that
is also constrained by Z(z). Removing an edge x not on one of the paths corresponds
to adding a constraint Z(x). Clearly, if the graph has a perfect matching, then setting
the variables in the matching to 1 and all other variables to 0 gives a solution for the
problem with the ability to count. Similarly, if the graph has a subgraph with one more
vertex in the left, this gives an instance of the problem with the ability to count that
was required not to have a solution. The only technical point here is that removing
an edge = incident to two vertices corresponds to having C(x,vy,z2), C(z,y,2'), and
Z(z), so x participates in three constraints instead of just two as was required for
problems with the ability to count with no solution. However, we can replace x with
two variables z, 2 constrained by C(z,vy, 2), C(2',y,2"), Z(z), and Z(x'), use the fact
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that the resulting instance has no solution by the definition of the ability to count, and
then observe that identifying x and x’ cannot make the constraint-satisfaction problem
have a solution if it had no solution before identifying x and z’. []

Remark: The idea of obtaining monotone circuit lower bounds for problems that
are strictly between the required ‘yes’ and ‘no’ instances was used previously by Tardos
[45], who obtained a truly exponential monotone circuit lower bound for the Lovasz
0 function, a polynomially computable function strictly between the NP-complete
functions maximum clique and chromatic number.

Afrati et al. [5] showed that if a problem does not have polynomial size monotone
circuits, then it is not expressible in Datalog(#, succ). Thus problems with the ability
to count do not have bounded width. If we just want to show that a problem does not
have bounded width, then it suffices to show that it does not have a Datalog (I, k)-
program for any fixed [, k. This can be proved more easily via two-player games, by
an argument similar again to an argument used by Afrati et al. [5] for linear programs
related to matching.

Theorem 30 If a constraint-satisfaction problem has the ability to count, then it does
not have bounded width.

Proof. An instance of the special form with no solution, as in the definition of the
ability to count, can be viewed as a bipartite graph with no perfect matching, where
the C constraints in A and B are viewed as two vertex sets, and the variables without
a Z constraint imposed on them are viewed as edges joining the two vertices in A
and B representing the constraints where they occur. Clearly no perfect matching
exists, since there is one more C constraint in A than in B. However, we can construct
such an instance of size n such that if two players play the game with [, k about /n,
where Player I selects edges and Player II indicates whether they are in the matching
or not, then Player II can ensure that if the two or three edges incident on a vertex
are ever selected together, then exactly one of them is claimed to be in the matching,
corresponding to satisfaction of C. Ignore first the degree constraint, and consider a
complete k£ 4+ 1 by k bipartite graph. Then, intuitively, as long as fewer than k edges
are currently in the matching, an unmatched vertex can always be matched by Player
II. To bound the degree, we replace each vertex of degree d in this graph by a path
on 2d — 1 vertices, with the d incident edges attached to alternating vertices in the
graph, hence all vertices now have degree 2 or 3. (This last transformation is similar
to the one given in the proof of the previous theorem.) Here |A|, |B| and the number
of variables (edges) are quadratic in k.

Hence rules with about /n variables per rule will be needed to recognize certain
instances with no solution on n variables. In the case of abelian groups, we can
improve this lower bound to about n. The basic idea is that the complete bipartite
graph considered above can be viewed as describing constraints »°; x;; = 1 for all
1 <i<k+1and ) ,;z;; = 1foral 1 < j <k, giving an obvious contradiction
22wy = 14+ 32,57 xj. This equation is of the form } ;y; = 14 37, y;, where
the y; are added in different order in the left and right hand side. If we consider
the graph consisting of a path joining the g; in the order from the left hand side
and another path joining the y; in the order from the right hand side, then in the
case where the order of summation was exchanged we have essentially a grid. For a
square grid, a bipartition of the vertices into two sets of about equal size must have
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about /n edges across the bipartition. On the other hand, an expander increases this
quantity to about n, e.g., in the case where the order of y; in the two sides is chosen
independently at random. The game played by the two players consists of selecting
vertices (variables y;) and edges (variables representing partial sums); the removal
of these may disconnect the graph, and Player II can always ensure that values are
assigned so that the connected components with fewer than some constant fraction of
the vertices have a solution consistent with the boundary constraints; a contradiction
can only be reached by growing such components, but then the fact that the graph is
an expander forces the number k of edges out of a sufficiently large component to be
about n. We don’t know whether such a bound can be obtained in the more general
case via matchings. []

Thus, the polynomial solvability of linear equations modulo 2 cannot be explained
in terms of Datalog.

