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Abstra
t. Fair-
y
le dete
tion, a 
ore problem in model 
he
king, is

solvable in linear time in the size of the design model using an expli
it-

state representation. Existing 
y
le-dete
tion algorithms for symboli


model 
he
king are quadrati
 or n log n time in the worst 
ase and often

ineÆ
ient in pra
ti
e. Whi
h default symboli
 
y
le-dete
tion algorithm

to implement in model 
he
kers remains an open question. We 
ompare

several su
h algorithms based on the numbers of external and internal

iterations and the numbers of image operations that they perform on

both randomly-generated and real examples. Unlike re
ent work by Ravi,

Bloem, and Somenzi, we 
on
lude that model 
he
kers need to implement

at least two generi
 
y
le-dete
tion algorithms: the traditional Emerson-

Lei algorithm and one that evolved from our study, originally due to

Hojati et al. We demonstrate that these two algorithms are 
omplemen-

tary, as the latter algorithm is provably in
omparable to Emerson-Lei's

and often dominates it in pra
ti
e.

1 Introdu
tion

Model 
he
king, whether for LTL, CTL, or !-automata, has linear time 
om-

plexity in the size of the design model. This well-known result follows from

two fa
ts: �rst, that most model 
he
king te
hniques redu
e to the problem

of lo
ating 
y
les through a given set of nodes in a graph [3, 18℄; se
ond, that


y
le dete
tion is solvable in linear time using a depth-�rst sear
h that identi-

�es strongly-
onne
ted 
omponents (
f, [4℄). This depth-�rst strategy provides

a suitable approa
h to 
y
le dete
tion in expli
it-state model 
he
king, and has

been implemented in several tools [7, 11℄.

Depth-�rst approa
hes to 
y
le dete
tion are not suitable for BDD-based

symboli
 model 
he
king be
ause BDDs represent sets of states while depth-�rst

sear
h examines individual states. EÆ
ient BDD-based model 
he
king requires

eÆ
ient breadth-�rst, set-based 
y
le-dete
tion algorithms. Most modern sym-

boli
 model 
he
kers employ some variant of Emerson and Lei's symboli
 
y
le-

dete
tion algorithm [5℄. CTL model 
he
kers use the Emerson-Lei algorithm

?
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(hen
eforth el) to pro
ess formulas of the form EG ', whi
h spe
ify in�nite

paths on whi
h every state satis�es '. Linear-time model 
he
kers 
ompose the

design model with an automaton representing the negation of the property, then


he
k for 
y
les in the produ
t automaton using the CTL formula EG true. Un-

fortunately, el's time 
omplexity is not linear in the size of the design model: the

algorithm 
ontains a doubly-nested �xpoint operator, and hen
e requires time

quadrati
 in the design size in the worst 
ase. The algorithm is also often slow

in pra
ti
e. el is a so-
alled SCC-hull algorithm [16℄. SCC-hull algorithms 
om-

pute the set of states that 
ontains all fair 
y
les. In 
ontrast, SCC-enumeration

algorithms enumerate all the strongly 
onne
ted 
omponents of the state graph.

While SCC-enumeration algorithms have a better worst-
ase 
omplexity than

SCC-hull algorithms [1℄, their performan
e in pra
ti
e seems to be inferior to

that of SCC-hull algorithms [16℄. This paper fo
uses on SCC-hull algorithms.

Resear
hers have proposed several alternatives to el [8, 10, 14℄. Ravi, Bloem,

and Somenzi have presented both a 
lassi�
ation s
heme for su
h algorithms

and an experimental 
omparison of several algorithms with el [16℄. They 
on-


luded that no algorithm 
onsistently outperforms el for 
y
le dete
tion, and,


onsequently, there is no reason to \dethrone" el as the default 
y
le-dete
tion

algorithm. Their 
omparison, however, is based primarily on running times, and

se
ondarily on numbers of image operations. This approa
h has two signi�
ant

drawba
ks: it provides no useful feedba
k on why the algorithms behave as ob-

served, and it suggests no te
hniques for predi
ting when one algorithm might

outperform another. Furthermore, their 
omparison 
onsiders some algorithms

that are based on post-image operations and some that are based on pre-image

operations (as is el), making it rather diÆ
ult to draw �rm 
on
lusions.

This paper demonstrates a methodology that both addresses these 
on
erns

and identi�es a symboli
 
y
le-dete
tion algorithm that provides a viable al-

ternative to el. Ravi et al. present bounds on the number of image operations

performed by various 
y
le-dete
tion algorithms. We argue that to understand

the performan
e of SCC-hull algorithms one needs to measure both the number

of image 
omputations as well as the number of external iterations (de�ned in

Se
tion 2). Our methodology fo
uses on the number of external iterations per-

formed as a basis for 
omparing and re�ning symboli
 
y
le-dete
tion algorithms.

