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Abstract. We study and provide efficient algorithms for multi-objective
model checking problems for Markov Decision Processes (MDPs). Given
an MDP, M , and given multiple linear-time (ω-regular or LTL) proper-
ties ϕi, and probabilities ri ∈ [0, 1], i = 1, . . . , k, we ask whether there
exists a strategy σ for the controller such that, for all i, the probability
that a trajectory of M controlled by σ satisfies ϕi is at least ri. We pro-
vide an algorithm that decides whether there exists such a strategy and if
so produces it, and which runs in time polynomial in the size of the MDP.
Such a strategy may require the use of both randomization and memory.
We also consider more general multi-objective ω-regular queries, which
we motivate with an application to assume-guarantee compositional rea-
soning for probabilistic systems.
Note that there can be trade-offs between different properties: satisfying
property ϕ1 with high probability may necessitate satisfying ϕ2 with
low probability. Viewing this as a multi-objective optimization problem,
we want information about the “trade-off curve” or Pareto curve for
maximizing the probabilities of different properties. We show that one
can compute an approximate Pareto curve with respect to a set of ω-
regular properties in time polynomial in the size of the MDP.
Our quantitative upper bounds use LP methods. We also study quali-
tative multi-objective model checking problems, and we show that these
can be analysed by purely graph-theoretic methods, even though the
strategies may still require both randomization and memory.

1 Introduction

Markov Decision Processes (MDPs) are standard models for stochastic opti-
mization and for modelling systems with probabilistic and nondeterministic or
controlled behavior (see [Put94,Var85,CY95,CY98]). In an MDP, at each state,
the controller can choose from among a number of actions, or choose a proba-
bility distribution over actions. Each action at a state determines a probability
distribution on the next state. Fixing an initial state and fixing the controller’s
strategy determines a probability space of infinite runs (trajectories) of the MDP.
For MDPs with a single objective, the controller’s goal is to optimize the value
of an objective function, or payoff, which is a function of the entire trajectory.



.8 1

3P1

.5

.6

1

.53P2

.2.8.5.5.6.4

P1 P2
P0P0

1 1 11

s

a1 a3

a2

Fig. 1. An MDP with two objectives, 3P1 and 3P2, and the associated Pareto curve.

Many different objectives have been studied for MDPs, with a wide variety of
applications. In particular, in verification research linear-time model checking of
MDPs has been studied, where the objective is to maximize the probability that
the trajectory satisfies a given ω-regular or LTL property ([CY98,CY95,Var85]).

In many settings we may not just care about a single property. Rather, we
may have a number of different properties and we may want to know whether we
can simultaneously satisfy all of them with given probabilities. For example, in a
system with a server and two clients, we may want to maximize the probability
for both clients 1 and 2 of the temporal property: “every request issued by client
i eventually receives a response from the server”, i = 1, 2. Clearly, there may be
a trade-off. To increase this probability for client 1 we may have to decrease it
for client 2, and vice versa. We thus want to know what are the simultaneously
achievable pairs (p1, p2) of probabilities for the two properties. More specifically,
we will be interested in the “trade-off curve” or Pareto curve. The Pareto curve
is the set of all achievable vectors p = (p1, p2) ∈ [0, 1]2 such that there does
not exist another achievable vector p′ that dominates p, meaning that p ≤ p′

(coordinate-wise inequality) and p 6= p′.

Concretely, consider the very simple MDP depicted in Figure 1. Starting at
state s, we can take one of three possible actions {a1, a2, a3}. Suppose we are
interested in LTL properties 3P1 and 3P2. Thus we want to maximize the prob-
ability of reaching the two distinct vertices labeled by P1 and P2, respectively.
To maximize the probability of 3P1 we should take action a1, thus reaching P1

with probability 0.6 and P2 with probability 0. To maximize the probability of
3P2 we should take a2, reaching P2 with probability 0.8 and P1 with probability
0. To maximize the sum total probability of reaching P1 or P2, we should take
a3, reaching both with probability 0.5. Now observe that we can also “mix” these
pure strategies using randomization to obtain any convex combination of these
three value vectors. In the graph on the right in Figure 1, the dotted line plots
the Pareto curve for these two properties.

