
Is There a Best Symboli Cyle-Detetion

Algorithm?

Kathi Fisler

1;4

, Ranan Fraer

2

, Gila Kamhi

2

, Moshe Y. Vardi

1?

, and Zijiang

Yang

1;3

1: Department of Computer Siene, Rie University, Houston, TX, USA

2: Intel Development Center, Haifa, Israel

3: CCRL, NEC, Prineton, NJ, USA

4: Worester Polytehni Institute, Worester, MA, USA

Abstrat. Fair-yle detetion, a ore problem in model heking, is

solvable in linear time in the size of the design model using an expliit-

state representation. Existing yle-detetion algorithms for symboli

model heking are quadrati or n log n time in the worst ase and often

ineÆient in pratie. Whih default symboli yle-detetion algorithm

to implement in model hekers remains an open question. We ompare

several suh algorithms based on the numbers of external and internal

iterations and the numbers of image operations that they perform on

both randomly-generated and real examples. Unlike reent work by Ravi,

Bloem, and Somenzi, we onlude that model hekers need to implement

at least two generi yle-detetion algorithms: the traditional Emerson-

Lei algorithm and one that evolved from our study, originally due to

Hojati et al. We demonstrate that these two algorithms are omplemen-

tary, as the latter algorithm is provably inomparable to Emerson-Lei's

and often dominates it in pratie.

1 Introdution

Model heking, whether for LTL, CTL, or !-automata, has linear time om-

plexity in the size of the design model. This well-known result follows from

two fats: �rst, that most model heking tehniques redue to the problem

of loating yles through a given set of nodes in a graph [3, 18℄; seond, that

yle detetion is solvable in linear time using a depth-�rst searh that identi-

�es strongly-onneted omponents (f, [4℄). This depth-�rst strategy provides

a suitable approah to yle detetion in expliit-state model heking, and has

been implemented in several tools [7, 11℄.

Depth-�rst approahes to yle detetion are not suitable for BDD-based

symboli model heking beause BDDs represent sets of states while depth-�rst

searh examines individual states. EÆient BDD-based model heking requires

eÆient breadth-�rst, set-based yle-detetion algorithms. Most modern sym-

boli model hekers employ some variant of Emerson and Lei's symboli yle-

detetion algorithm [5℄. CTL model hekers use the Emerson-Lei algorithm

?

Work partially supported by NSF Grant CCR-9988322 and a grant from the Intel

orporation.



(heneforth el) to proess formulas of the form EG ', whih speify in�nite

paths on whih every state satis�es '. Linear-time model hekers ompose the

design model with an automaton representing the negation of the property, then

hek for yles in the produt automaton using the CTL formula EG true. Un-

fortunately, el's time omplexity is not linear in the size of the design model: the

algorithm ontains a doubly-nested �xpoint operator, and hene requires time

quadrati in the design size in the worst ase. The algorithm is also often slow

in pratie. el is a so-alled SCC-hull algorithm [16℄. SCC-hull algorithms om-

pute the set of states that ontains all fair yles. In ontrast, SCC-enumeration

algorithms enumerate all the strongly onneted omponents of the state graph.

While SCC-enumeration algorithms have a better worst-ase omplexity than

SCC-hull algorithms [1℄, their performane in pratie seems to be inferior to

that of SCC-hull algorithms [16℄. This paper fouses on SCC-hull algorithms.

Researhers have proposed several alternatives to el [8, 10, 14℄. Ravi, Bloem,

and Somenzi have presented both a lassi�ation sheme for suh algorithms

and an experimental omparison of several algorithms with el [16℄. They on-

luded that no algorithm onsistently outperforms el for yle detetion, and,

onsequently, there is no reason to \dethrone" el as the default yle-detetion

algorithm. Their omparison, however, is based primarily on running times, and

seondarily on numbers of image operations. This approah has two signi�ant

drawbaks: it provides no useful feedbak on why the algorithms behave as ob-

served, and it suggests no tehniques for prediting when one algorithm might

outperform another. Furthermore, their omparison onsiders some algorithms

that are based on post-image operations and some that are based on pre-image

operations (as is el), making it rather diÆult to draw �rm onlusions.

This paper demonstrates a methodology that both addresses these onerns

and identi�es a symboli yle-detetion algorithm that provides a viable al-

ternative to el. Ravi et al. present bounds on the number of image operations

performed by various yle-detetion algorithms. We argue that to understand

the performane of SCC-hull algorithms one needs to measure both the number

of image omputations as well as the number of external iterations (de�ned in

Setion 2). Our methodology fouses on the number of external iterations per-

formed as a basis for omparing and re�ning symboli yle-detetion algorithms.

In aiming to balane the numbers of external and internal iterations performed,

we have identi�ed an algorithm that, as we argue, should join el as a generi

yle-detetion algorithm. We demonstrate that this algorithm is inomparable

to el, dominating it in many ases. Our onlusion is that, as in many other as-

pets of model heking, there is no \best" yle-detetion algorithm and model

hekers need to implement at least both el and our algorithm.