In aiming to balan
e the numbers of external and internal iterations performed,

we have identi�ed an algorithm that, as we argue, should join el as a generi



y
le-dete
tion algorithm. We demonstrate that this algorithm is in
omparable

to el, dominating it in many 
ases. Our 
on
lusion is that, as in many other as-

pe
ts of model 
he
king, there is no \best" 
y
le-dete
tion algorithm and model


he
kers need to implement at least both el and our algorithm.

Se
tion 2 des
ribes our analyses of three existing symboli
 
y
le-dete
tion

algorithms and shows how the 
ompetitive algorithm evolved from these anal-

yses. Se
tion 3 presents experimental results on randomly generated and real

examples for both the spe
ial 
ase of terminal and weak systems and more gen-

eral examples. Se
tion 4 
ompares the 
ompetitive algorithm to a spe
ialized


y
le-dete
tion algorithm for terminal and weak systems. Se
tion 5 
on
ludes.



2 Symboli
 Cy
le-Dete
tion Algorithms

Cy
le-dete
tion algorithms in the 
ontext of model 
he
king sear
h for \bad"


y
les in a dire
ted graph representing a transition system modeling a design

undergoing veri�
ation. Two parameters spe
ify whi
h 
y
les are 
onsidered bad:

the invariant and the fair sets. The invariant spe
i�es a 
ondition, su
h as a

propositional formula, that must be true of every state on a bad 
y
le. The fair

sets spe
ify sets of states that every bad 
y
le must pass through. We write

EG

fair

' to indi
ate a sear
h for 
y
les satisfying invariant ' and passing through

fair sets fair. We will omit the fair annotation when all states are 
onsidered fair.

Cy
le dete
tion in BDD-based model 
he
king is 
hallenging be
ause the

BDDs 
o-mingle information about di�erent paths through a design. Symboli



y
le-dete
tion algorithms maintain a set of states that may lead to bad 
y
les;

this set is 
onservative, in that it 
ontains all states that do lead to bad 
y
les.

We 
all this the approximation set. The algorithms repeatedly re�ne the approx-

imation set by lo
ating and removing states that 
annot lead to a bad 
y
le; we


all this the pruning step. If a state lies on a bad 
y
le, then it must have a su
-


essor and a prede
essor on that same 
y
le (and thus also in the approximation

set). Cy
le-dete
tion algorithms use this information in di�erent ways.

Formally, these algorithms sear
h for 
y
les in nondeterministi
 transition

systems. A transition system is a tuple hQ;R;Q

0

;Fi, where Q is a set of states,

Q

0

� Q is the initial state set, R � Q�Q is the transition relation, and F � Q

is the set of fair states. A transition system is weak i� (1) there exists a partition

of Q into sets Q

1

; : : : ; Q

n

su
h that ea
h Q

i

is either 
ontained in F or is disjoint

from it, and (2) the Q

i

's are partially ordered so that there is no transition from

Q

i

to Q

j

unless Q

i

� Q

j

. If the Q

i

's 
ontained in F are the maximal elements of

the partial order, a weak system is 
alled terminal. This de�nition of weak and

terminal transition systems is due to Bloem, Ravi, and Somenzi [2℄, as re�ned

from Kupferman and Vardi [15℄. In model 
he
king, designs 
ommonly have

several fair sets, and bad 
y
les must pass through ea
h fair set. Su
h designs

are outside the s
ope of weak systems, whose de�nition is only meaningful for

one fair set.

1

el appears in Figure 1 (left).

2

At ea
h iteration through the while loop,

el 
omputes the set of states that 
an rea
h every fair set via a non-trivial

path 
ontained in the approximation set, b. We 
all these iterations external ;

the rea
hability 
omputations (the EU formula) form the internal iterations. el

does most of its work in the internal iterations: ea
h external iteration performs

only one preimage 
omputation per fair set outside of the internal iterations.

Hardin et al. attempted to redu
e the number of external iterations that

el performs as a means of a
hieving an improved algorithm [8℄. Their algo-

rithm, 
alled Cat
h-Them-Young (hen
eforth 
ty), aggressively prunes the set

1

LTL-to-automaton translation algorithms may yield multiple fair sets when one

would suÆ
e, rendering an otherwise weak system non-weak. Thus, minimizing the

number of fair sets is an important optimization.

2

Figure 1 shows VIS' implementation of el; in SMV, the �nal image 
omputation

(b := b ^ EX d) is outside the for loop.



b := invariant ;

while b 
hanges do

for ea
h fair set F

i

do

d := E[b U (F

i

^ b)℄ ;

b := b ^ EX d ;

b := invariant ;

while b 
hanges do

for ea
h fair set F

i

do

F

i

:= F

i

^ b ;

b := E[true U F

i

℄ ^ E[true S F

i

℄

while b 
hanges do

b := b ^ EX b ^ EY b ;

res := EF b;

b := invariant ;

while b 
hanges do

for ea
h fair set F

i

do

F

i

:= F

i

^ b ;

b := E[b U (b ^ EX F

i

)℄ ;

while b 
hanges do

b := b ^ EX b ;

Fig. 1. The el (left), 
ty (middle), and ow
ty (right) 
y
le-dete
tion algorithms. In


ty, EP F

i

denotes all states that 
an rea
h F

i

and EY b denotes the su

essors of b.