The Pareto curve P in general contains infinitely many points, and it can be
too costly to compute an exact representation for it (see Section 2). Instead of



computing it outright we can try to approximate it ([PY00]). An ǫ-approximate
Pareto curve is a set of achievable vectors P(ǫ) such that for every achievable
vector r there is some vector t ∈ P(ǫ) which “almost” dominates it, meaning
r ≤ (1 + ǫ)t.

In general, given a labeled MDP M , k distinct ω-regular properties, Φ = 〈ϕi |
i = 1, . . . , k〉, a start state u, and a strategy σ, let Prσu(ϕi) denote the probability
that starting at u, using strategy σ, the trajectory satisfies ϕi. For a strategy
σ, define the vector tσ = (tσ1 , . . . , t

σ
k), where tσi = Prσu(ϕi), for i = 1, . . . , k. We

say a value vector r ∈ [0, 1]k is achievable for Φ, if there exists a strategy σ such
that tσ ≥ r.

We provide an algorithm that given MDP M , start state u, properties Φ,
and rational value vector r ∈ [0, 1]k, decides whether r is achievable, and if so
produces a strategy σ such that tσ ≥ r. The algorithm runs in time polynomial
in the size of the MDP. The strategies may require both randomization and
memory. Our algorithm works by first reducing the achievability problem for
multiple ω-regular properties to one with multiple reachability objectives, and
then reducing the multi-objective reachability problem to a multi-objective linear
programming problem. We also show that one can compute an ǫ-approximate
Pareto curve for Φ in time polynomial in the size of the MDP and in 1/ǫ. To
do this, we use our linear programming characterization for achievability, and
use results from [PY00] on approximating the Pareto curve for multi-objective
linear programming problems.

We also consider more general multi-objective queries. Given a boolean com-
bination B of quantitative predicates of the form Prσu(ϕi)∆p, where ∆ ∈ {≤,≥
, <,>,=, 6=}, and p ∈ [0, 1], a multi-objective query asks whether there exists a
strategy σ satisfying B (or whether all strategies σ satisfy B). It turns out that
such queries are not really much more expressive than checking achievability.
Namely, checking a fixed query B can be reduced to checking a fixed number
of extended achievability queries, where for some of the coordinates tσi we can
ask for a strict inequality, i.e., that tσi > ri. (In general, however, the number
and size of the extended achievability queries needed may be exponential in the
size of B.) A motivation for allowing general multi-objective queries is to enable
assume-guarantee compositional reasoning for probabilistic systems, as explained
in Section 2.

Whereas our algorithms for quantitative problems use LP methods, we also
consider qualitative multi-objective queries. These are queries given by boolean
combinations of predicates of the form Prσu(ϕi)∆b, where b ∈ {0, 1}. We give an
algorithm using purely graph-theoretic techniques that decides whether there
is a strategy that satisfies a qualitative multi-objective query, and if so pro-
duces such a strategy. The algorithm runs in time polynomial in the size of the
MDP. Even for satisfying qualitative queries the strategy may need to use both
randomization and memory.

In typical applications, the MDP is far larger than the size of the query. Also,
ω-regular properties can be presented in many ways, and it was already shown
in [CY95] that the query complexity of model checking MDPs against even a



single LTL property is 2EXPTIME-complete. We remark here that, if properties
are expressed via LTL formulas, then our algorithms run in polynomial time in
the size of the MDP and in 2EXPTIME in the size of the query, for deciding
arbitrary multi-objective queries, where both the MDP and the query are part
of the input. So, the worst-case upper bound is the same as with a single LTL
objective. However, to keep our complexity analysis simple, we focus in this paper
on the model complexity of our algorithms, rather than their query complexity
or combined complexity.