Setion 2 desribes our analyses of three existing symboli yle-detetion

algorithms and shows how the ompetitive algorithm evolved from these anal-

yses. Setion 3 presents experimental results on randomly generated and real

examples for both the speial ase of terminal and weak systems and more gen-

eral examples. Setion 4 ompares the ompetitive algorithm to a speialized

yle-detetion algorithm for terminal and weak systems. Setion 5 onludes.



2 Symboli Cyle-Detetion Algorithms

Cyle-detetion algorithms in the ontext of model heking searh for \bad"

yles in a direted graph representing a transition system modeling a design

undergoing veri�ation. Two parameters speify whih yles are onsidered bad:

the invariant and the fair sets. The invariant spei�es a ondition, suh as a

propositional formula, that must be true of every state on a bad yle. The fair

sets speify sets of states that every bad yle must pass through. We write

EG

fair

' to indiate a searh for yles satisfying invariant ' and passing through

fair sets fair. We will omit the fair annotation when all states are onsidered fair.

Cyle detetion in BDD-based model heking is hallenging beause the

BDDs o-mingle information about di�erent paths through a design. Symboli

yle-detetion algorithms maintain a set of states that may lead to bad yles;

this set is onservative, in that it ontains all states that do lead to bad yles.

We all this the approximation set. The algorithms repeatedly re�ne the approx-

imation set by loating and removing states that annot lead to a bad yle; we

all this the pruning step. If a state lies on a bad yle, then it must have a su-

essor and a predeessor on that same yle (and thus also in the approximation

set). Cyle-detetion algorithms use this information in di�erent ways.

Formally, these algorithms searh for yles in nondeterministi transition

systems. A transition system is a tuple hQ;R;Q

0

;Fi, where Q is a set of states,

Q

0

� Q is the initial state set, R � Q�Q is the transition relation, and F � Q

is the set of fair states. A transition system is weak i� (1) there exists a partition

of Q into sets Q

1

; : : : ; Q

n

suh that eah Q

i

is either ontained in F or is disjoint

from it, and (2) the Q

i

's are partially ordered so that there is no transition from

Q

i

to Q

j

unless Q

i

� Q

j

. If the Q

i

's ontained in F are the maximal elements of

the partial order, a weak system is alled terminal. This de�nition of weak and

terminal transition systems is due to Bloem, Ravi, and Somenzi [2℄, as re�ned

from Kupferman and Vardi [15℄. In model heking, designs ommonly have

several fair sets, and bad yles must pass through eah fair set. Suh designs

are outside the sope of weak systems, whose de�nition is only meaningful for

one fair set.

1

el appears in Figure 1 (left).

2

At eah iteration through the while loop,

el omputes the set of states that an reah every fair set via a non-trivial

path ontained in the approximation set, b. We all these iterations external ;

the reahability omputations (the EU formula) form the internal iterations. el

does most of its work in the internal iterations: eah external iteration performs

only one preimage omputation per fair set outside of the internal iterations.

Hardin et al. attempted to redue the number of external iterations that

el performs as a means of ahieving an improved algorithm [8℄. Their algo-

rithm, alled Cath-Them-Young (heneforth ty), aggressively prunes the set

1

LTL-to-automaton translation algorithms may yield multiple fair sets when one

would suÆe, rendering an otherwise weak system non-weak. Thus, minimizing the

number of fair sets is an important optimization.

2

Figure 1 shows VIS' implementation of el; in SMV, the �nal image omputation

(b := b ^ EX d) is outside the for loop.



b := invariant ;

while b hanges do

for eah fair set F

i

do

d := E[b U (F

i

^ b)℄ ;

b := b ^ EX d ;

b := invariant ;

while b hanges do

for eah fair set F

i

do

F

i

:= F

i

^ b ;

b := E[true U F

i

℄ ^ E[true S F

i

℄

while b hanges do

b := b ^ EX b ^ EY b ;

res := EF b;

b := invariant ;

while b hanges do

for eah fair set F

i

do

F

i

:= F

i

^ b ;

b := E[b U (b ^ EX F

i

)℄ ;

while b hanges do

b := b ^ EX b ;

Fig. 1. The el (left), ty (middle), and owty (right) yle-detetion algorithms. In

ty, EP F

i

denotes all states that an reah F

i

and EY b denotes the suessors of b.

A variant of ty, ty+, replaes \true" with b in the EU and ES omputations. Eah

algorithm initializes the approximation set to states satisfying the invariant.

of states potentially lying on bad yles during the internal iterations (a losely

related algorithm was proposed in [10℄). This an redue the number of external

iterations by removing states during an external iteration that a later external

iteration would otherwise handle in el.

3

The original ty algorithm does yle

detetion only; it does not ompute EG as el does. For onsisteny, Figure 1

(middle) provides a version of ty that an be used to ompute EG; this entails

one di�erene from the original algorithm: the extra EF omputation in the last

step of the algorithm.