A variant of 
ty, 
ty+, repla
es \true" with b in the EU and ES 
omputations. Ea
h

algorithm initializes the approximation set to states satisfying the invariant.

of states potentially lying on bad 
y
les during the internal iterations (a 
losely

related algorithm was proposed in [10℄). This 
an redu
e the number of external

iterations by removing states during an external iteration that a later external

iteration would otherwise handle in el.

3

The original 
ty algorithm does 
y
le

dete
tion only; it does not 
ompute EG as el does. For 
onsisten
y, Figure 1

(middle) provides a version of 
ty that 
an be used to 
ompute EG; this entails

one di�eren
e from the original algorithm: the extra EF 
omputation in the last

step of the algorithm.

The external iterations in 
ty perform two steps: �rst, 
ompute the set of

states that are both rea
hable from and 
an rea
h every fair set (the internal it-

erations); se
ond, repeatedly prune the approximation set until it is 
losed under

both su

essors and prede
essors. In 
ontrast, el prunes the approximation set

only on
e and removes only states whi
h have no su

essor in the approximation

set; el does not iterate the pruning step within one external iteration. 
ty 
an

eliminate states from the approximation set earlier than 
an el, hen
e the name

\Cat
h-Them-Young". Like el, 
ty has quadrati
 time 
omplexity with respe
t

to the size of the design. Hardin et al.'s experimental results, 
ondu
ted over a

large set of randomly-generated designs, were mixed; 
ty tended to outperform

el when there was no bad 
y
le, but performed worse than el in the presen
e of


y
les [8℄. 
ty's aggressive pruning strategy su

eeded in redu
ing the number of

external iterations, but nevertheless in
urred a noti
eable performan
e penalty.

In order to understand why 
ty fails to outperform el, we must examine ea
h

algorithm's a
tual 
omputations. This paper studies patterns of image 
ompu-

tations and external iterations, as the former are the most expensive operations

in a BDD-based setting and the latter greatly impa
t the performan
e of 
y-


le dete
tion algorithms. Se
tion 3 presents numeri
 data from this analysis. In

summary, while 
ty performs signi�
antly fewer external iterations than el, it

does not redu
e the number of image 
omputations. In essen
e, el does too little

work outside the internal iterations whereas 
ty does too mu
h work overall.

Engineering a better balan
e between the iterations might yield an algorithm

that 
onsistently outperforms both el and 
ty. One key di�eren
e between el

3

Though el may eliminate states in earlier iterations than 
ty.



and 
ty is that el prunes based only on su

essors, whereas 
ty 
onsiders both

su

essors and prede
essors. An intermediate approa
h 
ould perform 
ty's re-

peated pruning, but using only pre-image 
omputations, as in el [19℄. This 
ould

greatly redu
e the number of image 
omputations of 
ty, though perhaps at the

expense of some additional external iterations. The resulting algorithm, 
alled

One-Way-Cat
h-Them-Young (hen
eforth ow
ty), appears in Figure 1 (right).

4

ow
ty is essentially the pre-image version of Hojati et al.'s el2 algorithm (sans

an initial rea
hability 
omputation) [10℄; its pruning strategy is similar in spirit

to that of Kesten et al.'s algorithm for 
y
le dete
tion in the presen
e of strong

fairness [14℄ (whi
h uses forward instead of ba
kward image operations).

How do ow
ty and el 
ompare? Hojati et al.'s experiments on a small

set of small examples dis
ussed only running time and were in
on
lusive for

these two algorithms. Ravi et al.'s experiments 
ompared el and the forward-

operator version of el2/ow
ty; this is not too meaningful, sin
e the issue of

forward vs. ba
kward rea
hability [9℄ is orthogonal to the balan
e between ex-

ternal and internal iterations (indeed, the upper bounds obtained in [16℄ for el

and forward-el2 are in
omparable). ow
ty's worst-
ase running time has only

a linear overhead (see below) over the O(jFjdh) worst-
ase upper bound that

Ravi et al. identi�ed for el [16℄ (where jFj is the number of fairness 
onstraints,

d is the diameter of the state graph, and h is the length of the longest rea
hable

path in the SCC quotient graph). A worst-
ase analysis as done in [16℄ provides,

however, only a very 
oarse 
omparison between the two algorithms. First, the

overhead of ow
ty over el is not very signi�
ant. Se
ond, the worst-
ase in-

stan
es for el may be di�erent than those for ow
ty, whi
h means that the


omparison of worst-
ase running times does not tell us how the two algorithms


ompare on a given input instan
e. A more meaningful analysis would 
ompare

how the two algorithms perform on 
on
rete instan
es. Analysis at this level

shows that the two algorithms are in
omparable. Figure 2 illustrates the di�er-

en
es between the el and ow
ty pruning strategies; ow
ty outperforms el on

the �rst transition system, while el outperforms ow
ty on the se
ond.