Related work. Model checking of MDPs with a single ω-regular objective has
been studied in detail (see [CY98,CY95,Var85]). In [CY98], Courcoubetis and
Yannakakis also considered MDPs with a single objective given by a positive
weighted sum of the probabilities of multiple ω-regular properties, and they
showed how to efficiently optimize such objectives for MDPs. They did not con-
sider tradeoffs between multiple ω-regular objectives. We employ and build on
techniques developed in [CY98].

Multi-objective optimization is a subject of intensive study in Operations
Research and related fields (see, e.g., [Ehr05,Cĺı97]). Approximating the Pareto
curve for general multi-objective optimization problems was considered by Pa-
padimitriou and Yannakakis in [PY00]. Among other results, [PY00] showed that
for multi-objective linear programming (i.e., linear constraints and multiple lin-
ear objectives), one can compute a (polynomial sized) ǫ-approximate Pareto
curve in time polynomial in the size of the LP and in 1/ǫ.

Our work is related to recent work by Chatterjee, Majumdar, and Henzinger
([CMH06]), who considered MDPs with multiple discounted reward objectives.
They showed that randomized but memoryless strategies suffice for obtaining any
achievable value vector for these objectives, and they reduced the multi-objective
optimization and achievability (what they call Pareto realizability) problems for
MDPs with discounted rewards to multi-objective linear programming. They
were thus able to apply the results of [PY00] in order to approximate the Pareto
curve for this problem. We work in an undiscounted setting, where objectives
can be arbitrary ω-regular properties. In our setting, strategies may require both
randomization and memory in order to achieve a given value vector. As described
earlier, our algorithms first reduce multi-objective ω-regular problems to multi-
objective reachability problems, and we then solve multi-objective reachability
problems by reducing them to multi-objective LP. For multi-objective reacha-
bilility, we show randomized memoryless strategies do suffice. Our LP methods
for multi-objective reachability are closely related to the LP methods used in
[CMH06] (and see also, e.g., [Put94], Theorem 6.9.1., where a related result
about discounted MDPs is established). However, in order to establish the re-
sults in our undiscounted setting, even for reachability we have to overcome some
new obstacles that do not arise in the discounted case. In particular, whereas
the “discounted frequencies” used in [CMH06] are always well-defined finite val-
ues under all strategies, the analogous undiscounted frequencies or “expected
number of visits” can in general be infinite for an arbitrary strategy. This forces
us to preprocess the MDPs in such a way that ensures that a certain family of



undiscounted stochastic flow equations has a finite solution which corresponds
to the “expected number of visits” at each state-action pair under a given (mem-
oryless) strategy. It also forces us to give a quite different proof that memoryless
strategies suffice to achieve any achievable vector for multi-objective reachability,
based on the convexity of the memorylessly achievable set.

Multi-objective MDPs have also been studied extensively in the OR and
stochastic control literature (see e.g. [Fur80,Whi82,Hen83,Gho90,WT98]). Much
of this work is typically concerned with discounted reward or long-run average
reward models, and does not focus on the complexity of algorithms. None of
this work seems to directly imply even our result that for multiple reachability
objectives checking achievability of a value vector can be decided in polynomial
time, not to mention the more general results for multi-objective model checking.

2 Basics and background

A finite-state MDP M = (V, Γ, δ) consists of a finite set V of states, an action
alphabet Γ , and a transition relation δ. Associated with each state v is a set
of enabled actions Γv ⊆ Γ . The transition relation is given by δ ⊆ V × Γ ×
[0, 1] × V . For each state v ∈ V , each enabled action a ∈ Γv, and every state
v′ ∈ V , we have exactly one transition (v, γ, p(v,γ,v′), v