The external iterations in ty perform two steps: �rst, ompute the set of

states that are both reahable from and an reah every fair set (the internal it-

erations); seond, repeatedly prune the approximation set until it is losed under

both suessors and predeessors. In ontrast, el prunes the approximation set

only one and removes only states whih have no suessor in the approximation

set; el does not iterate the pruning step within one external iteration. ty an

eliminate states from the approximation set earlier than an el, hene the name

\Cath-Them-Young". Like el, ty has quadrati time omplexity with respet

to the size of the design. Hardin et al.'s experimental results, onduted over a

large set of randomly-generated designs, were mixed; ty tended to outperform

el when there was no bad yle, but performed worse than el in the presene of

yles [8℄. ty's aggressive pruning strategy sueeded in reduing the number of

external iterations, but nevertheless inurred a notieable performane penalty.

In order to understand why ty fails to outperform el, we must examine eah

algorithm's atual omputations. This paper studies patterns of image ompu-

tations and external iterations, as the former are the most expensive operations

in a BDD-based setting and the latter greatly impat the performane of y-

le detetion algorithms. Setion 3 presents numeri data from this analysis. In

summary, while ty performs signi�antly fewer external iterations than el, it

does not redue the number of image omputations. In essene, el does too little

work outside the internal iterations whereas ty does too muh work overall.

Engineering a better balane between the iterations might yield an algorithm

that onsistently outperforms both el and ty. One key di�erene between el

3

Though el may eliminate states in earlier iterations than ty.



and ty is that el prunes based only on suessors, whereas ty onsiders both

suessors and predeessors. An intermediate approah ould perform ty's re-

peated pruning, but using only pre-image omputations, as in el [19℄. This ould

greatly redue the number of image omputations of ty, though perhaps at the

expense of some additional external iterations. The resulting algorithm, alled

One-Way-Cath-Them-Young (heneforth owty), appears in Figure 1 (right).

4

owty is essentially the pre-image version of Hojati et al.'s el2 algorithm (sans

an initial reahability omputation) [10℄; its pruning strategy is similar in spirit

to that of Kesten et al.'s algorithm for yle detetion in the presene of strong

fairness [14℄ (whih uses forward instead of bakward image operations).

How do owty and el ompare? Hojati et al.'s experiments on a small

set of small examples disussed only running time and were inonlusive for

these two algorithms. Ravi et al.'s experiments ompared el and the forward-

operator version of el2/owty; this is not too meaningful, sine the issue of

forward vs. bakward reahability [9℄ is orthogonal to the balane between ex-

ternal and internal iterations (indeed, the upper bounds obtained in [16℄ for el

and forward-el2 are inomparable). owty's worst-ase running time has only

a linear overhead (see below) over the O(jFjdh) worst-ase upper bound that

Ravi et al. identi�ed for el [16℄ (where jFj is the number of fairness onstraints,

d is the diameter of the state graph, and h is the length of the longest reahable

path in the SCC quotient graph). A worst-ase analysis as done in [16℄ provides,

however, only a very oarse omparison between the two algorithms. First, the

overhead of owty over el is not very signi�ant. Seond, the worst-ase in-

stanes for el may be di�erent than those for owty, whih means that the

omparison of worst-ase running times does not tell us how the two algorithms

ompare on a given input instane. A more meaningful analysis would ompare

how the two algorithms perform on onrete instanes. Analysis at this level

shows that the two algorithms are inomparable. Figure 2 illustrates the di�er-

enes between the el and owty pruning strategies; owty outperforms el on

the �rst transition system, while el outperforms owty on the seond.

(1)

(2)

Fig. 2. Two transition systems that illustrate the di�erenes between el and owty.

Blak irles denote fair states. All states satisfy the invariant.

Consider the �rst transition system. Both algorithms eliminate the rightmost

state in the �rst iteration and apture the remaining states in the approximation

set. During the �rst iteration, owty eliminates all but the leftmost fair state;

4

A variant of owty performs pruning inside the for loop; in pratie, neither version

onsistently outperforms the other.



el eliminates only the rightmost fair state. el requires an additional iteration to

eliminate eah of the four middle fair states. Eah iteration involves a reahability

omputation that owty does not perform. If the hain of fair states in the �rst

system ontained n fair states, owty would perform O(n) image omputations

while el would perform O(n

2

) image omputations. Thus, el has a quadrati

overhead relative to owty on suh systems.

Now onsider the seond transition system. In the �rst iteration, both al-

gorithms eliminate the rightmost state and retain the remaining states in the

approximation set. During the �rst iteration, el throws away the rightmost fair

state. The reahability omputation in the seond external iteration begins at

the middle fair state; thus, el eliminates the non-fair states between the right

two fair states without traversing them expliitly again. owty, in ontrast,

uses an additional image omputation to eliminate eah of those non-fair states.

The seond system urrently ontains two opies of a hain of states onsisting

of four non-fair states, followed by a fair state, followed by a non-fair state with a

self loop. If the system had k onseutive opies of this hain, eah with m states

in the initial non-fair hain, el would perform O(k

2

m) image omputations as

ompared to owty's O(k

2

m + km) = O(k

2

m) image omputations. That is,

the overhead of owty relative to el is only linear.

In general, the two algorithms are inomparable with respet to their numbers

of image omputations. As owty provably performs no more external iterations

than el, owty's overhead (if it exists at all) is aused by the last line of the

algorithm, whih prunes the approximation set. Thus, owty's overhead is at

most linear relative to el, while, as we saw, el an have a quadrati overhead

relative to owty.