(1)

(2)

Fig. 2. Two transition systems that illustrate the di�eren
es between el and ow
ty.

Bla
k 
ir
les denote fair states. All states satisfy the invariant.

Consider the �rst transition system. Both algorithms eliminate the rightmost

state in the �rst iteration and 
apture the remaining states in the approximation

set. During the �rst iteration, ow
ty eliminates all but the leftmost fair state;

4

A variant of ow
ty performs pruning inside the for loop; in pra
ti
e, neither version


onsistently outperforms the other.



el eliminates only the rightmost fair state. el requires an additional iteration to

eliminate ea
h of the four middle fair states. Ea
h iteration involves a rea
hability


omputation that ow
ty does not perform. If the 
hain of fair states in the �rst

system 
ontained n fair states, ow
ty would perform O(n) image 
omputations

while el would perform O(n

2

) image 
omputations. Thus, el has a quadrati


overhead relative to ow
ty on su
h systems.

Now 
onsider the se
ond transition system. In the �rst iteration, both al-

gorithms eliminate the rightmost state and retain the remaining states in the

approximation set. During the �rst iteration, el throws away the rightmost fair

state. The rea
hability 
omputation in the se
ond external iteration begins at

the middle fair state; thus, el eliminates the non-fair states between the right

two fair states without traversing them expli
itly again. ow
ty, in 
ontrast,

uses an additional image 
omputation to eliminate ea
h of those non-fair states.

The se
ond system 
urrently 
ontains two 
opies of a 
hain of states 
onsisting

of four non-fair states, followed by a fair state, followed by a non-fair state with a

self loop. If the system had k 
onse
utive 
opies of this 
hain, ea
h with m states

in the initial non-fair 
hain, el would perform O(k

2

m) image 
omputations as


ompared to ow
ty's O(k

2

m + km) = O(k

2

m) image 
omputations. That is,

the overhead of ow
ty relative to el is only linear.

In general, the two algorithms are in
omparable with respe
t to their numbers

of image 
omputations. As ow
ty provably performs no more external iterations

than el, ow
ty's overhead (if it exists at all) is 
aused by the last line of the

algorithm, whi
h prunes the approximation set. Thus, ow
ty's overhead is at

most linear relative to el, while, as we saw, el 
an have a quadrati
 overhead

relative to ow
ty.

To gain a better pi
ture on the 
omparative performan
e of el, 
ty, and

ow
ty, the experimental analyses in Se
tion 3 gather data on the numbers of

external iterations a
ross several randomly generated and real examples; to 
om-

plement the Ravi et al. study [16℄, we also in
lude running time, memory usage,

and BDD size statisti
s. Our analyses show that ow
ty requires almost the

same number of external iterations as 
ty with far fewer image 
omputations;

in pra
ti
e, ow
ty almost always mat
hes or improves on el's performan
e.

3 Comparative Analysis of the Algorithms

3.1 Experiments on Random Systems

Our �rst set of experiments 
ompares the algorithms on random systems. We

generate random systems by generating random dire
ted graphs. We would like

to obtain dire
ted graphs with non-uniform out-degree and linear density (i.e.,

a linear number of edges in the number of nodes); linear density prevents 
y-


le dete
tion from be
oming trivial due to an ex
ess or pau
ity of edges. The

following model of random graphs, due to Karp [13℄, satis�es these 
riteria:

De�nition 1 For ea
h positive integer n and ea
h p with 0 < p < 1, the sample

spa
e 
onsists of all labeled digraphs D

n;p

with n verti
es and edge probability p.



Given a graph G with verti
es V and edges E, the order of G is jV j and the

density of G is jEj=jV j. We will use n and d to represent a graph's order and

density, respe
tively. We wish to generate graphs in the spa
eD

n;d=n

. Generating

the graphs dire
tly based on this model be
omes time 
onsuming as n grows

larger: the pro
edure must de
ide whether to in
lude ea
h of the possible n(n�1)

edges based on the probability d=n. Instead, we �x the number of edges to be the

expe
ted number dn, and 
hoose dn distin
t edges from the n(n�1) 
andidates.

This approa
h provides a very good approximation to the given model [19℄.

Our experiments 
ompare four algorithms: el, 
ty, 
ty+, and ow
ty.


ty+ is a variant of 
ty that restri
ts the rea
hability 
omputations to 
onsider

only paths through the approximation set, rather than through the entire state

spa
e as in 
ty [19℄; in other words, 
ty+ repla
es line 5 of 
ty with b :=

E[b U F

i

℄ ^ E[b S F

i

℄, where S is the past-time operator sin
e. We present

two sets of results. The �rst measures the number of external iterations that

ea
h algorithm performs, the next measures the number of image 
omputations

that ea
h algorithm performs.