It seems possible that the ability to count is the converse of having bounded
width. The intuition for this is that the non-existence of solutions can be attributed
to the presence of the same variable in different constraints, something that cannot be
remembered by Datalog if these occurrences in two different places are not ordered,
and it seems that to keep track of equality of variables in different order one needs the
ability to count.

Say that a core T' can simulate a core T" if for every relation C; in T" there is an
instance S; that defines on some variables in S; a relation C! over the domain of T
whose core is precisely C;. (Here we can bound |S;| < |T |‘Ci|.)

We are then saying that it may be that a constraint-satisfaction problem is not of
bounded width if and only if it can simulate a problem that has the ability to count.

6.3 Subgroup Problems

The simplest example of a problem that has the ability to count is the constraint-
satisfaction problem whose template is the integers modulo p for some prime p, with
two of the relations in the template given by x = 0 and z + y + z = 1, modulo p. As
far as we know, any problem with a finite template that has the ability to count can
simulate this problem for some prime p. We wish to study the interaction between
these relations on Z, and other relations in the template. We begin with a simple
observation.

Theorem 31 Suppose that a problem with template Z, for p prime contains at least
the two relations x = 0 and x + y + z = 1 modulo p, thus getting the ability to count.
Then from these two relations, every relation that is a subgroup or a coset of a subgroup
of some power Z;,’f can also be obtained.

Proof. Every subgroup or coset of a subgroup of Z;f is an intersection of sets defined
by linear equations Zle a;x; = b modulo p. So it suffices to show that every such
linear equation can be obtained. To obtain such a linear equation, it suffices to obtain
all equations of the form z = a, y = ax, and = + y = z, modulo p, since every linear
equation can be defined by combining these three basic types. In fact we only need
r=landz+y=2zsincex=aisx=14+1+---+landy=axisy=x+x+ - -+,
with a terms in the sums. To get =1, justset x +y+ 2 =1,y =0, 2 = 0. To get
r4+y=zjustsetx+y+t=1z4+u+t=1,u=0.[]
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We shall later see that if in addition to all these subgroups and cosets for Z,, and its
powers, the template also has a subset of Z],f that is not a subgroup or coset, then the
constraint-satisfaction problem for that template is NP-complete. Thus if we wish to
examine constraint-satisfaction problems that have at least the ability to count modulo
p but are not NP-complete, it does not make sense to add new constraints in Z,. It
may still make sense however, to examine templates where the p elements defining 7,
are only a subset of all the elements. Furthermore, the remaining elements should
interact in a natural manner with the p elements defining Z,, to avoid defining subsets
of Z;f that are neither subgroups or cosets. One way of achieving this is to encode
Zp as a problem such as digraph-homomorphism; the encoding adds extra elements to
the template, but only defines linear equations modulo p on some p specific elements.
This approach, however, does not create a template that is essentially different from Z,
itself, just an encoding of Z,. There only seems to be one way of obtaining a template
with more that the p elements for Z, without interfering with the structure of Z,:
simply view Z,, as a subgroup of a larger group, not necessarily abelian, and allow
subgroup and coset relations on the larger group. Here we have the following.

Let the general subgroup problem for a finite group G be the constraint-satisfaction
problem with template G whose relations are subgroups and cosets of subgroups of G*.
We shall need to bound k& by some constant to obtain a finite template, but we will
always allow k to be as large as needed for the argument at hand.

Theorem 32 The general subgroup problem for a finite group G is polynomially
solvable.

Proof. The result follows immediately from a known algorithm that finds generators
for a group, obtain by Babai [6], Furst et al. [17]; see also Theorem II.12 in Hoffmann
[27].

The main observation is that given a group H with known generators and a chain
of subgroups H = Hy > Hy > --- > H, = {1}, one can obtain distinct representatives
from each coset of each H; in H;_ i as follows. Select two elements x, 2’ among the
generators of Hy that belong to the same coset of Hy, say ¥’ = xy with y € Hy, then
discard 7’ and add y to the list of generators. Iterate until there is only one generator
in each coset of each H; in H; 1, and carry out the process for products xy of two
current generators as well. The fact that only products of pairs are needed to obtain
representatives for all cosets of each H; in H; 1 requires proof, see Theorem II.8 in
[27].