To gain a better piture on the omparative performane of el, ty, and

owty, the experimental analyses in Setion 3 gather data on the numbers of

external iterations aross several randomly generated and real examples; to om-

plement the Ravi et al. study [16℄, we also inlude running time, memory usage,

and BDD size statistis. Our analyses show that owty requires almost the

same number of external iterations as ty with far fewer image omputations;

in pratie, owty almost always mathes or improves on el's performane.

3 Comparative Analysis of the Algorithms

3.1 Experiments on Random Systems

Our �rst set of experiments ompares the algorithms on random systems. We

generate random systems by generating random direted graphs. We would like

to obtain direted graphs with non-uniform out-degree and linear density (i.e.,

a linear number of edges in the number of nodes); linear density prevents y-

le detetion from beoming trivial due to an exess or pauity of edges. The

following model of random graphs, due to Karp [13℄, satis�es these riteria:

De�nition 1 For eah positive integer n and eah p with 0 < p < 1, the sample

spae onsists of all labeled digraphs D

n;p

with n verties and edge probability p.



Given a graph G with verties V and edges E, the order of G is jV j and the

density of G is jEj=jV j. We will use n and d to represent a graph's order and

density, respetively. We wish to generate graphs in the spaeD

n;d=n

. Generating

the graphs diretly based on this model beomes time onsuming as n grows

larger: the proedure must deide whether to inlude eah of the possible n(n�1)

edges based on the probability d=n. Instead, we �x the number of edges to be the

expeted number dn, and hoose dn distint edges from the n(n�1) andidates.

This approah provides a very good approximation to the given model [19℄.

Our experiments ompare four algorithms: el, ty, ty+, and owty.

ty+ is a variant of ty that restrits the reahability omputations to onsider

only paths through the approximation set, rather than through the entire state

spae as in ty [19℄; in other words, ty+ replaes line 5 of ty with b :=

E[b U F

i

℄ ^ E[b S F

i

℄, where S is the past-time operator sine. We present

two sets of results. The �rst measures the number of external iterations that

eah algorithm performs, the next measures the number of image omputations

that eah algorithm performs.

5

The experiments use graphs with order 2

12

and

densities varying over 1.2, 1.6, 2.0, and 2.4. This order is large enough to explore

the behavior of the algorithms, yet small enough to analyze in a reasonable

amount of time. We de�ne a single fair set for eah graph, with size varying over

:01n, :1n, :3n, :5n, :7n, and :9n where n is the digraph order. Eah experiment

�xes either the density or the size of the fair set and varies the other. The �gures

reported in the rest of this setion are averaged over 100 individual experiments.

jFj

:01n :1n :5n :9n

ty 2.18 2.41 2.09 2.00

ty+ 2.18 2.41 2.09 2.00

owty 2.17 2.37 2.07 2.00

el 2.66 5.36 13.20 20.89

d

1:2 1:6 2:0 2:4

ty 2.00 2.00 2.00 2.00

ty+ 2.00 2.00 2.00 2.00

owty 2.00 2.00 2.00 2.00

el 20.89 10.37 7.02 5.09

Table 1. Average number of external iterations on digraphs with order 2

12

. The left

table �xes the density at 1.2 and varies the fair set size. The right table �xes the fair

set size at :9� 2

12

and varies the density.

Table 1 shows the number of external iterations on digraphs with order

n = 2

12

. One set of experiments �xes the density at 1.2 and varies the fair

set size; the other �xes the fair set size at :9�2

12

and varies the density. The ta-

bles indiate that ty, ty+ and owty perform far fewer external iterations

than el. Furthermore, owty performs essentially the same number of external

iterations as ty; thus pruning based on predeessors as well as suessors, as

ty does, does not signi�antly redue the number of external iterations over a

pruning strategy based only on suessors. We therefore expet owty to on-

sume onsiderably fewer resoures than ty in pratie. el requires signi�antly

5

We refer to post- and pre-image omputations olletively as image omputations.



more external iterations as the fair set grows larger, and signi�antly fewer ex-

ternal iterations as the density inreases. In ontrast, ty, ty+, and owty

perform fairly onsistent numbers of external iterations in both ases.

The data in Table 1 do not indiate that ty and owty are more eÆ-

ient than el beause the former algorithms may do more work in the internal

iterations. The number of image omputations o�ers a more preise eÆieny

omparison. Image omputations are the most omputationally expensive op-

erations in eah of the yle-detetion algorithms. The ost of these operations

depends on the density and order of the underlying graphs [19℄. Sine we analyze

the four algorithms over the same randomly generated graphs, the ost of indi-

vidual image omputations is omparable aross the algorithms. The number of

image omputations is therefore a fair parameter for omparing the algorithms.

0 10 20 30 40 50 60 70 80 90
20

40

60

80

100

120

140

160

180

200

size of fair set (percentage of digraph order)

n
u
m

b
e
r 

o
f 
im

a
g
e
 c

o
m

p
u
ta

tio
n
s

EL
CTY
CTY+
OWCTY

Fig. 3. Number of image omputations for el, ty, ty+ and owty.