5

The experiments use graphs with order 2

12

and

densities varying over 1.2, 1.6, 2.0, and 2.4. This order is large enough to explore

the behavior of the algorithms, yet small enough to analyze in a reasonable

amount of time. We de�ne a single fair set for ea
h graph, with size varying over

:01n, :1n, :3n, :5n, :7n, and :9n where n is the digraph order. Ea
h experiment

�xes either the density or the size of the fair set and varies the other. The �gures

reported in the rest of this se
tion are averaged over 100 individual experiments.

jFj

:01n :1n :5n :9n


ty 2.18 2.41 2.09 2.00


ty+ 2.18 2.41 2.09 2.00

ow
ty 2.17 2.37 2.07 2.00

el 2.66 5.36 13.20 20.89

d

1:2 1:6 2:0 2:4


ty 2.00 2.00 2.00 2.00


ty+ 2.00 2.00 2.00 2.00

ow
ty 2.00 2.00 2.00 2.00

el 20.89 10.37 7.02 5.09

Table 1. Average number of external iterations on digraphs with order 2

12

. The left

table �xes the density at 1.2 and varies the fair set size. The right table �xes the fair

set size at :9� 2

12

and varies the density.

Table 1 shows the number of external iterations on digraphs with order

n = 2

12

. One set of experiments �xes the density at 1.2 and varies the fair

set size; the other �xes the fair set size at :9�2

12

and varies the density. The ta-

bles indi
ate that 
ty, 
ty+ and ow
ty perform far fewer external iterations

than el. Furthermore, ow
ty performs essentially the same number of external

iterations as 
ty; thus pruning based on prede
essors as well as su

essors, as


ty does, does not signi�
antly redu
e the number of external iterations over a

pruning strategy based only on su

essors. We therefore expe
t ow
ty to 
on-

sume 
onsiderably fewer resour
es than 
ty in pra
ti
e. el requires signi�
antly

5

We refer to post- and pre-image 
omputations 
olle
tively as image 
omputations.



more external iterations as the fair set grows larger, and signi�
antly fewer ex-

ternal iterations as the density in
reases. In 
ontrast, 
ty, 
ty+, and ow
ty

perform fairly 
onsistent numbers of external iterations in both 
ases.

The data in Table 1 do not indi
ate that 
ty and ow
ty are more eÆ-


ient than el be
ause the former algorithms may do more work in the internal

iterations. The number of image 
omputations o�ers a more pre
ise eÆ
ien
y


omparison. Image 
omputations are the most 
omputationally expensive op-

erations in ea
h of the 
y
le-dete
tion algorithms. The 
ost of these operations

depends on the density and order of the underlying graphs [19℄. Sin
e we analyze

the four algorithms over the same randomly generated graphs, the 
ost of indi-

vidual image 
omputations is 
omparable a
ross the algorithms. The number of

image 
omputations is therefore a fair parameter for 
omparing the algorithms.
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Fig. 3. Number of image 
omputations for el, 
ty, 
ty+ and ow
ty.

Figure 3 shows the number of image 
omputations performed over graphs

with order n = 2

12

, density d = 1:2, and fair set size ranging over :01n, :1n, :3n,

:5n, :7n, and :9n. For 
ty, 
ty+ and ow
ty the number of image 
omputa-

tions de
reases as the fair set gets larger. 
ty performs more image 
omputations

than 
ty+ be
ause 
ty+ restri
ts rea
hability 
omputations to the approxi-

mation set, whi
h allows the 
omputation to 
onverge faster. ow
ty performs

fewer image 
omputations than either 
ty or 
ty+ be
ause it does not per-

form forwards rea
hability. Separate data (not shown) show that the ba
kwards

rea
hability 
omputations in ow
ty and 
ty perform almost the same num-

bers of image 
omputations; furthermore, the pruning step in ow
ty performs

roughly half as many image 
omputations as that in 
ty+[19℄. Thus, eliminating



the forward image 
omputations makes ow
ty less 
omputationally expensive

without adversely a�e
ting the number of external iterations required.

Separate experiments (not shown) show that the number of image 
ompu-

tations de
reases sharply as the density in
reases [19℄. In the 
ase of el, the

number of image 
omputations drops be
ause the algorithm performs fewer ex-

ternal iterations as density in
reases, as dis
ussed previously. For the remaining

three algorithms, our experimental data shows that the size of the approximation

set after ea
h iteration be
omes larger as the density in
reases. The approxima-

tion set determines the base set for subsequent rea
hability 
omputations. The

larger the base set, the faster rea
hability 
omputations 
onverge [19℄. There-

fore, fewer image 
omputations are needed when the digraph density in
reases.

Although ea
h pruning step removes fewer verti
es, the �nal approximation set

is also larger, so the algorithms perform fewer image 
omputations as density

in
reases. Plots for running time statisti
s are similar to those for image 
ompu-

tations. In parti
ular, both ow
ty and 
ty 
onsistently outperform el. This


ontradi
ts the mixed results in other 
ty versus el experiments [8, 16℄.

3.2 Experiments on Real Systems

Our real design examples 
ome from the VIS distribution and from Fabio Somenzi.

They in
lude an ethernet proto
ol with varying numbers of 
ollisions before

failure, a tree-stru
tured arbiter with 8 nodes, a g
d 
ir
uit, a 
oating point

multiplier, and two mutual ex
lusion proto
ols (bakery and eisenberg). These

examples are written in Verilog and evaluated using the VIS model 
he
ker [17℄.