In our application, we have n elements that must be assigned values in G, so a
solution is an element of H = G™. Each relation in an instance defines a subgroup or
more generally a coset a;J; in H, for some subgroup J; of H, with 1 < i < s if there
are s relations in an instance. Let H; = JiNJoN...NJ; for 1 <i < s, then fix each
of the n components to 1 successively until H, = Hy,,, = {1} is obtained. Obtain now
representatives for all cosets of each H; in H;_; using the algorithm above.

To solve the constraint-satisfaction problem, observe that the first relation aqJp is
a coset of Hy = Jy in Hy, so we may select a representative a for this coset from the
above representation, and then look for a solution of the form ax with a fixed and x
in H;. Having fixed a, a condition az € a;J; now becomes = € a~'a;J; = b;J;. Now
we proceed with by Jo and Hs as we did before for a;J; and Hy. Here it might be that
no coset representative b for Hy in Hj is in boJs, in which case the problem has no
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solution. If such a representative b exists, we may again look for a solution of the form
by with y in Ho, and proceed as before to H3, Hy, ..., Hs. In the end, we just need to
select an element of H,, with no constraints, and we may just take 1.

This gives a polynomial time algorithm because n, r, |G|, and |H;|/|H;—1| are
polynomially bounded. []

Labeled graph isomorphism has polynomial time algorithms obtained by the authors
mentioned above, and the algorithm described in the preceding theorem is essentially
the same as the algorithm of Furst et al. [17] as described in Hoffmann [27]. In
labeled graph isomorphism, two graphs have been colored with each color occurring
a bounded number of times, and we look for a color-preserving isomorphism. For
simplicity, assume that each color occurs in k of the vertices of each of the two graphs.
Let G be the group of permutations on 2k elements, corresponding to the 2k vertices
of the same color in the two graphs. The constraint that vertices in one graph map to
vertices in the other is a coset in G, while the constraint that adjacent vertices map
to adjacent vertices is a subgroup of G for adjacent vertices of the same color, and of
G? for adjacent vertices of different colors. Thus labeled graph isomorphism can be
viewed as a subgroup constraint-satisfaction problem.

Let G be a finite group, and consider the general subgroup problem for G. Suppose
that we consider adding a non-subgroup constraint, where we mean a subset of GF
that is neither a subgroup or a coset. We have stated before that for Z,, this makes
the problem NP-complete. In fact this is still true for any abelian group G. However,
it turns out that for non-abelian groups, it is sometimes possible to include a non-
subgroup constraint and still have a polynomially solvable problem. The key notion
turns out to be what we call a nearsubgroup; nearsubgroups coincide with subgroups
in the abelian case, but not in general for an arbitrary non-abelian group.

Let G be a finite group, and let K be a subset of G such that 1 € K. We say
that K is a nearsubgroup if for all b € G such that 1 € bK, for all subgroups M of
G, and for all normal subgroups N of M such that M* = M/N is abelian, the set
K*={aN C M : KNaN # 0} is a subgroup of M*. In words, the intersections of K
with the abelian sections of G form subgroups.

An alternative definition is the following. Let G be a finite group, and let K be a
subset of G such that 1 € K and if z,y € K, then zyz € K. We call this condition the
cycles condition because given that 1 € K, it is equivalent to stating that if b, bx € K,
then bz? € K; and furthermore, this implies that baz? € K for all i, thus obtaining a
coset b < x > of a cyclic group such that b < z >C K, where < x > denotes the
subgroup generated by x. Suppose that K satisfies the cycles condition. If M is a
subgroup of G, and N is a normal subgroup of M with M/N isomorphic to E; = Z2,
then there is no b € G such that bK N M meets exactly three of the four cosets of N
in M. In this case, K is a nearsubgroup.

It will be useful to consider nearsubgroups with the following stronger 2-element
property. Here K satisfies the cycles condition, and if S is the set of 2-elements in G, b
is such that 1 € bK then SN < SNbK >C bK. That is, the 2-elements in bK generate
a subgroup whose 2-elements are in bK.

Our interest in these notions comes from the following three theorems. A non-
nearsubgroup is a bK with 1 € K such that K is not a nearsubgroup.

Theorem 33 Let G be a finite group. Consider the general subgroup problem for G.
Include also a single subset of G¥ for some k that is a non-nearsubgroup. Then the
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subgroup problem with this additional non-nearsubgroup constraint can simulate one-
in-three SAT and is therefore NP-complete.

Proof. Let bK be the non-nearsubgroup in G¥. We can treat k-tuples as single
elements, and so assume that bK is a non-nearsubgroup in G. We can simulate the
constraint x € K by y = bx and y € bK, because y = bz is a coset (x,y) € (1,b)H
where H = {(z,2) : z € G}/ So K itself is a set in the problem, with 1 € K, and not
a nearsubgroup.