Figure 3 shows the number of image omputations performed over graphs

with order n = 2

12

, density d = 1:2, and fair set size ranging over :01n, :1n, :3n,

:5n, :7n, and :9n. For ty, ty+ and owty the number of image omputa-

tions dereases as the fair set gets larger. ty performs more image omputations

than ty+ beause ty+ restrits reahability omputations to the approxi-

mation set, whih allows the omputation to onverge faster. owty performs

fewer image omputations than either ty or ty+ beause it does not per-

form forwards reahability. Separate data (not shown) show that the bakwards

reahability omputations in owty and ty perform almost the same num-

bers of image omputations; furthermore, the pruning step in owty performs

roughly half as many image omputations as that in ty+[19℄. Thus, eliminating



the forward image omputations makes owty less omputationally expensive

without adversely a�eting the number of external iterations required.

Separate experiments (not shown) show that the number of image ompu-

tations dereases sharply as the density inreases [19℄. In the ase of el, the

number of image omputations drops beause the algorithm performs fewer ex-

ternal iterations as density inreases, as disussed previously. For the remaining

three algorithms, our experimental data shows that the size of the approximation

set after eah iteration beomes larger as the density inreases. The approxima-

tion set determines the base set for subsequent reahability omputations. The

larger the base set, the faster reahability omputations onverge [19℄. There-

fore, fewer image omputations are needed when the digraph density inreases.

Although eah pruning step removes fewer verties, the �nal approximation set

is also larger, so the algorithms perform fewer image omputations as density

inreases. Plots for running time statistis are similar to those for image ompu-

tations. In partiular, both owty and ty onsistently outperform el. This

ontradits the mixed results in other ty versus el experiments [8, 16℄.

3.2 Experiments on Real Systems

Our real design examples ome from the VIS distribution and from Fabio Somenzi.

They inlude an ethernet protool with varying numbers of ollisions before

failure, a tree-strutured arbiter with 8 nodes, a gd iruit, a oating point

multiplier, and two mutual exlusion protools (bakery and eisenberg). These

examples are written in Verilog and evaluated using the VIS model heker [17℄.

We implemented owty within the VIS framework by replaing the original

(el) algorithm for evaluating EG formulas with owty in a opy of VIS. We

ran the experiments using VIS version 1.3 (with version 1.2 of the vl2mv om-

piler), on an Intel 686 mahine with 1GB of memory running RedHat Linux

version 2.2.12-20; our VIS installation uses the CUDD BDD pakage.

Table 2 summarizes experiments with LTL model heking of terminal and

weak systems. For eah LTL experiment, we evaluated EG

fair

true on the produt

of the original design and a manually-onstruted automaton for the negation of

the property. Table 3 overs examples with multiple fair sets in the ontext of

CTL model heking. Table 4 overs LTL model heking under multiple fairness

onstraints. In eah table, stars on experiment names denote that the models

ontained yles or that the property failed. The EX/EY and EU/ES �gures ount

the number of image and reahability omputations performed, respetively.

6

The tables show that owty generally mathes or outperforms el, while

ty and ty+ are learly not ompetitive. In many ases, owty outperforms

el dramatially; in ontrast, we have not yet found an example on whih el sig-

ni�antly outperforms owty. The bene�ts of owty are partiularly evident

on the ethernet and gd examples in Table 2. As expeted, owty uses fewer

external iterations than el; however, owty sometimes performs more image

omputations than el.

6

The EU/ES ounts do not inlude trivial omputations of the form [' U '℄.



Experiment Proedure Ext. EX or Time Mem peak live

Iter. EX/EY (se) (MB) BDD nodes

ethernet 1 el 51 2179 356.6 13.6 339932

ty 2 42/43 187.9 14.6 398280

ty+ 2 41/42 184.8 14.6 398280

G(p! Fq) owty 3 57 5.5 11.7 175118

ethernet 2 el 107 6506 10656.1 14.4 367135

ty 2 67/68 1893.6 33.6 1365367

ty+ 2 66/67 1887.6 33.6 1365755

G(p! Fq) owty 3 113 59.6 14.1 404723

ethernet 3 el 171 11914 4371.3 13.7 279823

ty 2 95/96 1962.2 35 1456597

ty+ 2 94/95 1938.0 35 1456597

G(p! Fq) owty 3 177 24.6 13.8 290593

ethernet 4 el - - (30H) - -

ty 2 130/131 5859.7 53.6 2320201

ty+ 2 130/2 5895 53.6 2320201

G(p! Fq) owty 3 245 491.4 14.1 368225

treearb 8* el 8 75 6.2 13.6 234021

ty - - (20M) (23) -

ty+ - - (20M) (23) -

G(p! Fq) owty 2 24 4.2 12.7 206640

gd el - - (37H) - -

ty 2 15/3 1384.2 59.3 2298351

ty+ 2 14/2 1383.0 59.3 2298351

G(p! XFq) owty 2 24 2497.5 130.9 6285856

fpmult el 2 18 18345.8 363 17667058

ty 2 26/3 33089.7 369 17619441

ty+ 2 18/2 21994.7 368 17619441

G(p! XXXq) owty 2 17 22457.2 369 17422253

Table 2. LTL model heking on weak and terminal systems. Parenthesized times

indiate terminated omputations; M indiates minutes instead of seonds.