We implemented ow
ty within the VIS framework by repla
ing the original

(el) algorithm for evaluating EG formulas with ow
ty in a 
opy of VIS. We

ran the experiments using VIS version 1.3 (with version 1.2 of the vl2mv 
om-

piler), on an Intel 686 ma
hine with 1GB of memory running RedHat Linux

version 2.2.12-20; our VIS installation uses the CUDD BDD pa
kage.

Table 2 summarizes experiments with LTL model 
he
king of terminal and

weak systems. For ea
h LTL experiment, we evaluated EG

fair

true on the produ
t

of the original design and a manually-
onstru
ted automaton for the negation of

the property. Table 3 
overs examples with multiple fair sets in the 
ontext of

CTL model 
he
king. Table 4 
overs LTL model 
he
king under multiple fairness


onstraints. In ea
h table, stars on experiment names denote that the models


ontained 
y
les or that the property failed. The EX/EY and EU/ES �gures 
ount

the number of image and rea
hability 
omputations performed, respe
tively.

6

The tables show that ow
ty generally mat
hes or outperforms el, while


ty and 
ty+ are 
learly not 
ompetitive. In many 
ases, ow
ty outperforms

el dramati
ally; in 
ontrast, we have not yet found an example on whi
h el sig-

ni�
antly outperforms ow
ty. The bene�ts of ow
ty are parti
ularly evident

on the ethernet and g
d examples in Table 2. As expe
ted, ow
ty uses fewer

external iterations than el; however, ow
ty sometimes performs more image


omputations than el.

6

The EU/ES 
ounts do not in
lude trivial 
omputations of the form [' U '℄.



Experiment Pro
edure Ext. EX or Time Mem peak live

Iter. EX/EY (se
) (MB) BDD nodes

ethernet 1 el 51 2179 356.6 13.6 339932


ty 2 42/43 187.9 14.6 398280


ty+ 2 41/42 184.8 14.6 398280

G(p! Fq) ow
ty 3 57 5.5 11.7 175118

ethernet 2 el 107 6506 10656.1 14.4 367135


ty 2 67/68 1893.6 33.6 1365367


ty+ 2 66/67 1887.6 33.6 1365755

G(p! Fq) ow
ty 3 113 59.6 14.1 404723

ethernet 3 el 171 11914 4371.3 13.7 279823


ty 2 95/96 1962.2 35 1456597


ty+ 2 94/95 1938.0 35 1456597

G(p! Fq) ow
ty 3 177 24.6 13.8 290593

ethernet 4 el - - (30H) - -


ty 2 130/131 5859.7 53.6 2320201


ty+ 2 130/2 5895 53.6 2320201

G(p! Fq) ow
ty 3 245 491.4 14.1 368225

treearb 8* el 8 75 6.2 13.6 234021


ty - - (20M) (23) -


ty+ - - (20M) (23) -

G(p! Fq) ow
ty 2 24 4.2 12.7 206640

g
d el - - (37H) - -


ty 2 15/3 1384.2 59.3 2298351


ty+ 2 14/2 1383.0 59.3 2298351

G(p! XFq) ow
ty 2 24 2497.5 130.9 6285856

fpmult el 2 18 18345.8 363 17667058


ty 2 26/3 33089.7 369 17619441


ty+ 2 18/2 21994.7 368 17619441

G(p! XXXq) ow
ty 2 17 22457.2 369 17422253

Table 2. LTL model 
he
king on weak and terminal systems. Parenthesized times

indi
ate terminated 
omputations; M indi
ates minutes instead of se
onds.



Experiment Pro
edure Num Ext. EX / EU or Time Mem peak live

Fair Iter. EX/EY/EU/ES (se
) (MB) BDD nodes

bakery1* el 6 18 554 / 91 1.3 6.2 34447


ty 6 11 1371/650/67/66 10 13.3 176492


ty+ 6 12 344/299/51/50 7.0 13 182755

AG(p! AFq) ow
ty 6 18 516 / 75 1.6 6.1 36962

bakery2 el 6 18 490 / 92 1.3 6.0 29524


ty 6 11 1239/614/67/66 9.4 13.3 176492


ty+ 6 11 282/246/47/46 6.0 12.7 180657

AG(p! AFq) ow
ty 6 18 444 / 72 1.4 5.8 28849

treearb8* el 8 15 382 / 106 14.8 13.6 328115


ty 8 - - (194M) (112) -


ty+ 8 - - (170M) (123) -

AG(p! AFq) ow
ty 8 13 416 / 104 13.1 13.4 309449

eisenberg2 el 6 27 669 / 124 1.6 5.5 17352


ty 6 23 2159/2031/139/138 7.8 11.2 180311


ty+ 6 16 252/506/56/55 3.8 8.6 148353

AG(p! AFq) ow
ty 6 27 631 / 102 1.4 5.4 18504

elevator* el 8 12 849/97 498.2 13.8 275914


ty 8 - - (104M) (38) -


ty+ 8 - - (104M) (43) -

AG(p! AFq) ow
ty 8 12 861/79 536.8 13.6 275914

Table 3. CTL model 
he
king on systems with multiple fairness 
onstraints.