Suppose that K does not satisfy the cycles condition. If for y € K, we also have
y~! € K, then the cycles condition can be restated as z,y € K implies zy~ 'z € K.
Setting a = y and az = z, we have a,az € K but az? ¢ K; we also have thisif y=! ¢ K
for some y € K, letting @ = y and az = 1. Furthermore, we can use the set K/ = ¢ 71K
as a constraint by x = ay and x € K. So we have a constraint set K with 1,z € K
but 22 ¢ K. We pass to < z >, the group generated by z, which is Z, for some n. We
wish to obtain a set with just two elements 1,z in Z; =< z > for some k|n, k > 3.

We start with K itself, and gradually reduce the size of K or the integer n down to
a smaller k. If 2, 2¢*1 € K for some k # 0, then K’ = K N (27*K) still has 1,z € K’
but with K’ strictly contained in K, unless € K if and only if 22* € K, in which case
we may pass to the smaller Z;, which is isomorphic to Z,/ < z* >. So we may assume
that 2¥ 2**1 € K only for k = 0,1. If K contains some zF with k& # 0,1 relatively
prime to n, then we set K’ = K N (2*K 1), so that 1,2¥ € K’ but z ¢ K', so K’ is
strictly smaller than K and we may rename z* to z. Similarly, if K contains some 2"
with k # 0,1 and k — 1 relatively prime to n, then we set K’ = K N (z*T1K~1), so
that z, 2% € K’ but 1 ¢ K’, so K' is strictly smaller than K and we may rename z* to
1 by a simple transformation. Now, if K contains some z* with k # 0,1 with k — 1,k
not relatively prime to n, then arguing in the smaller groups generated by z*~! and 2"
we may assume that K contains z2* and z?*~1, but this is only possible if 2k — 1 = n,
contrary to the assumption that k is not relatively prime to n.

So we may indeed assume that K contains precisely 1,z in Z,, =< z > with n > 3.
Now consider x,y,t € K NZ, with the coset constraint zyt = z. Then one of z,y,t is z
and the other two are 1, thus defining one-in-three SAT and giving NP-completeness.

For the other case, suppose that K meets exactly three of the four cosets of IV in
M. We may then pass to By = M/N = {1,a,b,ab}, and assume K = {1,a,b}. Then
consider z,y,z € {1,a} with zyz = a, which are all subgroup and coset constraints;
furthermore, add ¢ € {1,b} with (z,t) € {(1,1),(a,b)}, which are still subgroup
constraints; finally yt = w with w € K. Then one of z,y,z is a and the other two
are 1, again defining one-in-three SAT and giving NP-completeness. []

Theorem 34 Let G be a finite group. Consider the general subgroup problem for G
Include also any number of subsets bK of GF, where the sets K are nearsubgroups. Then
the subgroup problem with these additional nearsubgroup constraints cannot simulate
one-in-three SAT (and is thus unlikely to be NP-complete).

Proof. Since the intersection of nearsubgroups is a nearsubgroup by a result of
Aschbacher [3], it suffices to show that a single one-nearsubgroup K of G3 cannot
represent the one-in-three SAT relation via some cK. Suppose that it does, so that cK
contains three elements (a, b, b), (b, a,b), (b,b,a) with a # b. We may assume b = 1, and
then multiply by (a~1,1,1), so the three triples are (1,1,1), (a™1,a,1) and (a=*,1,a)
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in K; But the product (a”2,a,a) of the last two is also in K since the last two also
commute, so we have a triple (a~!, a,a) together with (a,1,1), (1,a,1), (1,1,a), i.e.,
the core will still contain some (z,a,a) for x = 1 or x = a, which does not define
one-in-three SAT. []

Consider now a problem whose constraints are subsets of G¥ containing the identity
element 1; the only constraints that do not contain 1 are single-element subsets {a} € G.
If every such a is of odd order, we call this the odd problem for G. If every such a is of
order a power of 2, we call this the 2-element problem for G.

Theorem 35 Consider a problem on a finite group G with arbitrary constraints. This
problem reduces to the odd problem and the 2-element problem together, with constraints
aR corresponding to the constraints R in the original problem. Furthermore, (1) The
odd problem reduces to the subgroup problem for G if all constraints satisfy the cycles
condition; (2) the 2-element problem reduces to the subgroup problem for G if all
constraints K satisfy SN < SN K >C K, where S is the set of 2 elements, and
also < x >€ K for x € K. Therefore the problem for G with nearsubgroup satisfying
the 2-element property reduces to the subgroup problem for G, and is thus polynomially
solvable.