Experiment Proedure Num Ext. EX / EU or Time Mem peak live

Fair Iter. EX/EY/EU/ES (se) (MB) BDD nodes

bakery1* el 6 18 554 / 91 1.3 6.2 34447

ty 6 11 1371/650/67/66 10 13.3 176492

ty+ 6 12 344/299/51/50 7.0 13 182755

AG(p! AFq) owty 6 18 516 / 75 1.6 6.1 36962

bakery2 el 6 18 490 / 92 1.3 6.0 29524

ty 6 11 1239/614/67/66 9.4 13.3 176492

ty+ 6 11 282/246/47/46 6.0 12.7 180657

AG(p! AFq) owty 6 18 444 / 72 1.4 5.8 28849

treearb8* el 8 15 382 / 106 14.8 13.6 328115

ty 8 - - (194M) (112) -

ty+ 8 - - (170M) (123) -

AG(p! AFq) owty 8 13 416 / 104 13.1 13.4 309449

eisenberg2 el 6 27 669 / 124 1.6 5.5 17352

ty 6 23 2159/2031/139/138 7.8 11.2 180311

ty+ 6 16 252/506/56/55 3.8 8.6 148353

AG(p! AFq) owty 6 27 631 / 102 1.4 5.4 18504

elevator* el 8 12 849/97 498.2 13.8 275914

ty 8 - - (104M) (38) -

ty+ 8 - - (104M) (43) -

AG(p! AFq) owty 8 12 861/79 536.8 13.6 275914

Table 3. CTL model heking on systems with multiple fairness onstraints.

Experiment Proedure Num Ext. EX / EU or Time Mem peak live

Fair Iter. EX/EY/EU/ES (se) (MB) BDD nodes

treearb8* el 9 15 1021 / 135 1397.8 13.8 239731

ty 9 - - (186M) (44) -

ty+ 9 - - (207M) (157) -

G(p! Fq) owty 9 14 1000 / 126 911.6 13.9 369062

eisenberg2 el 7 24 1332 / 161 5.7 7.2 47704

ty 7 24 5114/5486/169/168 60.3 13.7 240028

ty+ 7 15 229/399/53/52 4.7 8.8 147763

G(p! Fq) owty 7 24 1197 / 109 5.3 7.1 59802

elevator3* el 3 2 7 / 1 1164.7 87.5 4062730

ty - - - (60M) (270) -

ty+ - - - (60M) (270) -

Gp owty 3 2 13 / 1 1167.3 87.5 4062730

elevator4* el 1 2 3 / 1 16192.4 282 13308496

ty 1 - - (365M) (278) -

ty+ 1 - - (367M) (278) -

Gp owty 1 2 5 / 1 16388.0 282 13308496

Table 4. LTL model heking on systems with multiple fairness onstraints.



Exp. Pro. Num Ext. EX Time

Fair Iter. (se)

A* el 2 6 203 65.49

owty 2 2 77 32.58

D* el 6 2 147 16.26

owty 6 2 149 16.33

E* el 4 3 125 6.89

owty 4 2 87 6.39

F* el 2 10 50 870.0

owty 2 2 27 897.7

H1* el 2 8 40 633.8

owty 2 2 23 495.7

H3* el 2 8 40 550.5

owty 2 2 23 592.7

Exp. Pro. Num Ext. EX Time

Fair Iter. (se)

I* el 2 2 40 1004.5

owty 2 2 23 692.9

J1* el 2 8 40 521.9

owty 2 2 23 426.6

J2* el 2 8 40 447.9

owty 2 2 23 347.7

K* el 2 7 25 220.3

owty 2 2 20 165.3

L* el 2 6 24 129.4

owty 2 2 19 129.4

M1* el 2 7 35 81.5

owty 2 2 21 53.9

Table 5. Results from Intel on heking EG

fair

true on systems that have (and require)

multiple fairness onstraints.

Finally, we ompared owty and el on Intel designs using internal Intel tools

(Table 5). All the table entries reet the omposition of atual designs with

linear-time properties, using multiple fairness onstraints. owty performed

signi�antly better than el in all examples exept F and H3, where el slightly

outperformed owty.

4 OWCTY Versus Speialized Algorithms

Our experimental results show that owty generally outperforms el on terminal

and weak systems. Bloem, Ravi, and Somenzi have presented an algorithm that

is speialized to verify terminal and weak systems eÆiently [2℄. Linear-time

model hekers detet bad yles by using the el algorithm to hek EG true

over the produt of the design and the negation of the desired property. Bloem

et al. observed that for terminal and weak systems, CTL formulas apture the

searh for bad yles. Spei�ally, the formulas EF fair and EF EG fair are true of

terminal and weak systems, respetively, when they ontain in�nite fair yles.