Experiment Pro
edure Num Ext. EX / EU or Time Mem peak live

Fair Iter. EX/EY/EU/ES (se
) (MB) BDD nodes

treearb8* el 9 15 1021 / 135 1397.8 13.8 239731


ty 9 - - (186M) (44) -


ty+ 9 - - (207M) (157) -

G(p! Fq) ow
ty 9 14 1000 / 126 911.6 13.9 369062

eisenberg2 el 7 24 1332 / 161 5.7 7.2 47704


ty 7 24 5114/5486/169/168 60.3 13.7 240028


ty+ 7 15 229/399/53/52 4.7 8.8 147763

G(p! Fq) ow
ty 7 24 1197 / 109 5.3 7.1 59802

elevator3* el 3 2 7 / 1 1164.7 87.5 4062730


ty - - - (60M) (270) -


ty+ - - - (60M) (270) -

Gp ow
ty 3 2 13 / 1 1167.3 87.5 4062730

elevator4* el 1 2 3 / 1 16192.4 282 13308496


ty 1 - - (365M) (278) -


ty+ 1 - - (367M) (278) -

Gp ow
ty 1 2 5 / 1 16388.0 282 13308496

Table 4. LTL model 
he
king on systems with multiple fairness 
onstraints.



Exp. Pro
. Num Ext. EX Time

Fair Iter. (se
)

A* el 2 6 203 65.49

ow
ty 2 2 77 32.58

D* el 6 2 147 16.26

ow
ty 6 2 149 16.33

E* el 4 3 125 6.89

ow
ty 4 2 87 6.39

F* el 2 10 50 870.0

ow
ty 2 2 27 897.7

H1* el 2 8 40 633.8

ow
ty 2 2 23 495.7

H3* el 2 8 40 550.5

ow
ty 2 2 23 592.7

Exp. Pro
. Num Ext. EX Time

Fair Iter. (se
)

I* el 2 2 40 1004.5

ow
ty 2 2 23 692.9

J1* el 2 8 40 521.9

ow
ty 2 2 23 426.6

J2* el 2 8 40 447.9

ow
ty 2 2 23 347.7

K* el 2 7 25 220.3

ow
ty 2 2 20 165.3

L* el 2 6 24 129.4

ow
ty 2 2 19 129.4

M1* el 2 7 35 81.5

ow
ty 2 2 21 53.9

Table 5. Results from Intel on 
he
king EG

fair

true on systems that have (and require)

multiple fairness 
onstraints.

Finally, we 
ompared ow
ty and el on Intel designs using internal Intel tools

(Table 5). All the table entries re
e
t the 
omposition of a
tual designs with

linear-time properties, using multiple fairness 
onstraints. ow
ty performed

signi�
antly better than el in all examples ex
ept F and H3, where el slightly

outperformed ow
ty.

4 OWCTY Versus Spe
ialized Algorithms

Our experimental results show that ow
ty generally outperforms el on terminal

and weak systems. Bloem, Ravi, and Somenzi have presented an algorithm that

is spe
ialized to verify terminal and weak systems eÆ
iently [2℄. Linear-time

model 
he
kers dete
t bad 
y
les by using the el algorithm to 
he
k EG true

over the produ
t of the design and the negation of the desired property. Bloem

et al. observed that for terminal and weak systems, CTL formulas 
apture the

sear
h for bad 
y
les. Spe
i�
ally, the formulas EF fair and EF EG fair are true of

terminal and weak systems, respe
tively, when they 
ontain in�nite fair 
y
les.

A

ordingly, their algorithm (hen
eforth brs) 
he
ks one of the formulas EF

fair, EF EG fair, or EG

fair

true based on the stru
ture of the input system. This

stru
ture follows from the stru
ture of the property being tested: if a property


orresponds to a weak (resp. terminal) system, the produ
t of that property and

a design model is also a weak (resp. terminal) system. Bloem et al. showed that

brs signi�
antly outperforms el in pra
ti
e on terminal and weak systems.

Table 6 
ompares ow
ty to brs.

7

For the examples from Table 2, we 
he
ked

both EG

fair

true and the appropriate formula from brs using ow
ty. The statis-

7

The g
d and fpmult examples are the same as Bloem et al. used in their paper [2℄. Our

resour
e usage on these examples di�ers widely from theirs due to di�eren
es between

our two versions of the 
ompiler from Verilog to BLIF, the VIS input language.