′) ∈ δ, for some probability
p(v,γ,v′) ∈ [0, 1], such that

∑
v′∈V p(v,γ,v′) = 1. Thus, at each state, each enabled

action determines a probability distribution on the next state. There are no other
transitions, so no transtitions on disabled actions. We assume every state v has
some enabled action, i.e., Γv 6= ∅, so there are no dead ends. For our complexity
analysis, we assume of course that all probabilities p(v,γ,v′) are rational. A labeled
MDP M = (V, Γ, δ, l) has, in addition a set of propositional predicates Q =
{Q1, . . . , Qr} which label the states. We view this as being given by a labelling
function l : V 7→ Σ, where Σ = 2Q. There are other ways to present MDPs,
e.g., by separating controlled and probabilistic nodes into distinct states. The
different presentations are equivalent and efficiently translatable to each other.
For a labeled MDP M = (V, Γ, δ, l) with a given initial state u ∈ V , which we
denote by Mu, runs of Mu are infinite sequences of states π = π0π1 . . . ∈ V ω,
where π0 = u and for all i ≥ 0, πi ∈ V and there is a transition (πi, γ, p, πi+1) ∈ δ,
for some γ ∈ Γπi

and some probability p > 0. Each run induces an ω-word over
Σ, namely l(π)

.
= l(π0)l(π1) . . . ∈ Σω.

A strategy is a function σ : (V Γ )∗V 7→ D(Γ ), which maps a finite history
of play to a probability distribution on the next action. Here D(Γ ) denotes the
set of probability distributions on the set Γ . Moreover, it must be the case that
for all histories wu, σ(wu) ∈ D(Γu), i.e., the probabilty distribution has support
only over the actions available at state u. A strategy is pure if σ(wu) has support
on exactly one action, i.e., with probability 1 a single action is played at every
history. A strategy is memoryless (stationary) if the strategy depends only on
the last state, i.e., if σ(wu) = σ(w′u) for all w,w′ ∈ (V Γ )∗. If σ is memoryless,
we can simply define it as a function σ : V 7→ D(Γ ). An MDP M with initial
state u, together with a strategy σ, naturally induces a Markov chain Mσ

u , whose
states are the histories of play in Mu, and such that from state s = wv if γ ∈ Γv,



there is a transition to state s′ = wvγv′ with probability σ(wv)(γ) · p(v,γ,v′). A
run θ in Mσ

u is thus given by a sequence θ = θ0θ1 . . ., where θ0 = u and each
θi ∈ (V Γ )∗V , for all i ≥ 0. We associate to each history θi = wv the label of its
last state v. In other words, we overload the notation and define l(wv)

.
= l(v).

We likewise associate with each run θ the ω-word l(θ)
.
= l(θ0)l(θ1) . . .. Suppose

we are given ϕ, an LTL formula or Büchi automaton, or any other formalism
for expressing an ω-regular language over alphabet Σ. Let L(ϕ) ⊆ Σω denote
the language expressed by ϕ. We write Prσu(ϕ) to denote the probability that
a trajectory θ of Mσ

u satistifies ϕ, i.e., that l(θ) ∈ L(ϕ). For generality, rather
than just allowing an initial vertex u we allow an initial probability distribution
α ∈ D(V ). Let Prσα(ϕ) denote the probability that under strategy σ, starting with
initial distribution α, we will satify ω-regular property ϕ. These probabilities
are well defined because the set of such runs is Borel measurable (see, e.g.,
[Var85,CY95]).

As in the introduction, for a k-tuple of ω-regular properties Φ = 〈ϕ1, . . . , ϕk〉,
given a strategy σ, we let tσ = (tσ1 , . . . , t

σ
k), with tσi = Prσu(ϕi), for i = 1, . . . , k.

For MDP M and starting state u, we define the achievable set of value vectors
with respect to Φ to be UMu,Φ = {r ∈ R

k
≥0 | ∃σ such that tσ ≥ r}. For a set

U ⊆ R
k, we define a subset P ⊆ U of it, called the Pareto curve or the Pareto set

of U , consisting of the set of Pareto optimal (or Pareto efficient) vectors inside
U . A vector v ∈ U is called Pareto optimal if ¬∃v′(v′ ∈ U ∧ v ≤ v′ ∧ v 6= v′).
Thus P = {v ∈ U | v is Pareto optimal}. We use PMu,Φ ⊆ UMu,Φ to denote the
Pareto curve of UMu,Φ.