Aordingly, their algorithm (heneforth brs) heks one of the formulas EF

fair, EF EG fair, or EG

fair

true based on the struture of the input system. This

struture follows from the struture of the property being tested: if a property

orresponds to a weak (resp. terminal) system, the produt of that property and

a design model is also a weak (resp. terminal) system. Bloem et al. showed that

brs signi�antly outperforms el in pratie on terminal and weak systems.

Table 6 ompares owty to brs.

7

For the examples from Table 2, we heked

both EG

fair

true and the appropriate formula from brs using owty. The statis-

7

The gd and fpmult examples are the same as Bloem et al. used in their paper [2℄. Our

resoure usage on these examples di�ers widely from theirs due to di�erenes between

our two versions of the ompiler from Verilog to BLIF, the VIS input language.



Experiment Proedure EX Time Mem peak

(se) (MB) BDD nodes

ethernet 1 :EF EG fair 53 4.2 11.2 151306

G(p! Fq) EG

fair

true(owty) 57 5.5 11.7 175118

ethernet 2 :EF EG fair 109 24.4 13.7 381839

G(p! Fq) EG

fair

true(owty) 113 59.6 14.1 404723

ethernet 3 :EF EG fair 173 13.3 13.6 287787

G(p! Fq) EG

fair

true(owty) 177 24.6 13.8 290593

ethernet 4 :EF EG fair 241 145.6 14.0 373531

G(p! Fq) EG

fair

true(owty) 245 491.4 14.1 368225

treearb 8* :EF EG fair 22 4.1 12.6 200529

G(p! Fq) EG

fair

true(owty) 24 4.2 12.7 206640

gd :EF EG fair 20 3351.6 193 8204281

G(p! XFq) EG

fair

true(owty) 24 2497.5 130.9 6285856

fpmult :EF fair 8 5565.5 329 16109729

G(p! XXXq) EG

fair

true(owty) 17 22457.2 369 17422253

Table 6. Comparison between the owty and brs algorithms.

tis on EG

fair

true are reprodued from Table 2. The speialized approah outper-

forms owty on most of these examples (exept the gd example). This is due

to the di�erene between heking EG

true

fair (brs) and EG

fair

true (owty).

The former restrits the searh for a bad yle to the fair states; the latter looks

for a yle that intersets the fair states. As a result, both el and owty an

have non-fair states in their approximation sets, while brs' approximation set

ontains only fair states. This restrition usually allows brs to onverge faster.

This omparison demonstrates how exploiting strutural information about

systems an lead to more eÆient veri�ation algorithms. Note, however, that

brs is not a generi yle-detetion algorithm. Furthermore, we must also on-

sider the ost of determining whether a system is weak or terminal, whih is

not inluded in our paper or in Bloem et al.'s. In theory, this operation an be

done symbolially in O(n logn) time [1℄, but experimental results are not yet

available. For the simple properties onsidered by Bloem et al. and here, this

overhead is insigni�ant; for more ompliated properties (suh as those inlud-

ing omplex environmental assumptions) it ould be rather substantial. owty,

whih is a generi algorithm, performs well in pratie without the overhead of

speialized analyses as required in brs.

5 Conlusions

Symboli model heking remains a heuristi proess, as metris do not yet exist

to predit BDD behavior under di�ering algorithms. As a result, omparative

analyses of algorithms are extremely useful in helping tool developers hoose

whih algorithms to implement. In the name of good siene, these analyses need



to be reproduible and portable to the greatest extent possible. Suh analyses

provide not only �rm data, but a foundation for future algorithm development.

This paper ompares three symboli yle-detetion algorithms (and a variant

on one of them) based on the number of iterations they take through their

outermost �xpoint operator, as well as the number of image operations they

perform. Eah algorithm employs a slightly di�erent strategy for pruning the

set of states potentially lying on yles. Our analysis shows that the original

Emerson-Lei (el) algorithm [5℄ performs too little work outside of its internal

iterations, while Hardin et al.'s Cath-Them-Young (ty) algorithm [8℄ performs

too muh. In ontrast, Hojati's el2 algorithm [10℄, whih we view as a one-way

version of ty (owty) does seem to balane the work inside and outside the

internal iterations. On random examples and on terminal and weak systems,

owty dominates el, while on general systems, owty is ompetitive with

el, dominating it signi�antly in many ases. We have also shown that the two

algorithms are inomparable with respet to the number of image omputations

they perform: el an have a quadrati overhead over owty, while owty an

have a linear overhead over el. These results support our onlusion that model

hekers need to ontain both el and owty.

In the ourse of this projet, we have identi�ed two desired features for veri�-

ation tools. First, we want tools to implement multiple algorithms for ommon

problems suh as yle-detetion. Both our analysis and the reent one by Ravi

et al. [16℄ indiate that no algorithm onsistently outperforms the others; indeed,

veri�ation tasks may be tratable with one algorithm and intratable with an-

other. Tools providing multiple algorithms a�ord human veri�ers opportunities

to experiment and �nd algorithms that work on their appliations. A similar

onlusion in the ontext of semi-exhaustive reahability analysis was reahed

in [6℄. Seond, we want tools to provide visualizations of omputational patterns

during model heking. Intel's Palette [12℄ does some of this; we wish we had

suh a tool to augment VIS and other publily-available tools. Testbeds support-

ing multiple algorithms and better data olletion would provide strong support

for more disiplined approahes to algorithm omparisons in veri�ation.