Experiment Pro
edure EX Time Mem peak

(se
) (MB) BDD nodes

ethernet 1 :EF EG fair 53 4.2 11.2 151306

G(p! Fq) EG

fair

true(ow
ty) 57 5.5 11.7 175118

ethernet 2 :EF EG fair 109 24.4 13.7 381839

G(p! Fq) EG

fair

true(ow
ty) 113 59.6 14.1 404723

ethernet 3 :EF EG fair 173 13.3 13.6 287787

G(p! Fq) EG

fair

true(ow
ty) 177 24.6 13.8 290593

ethernet 4 :EF EG fair 241 145.6 14.0 373531

G(p! Fq) EG

fair

true(ow
ty) 245 491.4 14.1 368225

treearb 8* :EF EG fair 22 4.1 12.6 200529

G(p! Fq) EG

fair

true(ow
ty) 24 4.2 12.7 206640

g
d :EF EG fair 20 3351.6 193 8204281

G(p! XFq) EG

fair

true(ow
ty) 24 2497.5 130.9 6285856

fpmult :EF fair 8 5565.5 329 16109729

G(p! XXXq) EG

fair

true(ow
ty) 17 22457.2 369 17422253

Table 6. Comparison between the ow
ty and brs algorithms.

ti
s on EG

fair

true are reprodu
ed from Table 2. The spe
ialized approa
h outper-

forms ow
ty on most of these examples (ex
ept the g
d example). This is due

to the di�eren
e between 
he
king EG

true

fair (brs) and EG

fair

true (ow
ty).

The former restri
ts the sear
h for a bad 
y
le to the fair states; the latter looks

for a 
y
le that interse
ts the fair states. As a result, both el and ow
ty 
an

have non-fair states in their approximation sets, while brs' approximation set


ontains only fair states. This restri
tion usually allows brs to 
onverge faster.

This 
omparison demonstrates how exploiting stru
tural information about

systems 
an lead to more eÆ
ient veri�
ation algorithms. Note, however, that

brs is not a generi
 
y
le-dete
tion algorithm. Furthermore, we must also 
on-

sider the 
ost of determining whether a system is weak or terminal, whi
h is

not in
luded in our paper or in Bloem et al.'s. In theory, this operation 
an be

done symboli
ally in O(n logn) time [1℄, but experimental results are not yet

available. For the simple properties 
onsidered by Bloem et al. and here, this

overhead is insigni�
ant; for more 
ompli
ated properties (su
h as those in
lud-

ing 
omplex environmental assumptions) it 
ould be rather substantial. ow
ty,

whi
h is a generi
 algorithm, performs well in pra
ti
e without the overhead of

spe
ialized analyses as required in brs.

5 Con
lusions

Symboli
 model 
he
king remains a heuristi
 pro
ess, as metri
s do not yet exist

to predi
t BDD behavior under di�ering algorithms. As a result, 
omparative

analyses of algorithms are extremely useful in helping tool developers 
hoose

whi
h algorithms to implement. In the name of good s
ien
e, these analyses need



to be reprodu
ible and portable to the greatest extent possible. Su
h analyses

provide not only �rm data, but a foundation for future algorithm development.

This paper 
ompares three symboli
 
y
le-dete
tion algorithms (and a variant

on one of them) based on the number of iterations they take through their

outermost �xpoint operator, as well as the number of image operations they

perform. Ea
h algorithm employs a slightly di�erent strategy for pruning the

set of states potentially lying on 
y
les. Our analysis shows that the original

Emerson-Lei (el) algorithm [5℄ performs too little work outside of its internal

iterations, while Hardin et al.'s Cat
h-Them-Young (
ty) algorithm [8℄ performs

too mu
h. In 
ontrast, Hojati's el2 algorithm [10℄, whi
h we view as a one-way

version of 
ty (ow
ty) does seem to balan
e the work inside and outside the

internal iterations. On random examples and on terminal and weak systems,

ow
ty dominates el, while on general systems, ow
ty is 
ompetitive with

el, dominating it signi�
antly in many 
ases. We have also shown that the two

algorithms are in
omparable with respe
t to the number of image 
omputations

they perform: el 
an have a quadrati
 overhead over ow
ty, while ow
ty 
an

have a linear overhead over el. These results support our 
on
lusion that model


he
kers need to 
ontain both el and ow
ty.

In the 
ourse of this proje
t, we have identi�ed two desired features for veri�-


ation tools. First, we want tools to implement multiple algorithms for 
ommon

problems su
h as 
y
le-dete
tion. Both our analysis and the re
ent one by Ravi

et al. [16℄ indi
ate that no algorithm 
onsistently outperforms the others; indeed,

veri�
ation tasks may be tra
table with one algorithm and intra
table with an-

other. Tools providing multiple algorithms a�ord human veri�ers opportunities

to experiment and �nd algorithms that work on their appli
ations. A similar


on
lusion in the 
ontext of semi-exhaustive rea
hability analysis was rea
hed

in [6℄. Se
ond, we want tools to provide visualizations of 
omputational patterns

during model 
he
king. Intel's Palette [12℄ does some of this; we wish we had

su
h a tool to augment VIS and other publi
ly-available tools. Testbeds support-

ing multiple algorithms and better data 
olle
tion would provide strong support

for more dis
iplined approa
hes to algorithm 
omparisons in veri�
ation.
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