Proof.  The first step takes arbitrary constraints on G and reduces them to odd
problems and 2-element problems. The basic idea is that if we have r constraints,
and s of them already contain the identity element 1, then we shall force one more of
these constraints to contain 1. Repeating this step eventually forces all constraints to
contain 1, and then 1 is a solution. Let K be the chosen set not containing 1, and
ignore the remaining r — s — 1 constraints. For K C G* itself, we may just try each
of the possible values for k variables involved. Suppose we just consider them one at a
time. We have thus reduced the problem to a problem where all constraints contain 1
except for a single constraint that assigns a value to a single variable. If this constant
is of odd order or of order a power of two, we have an odd problem or a 2-element
problem respectively. If this constant is of order rs, with r odd and s a power of 2,
then it can be written as (a,b) in Z, x Z,, where a generates Z, and b generates Z;.
We initially replace b with a variable constrained to Zs, so we only have the odd order
constant a, and hence an odd problem. After solving the odd problem, we obtain a
solution s, and we may look for a solution of the form sx. This means that in Z,. x Z;
we want the element (1,s; 1p), and this is now a 2-element problem.

It remains to reduce the odd problem and the 2-element problem to the subgroup
problem in the cases mentioned in the theorem. We consider first the odd problem,
where the constraints are subsets K of G* containing 1 and satisfying the cycles
condition. Additional constraints just assign a single odd order value to a variable.
We replace each variable with two variables. If K is a subset of GF, we replace it
with the subgroup H of G?* generated by the pairs (x,z~ ) in K. If a is a single odd

order constant, we replace it by the pair (a% ,a” 2) where a2 denotes o™ , T being the
order of a. After a solution is found for the resulting subgroup problem, we replace
each pair (x,7 ') in the solution by the product zy to obtain a solution for the original
problem. If the original problem had a solution, we can choose s a power of 2 such that
x® = z for odd order elements x and x° has odd order for all x; raising the solutlon
to the power s gives an odd order solution ¢, and we may use the pair (t2 t 2) as
a solution to the new problem. Conversely, if the new problem has a solution, then
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the odd constant pairs (a%,a_%) give the right product value a; furthermore, a pair
(z,y™) in H can be written as (zy2q - - - xg, x] 'y -+ - x5 1) with the 2; in K, and then
TY = T1T9 - TpXk - - Tox1 1S in K by the cycles condition, as desired.

For the 2-element problem, the constraints are subsets K of G* containing 1 and
satisfying the condition SN < SN K >C K. Additional constraints just assign
a single 2-element value to a variable. The main point is that the set K and the
subgroup < S N K > are indistinguishable as far as their 2-elements are concerned,
e, SN< SNK >=5nNK. So we replace the set K with the subgroup < SN K >,
and insist for either problem that the solution consist of 2-elements. As before, we can
choose r odd such that " = z for 2-elements x and z" is a 2-element for all x; raising
a solution to either problem to the power r guarantees that the solution is a 2-element,
as desired. []

Summarizing, non-nearsubgroups give NP-completeness, nearsubgroups give non-
NP-completeness unless the reduction is not a simulation of one-in-three SAT, and
nearsubgroups with the 2-element property give polynomiality by a reduction to the
subgroup case.

We first showed that nearsubgroups are the same as subgroups in the abelian case.
We moved on to the non-abelian case, and still showed that nearsubgroups are the
same as subgroups for 2-groups. This led us to consider the case of odd order groups,
where we encountered a nearsubgroup that is not a subgroup: the elements are triples
from Z, with product operation (i, j, k)(¢', ', k') = (i + 4 + jK',j + 7',k + k') and the
nearsubgroup K consists of the elements of the form (% jk,j, k). For odd order groups,
nearsubgroups immediately satisfy the 2-element property. ;From this we inferred that
for groups that are the product of a 2-group and an odd order group, in particular for
nilpotent groups, nearsubgroups satisfy the 2-element property, and so the constraint-
satisfaction problem for nearsubgroups is polynomially solvable.

We then asked whether it might always be the case that nearsubgroups satisfy the
2-element property, so that the constraint-satisfaction problem for nearsubgroups is
polynomially solvable. Michael Aschbacher found a counterexample, where K = [ is
the set of involutions (elements of order 2) plus the identity element 1, in a rank 1
simple Lie group of even characteristic with at least one element of order 4.