It is clear, e.g., from Figure 1, that the Pareto curve is in general an infinite
set. In fact, it follows from our results that for general ω-regular objectives the
Pareto set is a convex polyhedral set. In principle, we may want to compute some
kind of exact representation of this set by, e.g., enumerating all the vertices (on
the upper envelope) of the polytope that defines the Pareto curve, or enumerating
the facets that define it. It is not possible to do this in polynomial-time in general.
In fact, the following theorem holds (the proof is omitted here):

Theorem 1. There is a family of MDPs, 〈M(n) | n ∈ N〉, where M(n) has n
states and size O(n), such that for M(n) the Pareto curve for two reachability
objectives, 3P1 and 3P2, contains nΩ(logn) vertices (and thus nΩ(logn) facets).

So, the Pareto curve is in general a polyhedral surface of superpolynomial size,
and thus cannot be constructed exactly in polynomial time. We show, however,
that the Pareto set can be efficiently approximated to any desired accuracy ǫ > 0.
An ǫ-approximate Pareto curve, PMu,Φ(ǫ) ⊆ UMu,Φ, is any achievable set such
that ∀r ∈ UMu,Φ ∃t ∈ PMu,Φ(ǫ) such that r ≤ (1 + ǫ)t. When the subscripts Mu

and Φ are clear from the context, we will drop them and use U , P , and P(ǫ) to
denote the achievable set, Pareto set, and ǫ-approximate Pareto set, respectively.

We also consider general multi-objective queries. A quantitative predicate over
ω-regular property ϕi is a statement of the form Prσu(ϕi)∆p, for some rational
probability p ∈ [0, 1], and where∆ is a comparison operator∆ ∈ {≤,≥, <,>,=}.
Suppose B is a boolean combination over such predicates. Then, given M and
u, and B, we can ask whether there exists a strategy σ such that B holds, or



whether B holds for all σ. Note that since B can be put in DNF form, and
the quantification over strategies pushed into the disjuction, and since ω-regular
languages are closed under complementation, any query of the form ∃σB (or
of the form ∀σB) can be transformed to a disjunction (a negated disjunction,
respectively) of queries of the form:

∃σ
∧

i

(Prσu(ϕi) ≥ ri) ∧
∧

j

(Prσu(ψj) > r′j) (1)

We call queries of the form (1) extended achievability queries. Thus, if the
multi-objective query is fixed, it suffices to perform a fixed number of extended
achievability queries to decide any multi-objective query. Note, however, that
the number of extended achievability queries we need could be exponential in
the size of B. We do not focus on optimizing query complexity in this paper.

A motivation for allowing general multi-objective queries is to enable assume-
guarantee compositional reasoning for probabilistic systems. Consider, e.g., a
probabilistic system consisting of the concurrent composition of two components,
M1 and M2, where output from M1 provides input to M2 and thus controls M2.
We denote this by M1 �M2. M2 itself may generate outputs for some external
device, and M1 may also be controlled by external inputs. (One can also consider
symmetric composition, where outputs from both components provide inputs to
both. Here, for simplicity, we restrict ourselves to asymmetric composition where
M1 controls M2.) Let M be an MDP with separate input and output action
alphabets Σ1 and Σ2, and let ϕ1 and ϕ2 denote ω-regular properties over these
two alphabets, respectively. We write 〈ϕ1〉≥r1M〈ϕ2〉≥r2 , to denote the assertion
that “if the input controller of M satisfies ϕ1 with probability ≥ r1, then the
output generated by M satisfies ϕ2 with probability ≥ r2”. Using this, we can
formulate a general compositional assume-guarantee proof rule:

〈ϕ1〉≥r1M1〈ϕ2〉≥r2
〈ϕ2〉≥r2M2〈ϕ3〉≥r3

————————————
〈ϕ1〉≥r1 M1 �M2 〈ϕ3〉≥r3

Thus, to check 〈ϕ1〉≥r1M1 � M2〈ϕ3〉≥r3 it suffices to check two properties of
smaller systems: 〈ϕ1〉≥r1M1〈ϕ2〉≥r2 and 〈ϕ2〉≥r2M2〈ϕ3〉≥r3 . Note that checking
〈ϕ1〉≥r1M〈ϕ2〉≥r2 amounts to checking that there does not exist a strategy σ
controlling M such that Prσu(ϕ1) ≥ r1 and Prσu(ϕ2) < r2.

We also consider qualitative multi-objective queries. These are queries re-
stricted so that B contains only qualitative predicates of the form Prσu(ϕi)∆b,
where b ∈ {0, 1}. These can, e.g., be used to check qualitative assume-guarantee
conditions of the form: 〈ϕ1〉≥1M〈ϕ2〉≥1. It is not hard to see that again, via
boolean manipulations and complementation of automata, we can convert any
qualitative query to a number of queries of the form:

∃σ
∧

ϕ∈Φ

(Prσu(ϕ) = 1) ∧
∧

ψ∈Ψ

(Prσu(ψ) > 0)
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Fig. 2. The MDP M ′.

where Φ and Ψ are sets of ω-regular properties. It thus suffices to consider only
these qualitative queries.

In the next sections we study how to decide various classes of multi-objective
queries, and how to approximate the Pareto curve for properties Φ. Let us observe
here a difficulty that we will have to deal with. Namely, in general we will need
both randomization and memory in our strategies in order to satisfy even simple
qualitative multi-objective queries. Consider the MDP, M ′, shown in Figure 2,
and consider the conjunctive query: B ≡ Prσu(23P1) > 0 ∧ Prσu(23P2) > 0. It
is not hard to see that starting at state u in M ′ any strategy σ that satisfies B
must use both memory and randomization. Each predicate in B can be satisfied
in isolation (in fact with probability 1), but with a memoryless or deterministic
strategy if we try to satisfy 23P2 with non-zero probability, we will be forced to
satisfy 23P1 with probability 0. Note, however, that we can satisfy both with
probability> 0 using a strategy that uses both memory and randomness: namely,
upon reaching the state labeled P1 for the first time, with probability 1/2 we use
move a and with probability 1/2 we use move b. Thereafter, upon encountering
the state labeled P1 for the nth time, n ≥ 2, we deterministically pick action a.
This clearly assures that both predicates are satisfied with probability = 1/2 > 0.

3 Multi-objective reachability

In this section, as a step towards quantitative multi-objective model checking
problems, we study a simpler multi-objective reachability problem. Specifically,
we are given an MDP, M = (V, Γ, δ), a starting state u, and a collection of target
sets Fi ⊆ V , i = 1, . . . , k. The sets Fi may overlap. We have k objectives: the
i-th objective is to maximize the probability of 3Fi, i.e., of reaching some state
in Fi. We assume that the states F =

⋃k

i=1 Fi are all absorbing states with a
self-loop. In other words, for all v ∈ F , (v, a, 1, v) ∈ δ and Γv = {a}.1

We first need to do some preprocessing on the MDP, to remove some useless
states. For each state v ∈ V \ F we can check easily whether there exists a
strategy σ such that Prσv (3F ) > 0: this just amounts to whether there exists a
path from v to F in the underlying graph of the MDP. Let us call a state that
does not satisfy this property a bad state. Clearly, for the purposes of optimizing

1 The assumption that target states are absorbing is necessary for the proofs in this
section, but it will of course follow from the model checking results in Section 5,
which build on this section, that multi-objective reachability problems for arbitrary
target states can also be handled with the same complexities.