Aknowledgements

We thank Kavita Ravi, Fabio Somenzi, and Roderik Bloem for their very helpful

omments on this paper, and the Rie PLT group for aess to their large-

memory server.

Referenes

1. Bloem, R., H. N. Gabow and F. Somenzi. An algorithm for strongly onneted

omponent analysis in n log n symboli steps. In Intl. Conf. on Formal Methods in

Computer-Aided Veri�ation, Leture Notes in Computer Siene. Springer-Verlag,

2000.



2. Bloem, R., K. Ravi and F. Somenzi. EÆient deision proedures for model hek-

ing of linear time logi properties. In Intl. Conf. on Computer-Aided Veri�ation,

Leture Notes in Computer Siene, pages 222{235. Springer-Verlag, 1999.

3. Clarke, E. M., E. A. Emerson and A. P. Sistla. Automati veri�ation of �nite-

state onurrent systems using temporal logi spei�ations. ACM Transations

on Programming Languages and Systems, 8(2):244{263, January 1986.

4. Couroubetis, C., M. Y. Vardi, P. Wolper and M. Yannakakis. Memory eÆient

algorithms for the veri�ation of temporal properties. Formal Methods in System

Design, 1:275{288, 1992.

5. Emerson, E. A. and C. L. Lei. EÆient model heking in fragments of the propo-

sitional model mu-alulus. Proeedings of LICS 1986, pages 267{278, 1986.

6. Fraer, R., G. Kamhi, L. Fix and M. Y. Vardi. Evaluating semi-exhausting veri-

�ation tehniques for bug hunting. In Proeedings of the 1st Intl. Workshop on

Symboli Model Cheking. Eletroni Notes in Theoretial Computer Siene, 1999.

7. Hardin, R. H., Z. Har'El and R. P. Kurshan. COSPAN. In Intl. Conf. on Computer-

Aided Veri�ation, number 1102 in Leture Notes in Computer Siene, pages 423{

427. Springer-Verlag, 1996.

8. Hardin, R. H., R. P. Kurshan, S. K. Shukla and M. Y. Vardi. A new heuristi for

bad yle detetion using BDDs. In Pro. Conf. on Computer-Aided veri�ation

(CAV'97), pages 268{278. Springer-Verlag. LNCS 1254, 1997.

9. Henzinger, T., O. Kupferman and S. Qadeer. From prehistori to postmodern

symboli model heking. In Hu, A. and M. Vardi, editors, Intl. Conf. on Computer-

Aided Veri�ation, volume 1427 of Leture Notes in Computer Siene, pages 195{

206. Springer-Verlag, 1998.

10. Hojati, R., H. Touati, R. Kurshan and R. Brayton. EÆient !-regular language

ontainment. In Intl. Conf. on Computer-Aided Veri�ation, number 663 in Leture

Notes in Computer Siene. Springer-Verlag, 1992.

11. Holzmann, G. and D. Peled. The state of SPIN. In Intl. Conf. on Computer-Aided

Veri�ation, number 1102 in Leture Notes in Computer Siene, pages 385{389.

Springer-Verlag, 1996.

12. Kamhi, G., L. Fix and Z. Binyamini. Symboli model heking visualization. In

Intl. Conf. on Formal Methods in Computer-Aided Veri�ation, number 1522 in

Leture Notes in Computer Siene, pages 290{303. Springer-Verlag, 1998.

13. Karp, R. M. The transitive losure of a random digraph. Random Strutures and

Algorithms, 1(1), 1990.

14. Kesten, Y., A. Pnueli and L. on Raviv. Algorithmi veri�ation of linear temporal

logi spei�ations. In Intl. Colloquium on Automata, Languages, and Program-

ming, number 1443 in Leture Notes in Computer Siene. Springer-Verlag, 1998.

15. Kupferman, O. and M. Y. Vardi. Freedom, weakness, and determinism: From

linear-time to branhing-time. In IEEE Symp on Logi in Computer Siene, 1998.

16. Ravi, K., R. Bloem and F. Somenzi. A omparative study of symboli algorithms

for the omputation of fair yles. In Intl. Conf. on Formal Methods in Computer-

Aided Veri�ation, Leture Notes in Computer Siene. Springer-Verlag, 2000.

17. The VIS Group. VIS: A system for veri�ation and synthesis. In Alur, R. and

T. Henzinger, editors, Intl. Conf. on Computer-Aided Veri�ation, volume 1102 of

Leture Notes in Computer Siene. Springer-Verlag, July 1996.

18. Vardi, M. Y. and P. Wolper. An automata-theoreti approah to automati pro-

gram veri�ation. In IEEE Symposium on Logi in Computer Siene, 1986.

19. Yang, Z. Performane analysis of symboli reahability algorithms in model hek-

ing. Master's thesis, Rie University, Department of Computer Siene, 1999.

Available at http://www.s.rie.edu/CS/Verifiation/.