Because of this example, we considered the case of groups with no element of order
4, and showed for such groups that when the 2-Sylow subgroups have at most four
elements, then nearsubgroups satisfy the 2-element property; Aschbacher proved a
general theorem that implies that nearsubgroups satisfy the 2-element property for
all groups with no element of order 4. Since all groups where we had previously
shown that nearsubgroups satisfy the 2-element property are solvable, and Aschbacher’s
counterexample is not a solvable group, we asked whether there might be any
counterexample for solvable groups. Aschbacher showed that nearsubgroups satisfy
the 2-element property for solvable groups. Finally, since it is not possible to simulate
one-in-three SAT and obtain NP-completeness with nearsubgroups alone, we asked
whether nearsubgroups could give a non-nearsubgroup by intersection; Aschbacher
showed that this is not possible, the intersection of nearsubgroups is a nearsubgroup.

Summarizing our findings and those of Michael Aschbacher [3],

Theorem 36 Let G be a finite group.
(1) If G is abelian, or a 2-group, then its nearsubgroups are subgroups.
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(2) Let I be the involutions plus 1. If G has two involutions whose product has
order 4, then I is not a nearsubgroup. Otherwise, I is a nearsubgroup. If in addition
I generates no element of order 4, then I satisfies the 2-element property, otherwise it
does not. There exist groups G that meet this condition for I being a nearsubgroup but
not satisfying the 2-element property.

(8) If G has no element of order 4, or if it is solvable, then its nearsubgroups satisfy
the 2-element property.

(4) The intersection of nearsubgroups is a nearsubgroup.

The fact that there are finite groups G with nearsubgroups that do not satisfy
the 2-element property, such as the ones in (2) above, creates an interesting situation.
Consider the nearsubgroup problem for G. We know that this problem cannot simulate
one-in-three SAT, and is thus unlikely to be NP-complete. On the other hand, only
nearsubgroups with the 2-element property seem to be transformable into subgroups so
as to obtain a subgroup problem, so the problem might not be polynomially solvable.
This is our best candidate for a constraint-satisfaction problem that might be neither
polynomially solvable nor NP-complete.

7 Conclusions and Further Directions

Every known polynomially solvable problem in CSP can be explained by a combination
of Datalog and group theory. In fact, only three specific cases combine to give all known
polynomially solvable problems. The three cases are width 1, bounded strict width,
and subgroup problems.

These three cases have something in common, which is best illustrated by the
following characterizations.

(1) A problem has width 1 if and only if there is a function f that maps nonempty
subsets of the template to elements of the template, such that for every relation R in
the template, of arity k, the following holds. Let Si,.59,...,Sr be subsets with the
property that for every z; in S;, there exist x; in S; for j # i such that (x1,z2,...,zk)
isin R. Then (f(S1), f(S2),..., f(Sk)) isin R. The case of extended width 1 is slightly
more general, because it only considers a fraction of the subsets of the template.

(2) A problem has strict width [ if and only if there is a function g that maps
[+ 1-tuples from the template to elements of the template, such that for every relation
R in the template, of arity k, the following holds. First, if all but at most one of some

[ + 1 elements x; are equal to some specific element z, then g(x1,z2,...,2141) =
x. Second, let x;; be elements with (z1;,22j,...,25;) in R for every j. Then
(9(z11, 712, s T1041))s 9(T21, 22,5 - -+ To(i41))s - -+ G(Th1, Ty - - - 2h(1+ 1)) is in R.

(3) A problem is a subgroup problem if and only if we can define a group operation
on the elements of the template such that for every relation R in the template, of
arity k, the following holds. If the three tuples (b1, ba,...,bx), (b1z1,boxa,. .., brrk),
(b1y1, b2y, ..., bryk) are in R, then the tuple (byz1y1, bawoys, . .., bpxryk) is also in R.
This means that R is a coset of a subgroup of G*.

These three characterizations are all closure properties, i.e., there exists a function
(f, g, or group operation) such that every relation R in the template is closed under
component-wise application of the function. Schaefer [44] used such closure properties
when he classified the polynomially solvable and NP-complete problems in boolean
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CSP. He was thus in a sense showing that Horn clauses, 2SAT, and linear equations
modulo 2, the three polynomially solvable cases, are width 1, strict width 2, and
subgroup, respectively. We do not know whether polynomial solvability for CSP is
always necessarily tied to a closure property. It is worth noting here that convex
programming, a constraint satisfaction problem over the reals solvable in polynomial
time with the elypsoid method, is also characterized by a closure property, namely the
mappings hq(z,y) =ar + (1 —a)y for 0 < a < 1.

The algorithmic significance of these closure properties is an interesting question.
For problems of width 1, the f mapping is not needed to solve the problem in
polynomial time, but can be used to obtain a solution directly once the Datalog
program has found nonempty sets associated with each variable. For problems of
strict width [, we do not know in general whether the g mapping can help in finding
a solution. There are however problems where the f and g mappings help find fast
algorithms. Here the following results from Feder and Hell [15] are good examples. The
connected list problem for reflexive graphs is polynomially solvable for chordal graphs,
NP-complete otherwise. For chordal graphs, this problem has width 1. By using the
perfect elimination ordering for perfect graphs, a fast parallel algorithm can be found for
this problem; and here the f mapping is based on the existence of a perfect elimination
ordering. Similarly, the arbitrary list problem for reflexive graphs is polynomially
solvable for interval graphs, NP-complete otherwise. For interval graphs, this problem
has strict width 2. By using the interval representation for interval graphs, a reduction
to 2SAT can be found for this problem, giving again a fast parallel algorithm; and here
the ¢ mapping is based on the existence of an interval representation. Thus the f and
g mappings can help understand the structure of a problem and lead to fast parallel
algorithms. For subgroup problems, the situation is more drastic: we do not know of
any algorithm that does not involve finding generators, and here the group operation
is used directly.

This raises an important question. For subgroup problems, the set of solutions has
a polynomial number of generators. This means that if s is a solution, then there
exists a polynomial number of solutions such that if we take the closure under the
mapping that maps s, sz, sy to sxy, then we obtain all solutions. Now we may ask:
Does there exist a polynomial number of generators for the width 1 and bounded strict
width cases, when closure under f and g mappings is considered? We study first the
bounded strict width case. Here there does exist a polynomial number of generators,
namely, if a problem has strict width [, then for each choice of [ variables z1, o, ..., z,
determine the assignments of values to these variables for which a solution exists, and
choose one solution for each assignment. This produces at most n! generators. To see
that these are generators, suppose that we have a solution, and consider the values it
assigns to [ 4+ 1 variables z1,...,x;41. For each choice of a variable x;, there exists
a generator that assigns the correct value to the remaining x;, but not necessarily to
xz;. Find [ + 1 such generators, one for each ¢, and then applying the g mapping to
them will assign the correct value to the [ + 1 variables. Inductively, we can then
obtain the correct assignment for all variables. Now consider the width 1 case. Here
we write f(S) = t for a set of solutions S and a solution t if for each variable z;,
letting S; be the set of values taken by x; in S, and letting ¢; be the value of x; in t,
we have f(S;) = t;. In general, the number of generators needed for this f mapping
is exponential. For Horn clauses, with f({0}) = 0, f({1}) = 1, and f({0,1}) = 0,
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the mapping f(S) = t corresponds to set intersection. Even for independent set, a
special case of Horn clauses, the set of generators with the f mapping must contain at
least the maximal independent sets, and there can be an exponential number of them:;
independent set, on the other hand, is also a special case of 2SAT, and the number of
generators with the g mapping is polynomial. For linear programming, the generators
with the h, mappings are the vertices of the polytope, and there can be an exponential
number of them. Notice now that Horn clauses and linear programming are in general
P-complete, while neither bounded strict width problems nor subgroup problems seem
to be P-complete; it might be that P-completeness is tied to the non-existence of a
closure property that allows for a small (polynomial or at least non-exponential) set of
generators.

Our attempt to classify the problems in CSP and establish a dichotomy is based
on the following two conjectures.

Conjecture 1 A constraint-satisfaction problem is not in Datalog if and only if the
associated core T can simulate a core T' consisting of two relations C, Z that give the
ability to count. This is equivalent to simulating either Z, or one-in-three SAT.

Conjecture 2 A constraint-satisfaction problem is NP-complete if and only if the
associated core T can simulate a core T’ consisting of the single relation C defining
one-in-three SAT.

The first conjecture indicates a sharp line out of Datalog and into group theory:
Since one-in-three SAT can simulate Z5, and when the two linear equations x = 0,
z + y+ z = 1 modulo p give the ability to count, then every linear equation modulo
p can be simulated, it follows that the conjecture basically says that a problem not in
Datalog is at least as powerful as the general subgroup problem for Z,,.

So we assume that a template not in Datalog contains at least the general subgroup
problem for Z,. We move then on to the second conjecture, which indicates a sharp
line into NP-completeness. We thus try to determine what can make a problem that
can simulate Z, be able to simulate one-in-three SAT, and thus NP-complete. We first
observe that on the p elements that simulate Z,,, any relation that is not a subgroup or
a coset in a power of Z,, makes it possible to simulate one-in-three SAT. It is thus not
possible to interfere with Z,, itself and avoid NP-completeness. This suggests that the
only way to enlarge the Z, problem and still obtain a problem that cannot simulate
one-in-three SAT may be to view Z, as a subgroup of a larger, not necessarily abelian,
group. It seems that any other approach to extending Z,, would simply combine Z, with
other problems without interfering with Z, itself, either by taking the product of Z,
with another problem, or encoding Z,, in a special class such as digraph-homomorphism.

Suppose then that we have the general subgroup problem for a finite group, which
is still polynomially solvable. It is no longer true that adding a non-subgroup makes it
possible to simulate one-in-three SAT. We can show that adding a non-nearsubgroup
makes it possible to simulate one-in-three SAT. So we only allow nearsubgroups. The
intersection of nearsubgroups gives nearsubgroups. So nearsubgroups do not make it
possible to simulate one-in-three SAT, which by the second conjecture would mean that
adding nearsubgroups to a subgroup problem cannot make the problem NP-complete.
We can show that if we restrict our attention further to nearsubgroups with the 2-
element property, then nearsubgroups can be replaced with related subgroups, the
resulting problem reduces to subgroup problems, and is thus polynomially solvable.
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But then nearsubgroups have the 2-element property for many groups, including
solvable groups and groups with no element of order 4, by results of Aschbacher. It
may then be that a subgroup problem always remains polynomially solvable when
we add nearsubgroups. However, Aschbacher identifies a group with a nearsubgroup
that does not have the 2-element property. It does not seem possible to represent this
nearsubgroup as a subgroup, so the problem does not immediately reduce to a subgroup
problem, although it still contains the general subgroup problem for the chosen group;
this may mean that the problem is not polynomially solvable. On the other hand, the
fact that nearsubgroups cannot simulate one-in-three SAT may mean that the problem
is not NP-complete.

We thus have our best candidate for a problem in CSP that may be neither
polynomially solvable nor NP-complete, which is the following. Consider the general
subgroup problem for a finite group, and focus on the set of involutions, including the
identity, which we wish to add as a new constraint. If some element of order 4 is the
product of two involutions, then involutions are not a nearsubgroup, and the problem
is NP-complete. Otherwise, the involutions are a nearsubgroup. If no element of order
4 is generated by involutions, then the involutions have the 2-element property, and
the problem is polynomially solvable. Otherwise, the involutions do not have the 2-
element property. Aschbacher observed that there are such finite groups, where the
involutions form a nearsubgroup without the 2-element property. Could it be that for
such groups the involutions define a problem that is neither polynomially solvable nor
NP-complete?

This is the current state of the attempt to classify the problems in CSP and obtain
a dichotomy. Considering the two main conjectures, it may be that there is a direct
approach towards proving the first one, concerning the ability to count. One might
start by showing that if a subgroup problem does not have the ability to count, then
it can be solved with Datalog, beginning with abelian groups; similarly, one could
consider linear programming, a constraint satisfaction problem over the reals that gets
the ability to count by representing bipartite matching or linear equations, and show
that if a linear programming template does not have the ability to count, then it can
be solved with Datalog.

The second conjecture cannot be approached directly, as we cannot show non-NP-
completeness without showing P#£NP. It might still be possible to show that if a CSP
problem cannot simulate one-in-three SAT, then it belongs to a class that is unlikely
to contain NP-complete problems, such as co-NP; this would establish a dichotomy,
namely NP-complete versus in NPNco-NP. An approach along these lines was successful
in showing that graph isomorphism is not NP-complete unless the polynomial hierarchy
collapses.

A basic questions remain open. Find a deterministic construction of small graphs
of high chromatic number and high girth, in particular with the size of the graph
polynomial in the chromatic number, with the girth lower bounded by a constant.
This would help derandomize the reduction between equivalent MMSNP and CSP
problems.

The class NP consists of all problems expressible by an existential second-order
sentence with an arbitrary first-order part (see [11], the first-order part need not
be universal as for SNP). What is the complexity of problems in MMNP, the class
monotone monadic NP without equality or inequality?
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