Objectives (i = 1, . . . , k): Maximize
P

v∈Fi
yv;

Subject to:

P

γ∈Γv
y(v,γ) −

P

v′∈V

P

γ′∈Γv′
p(v′,γ′,v)y(v′,γ′) = α(v) For all v ∈ V \ F ;

yv −
P

v′∈V \F

P

γ′∈Γv′
p(v′,γ′,v)y(v′,γ′) = 0 For all v ∈ F ;

yv ≥ 0 For all v ∈ F ;
y(v,γ) ≥ 0 For all v ∈ V \ F and γ ∈ Γu;

Fig. 3. Multi-objective LP for the multi-objective MDP reachability problem

reachability objectives, we can look for and remove all bad states from an MDP.
Thus, it is safe to assume that bad states do not exist.2 Let us call an MDP with
goal states F cleaned-up if it does not contain any bad states.

Proposition 1. For a cleaned-up MDP, an initial distribution α ∈ D(V \ F ),
and a vector of probabilities r ∈ [0, 1]k, there exists a (memoryless) strategy

σ such that
∧k

i=1 Prσα(3Fi) ≥ ri if and only if there exists a (respectively,

memoryless) strategy σ′ such that
∧k

i=1 Prσ
′

α (3Fi) ≥ ri ∧
∧
v∈V Prσ

′

v (3F ) > 0.

The proposition is rather obvious. For completeness a proof is in the appendix.
Now, consider the multi-objective LP described in Figure 3.3 The set of

variables in this LP are as follows: for each v ∈ F , there is a variable yv, and for
each v ∈ V \ F and each γ ∈ Γv there is a variable y(v,γ).

Theorem 2. Suppose we are given a cleaned-up MDP, M = (V, Γ, δ) with mul-

tiple target sets Fi ⊆ V , i = 1, . . . , k, where every target v ∈ F =
⋃k
i=1 Fi

is an absorbing state. Let α ∈ D(V \ F ) be an initial distribution (in particular
V \F 6= ∅). Let r ∈ (0, 1]k be a vector of positive probabilities. Then the following
are all equivalent:

(1.) There is a (possibly randomized) memoryless strategy σ such that
∧k
i=1(Prσα(3Fi) ≥ ri)

2 Technically, we would need to install a new “dead” absorbing state vdead 6∈ F ,
such that all the probabilities going into states that have been removed now go to
vdead. For convenience in notation, instead of explicitly adding vdead we treat it as
implicit: we allow that for some states v ∈ V and some action a ∈ Γv we have
P

v′∈V
p(v,γ,v′) < 1, and we implicitly assume that there is an “invisible” transition

to vdead with the residual probability, i.e., with p(v,γ,vdead) = 1−
P

v′∈V
p(v,γ,v′). Of

course, vdead would then be a “bad” state, but we can ignore this implicit state.
3 We mention without further elaboration that this LP can be derived, using comple-

mentary slackness, from the dual LP of the standard LP for single-objective reach-
ability obtained from Bellman’s optimality equations, whose variables are xv, for
v ∈ V , and whose unique optimal solution is the vector x∗ with x∗

v = maxσ Prσ
v (3F )

(see, e.g., [Put94,CY98]).



(2.) There is a feasible solution y′ for the multi-objective LP in Fig. 3 such that

∧k
i=1(

∑
v∈Fi

y′v ≥ ri)

(3.) There is an arbitrary strategy σ such that

∧k
i=1(Pr

σ
α(3Fi) ≥ ri)

Proof.
(1.) ⇒ (2.). Since the MDP is cleaned up, by Proposition 1 we can assume

there is a memoryless strategy σ such that
∧k

i=1 Prσα(3Fi) ≥ ri and ∀v ∈ V
Prσv (3F ) > 0. Consider the square matrix P σ whose size is |V \ F | × |V \ F |,
and whose rows and columns are indexed by states in V \F . The (v, v′)’th entry
of P σ, P σv,v′ , is the probability that starting in state v we shall in one step end
up in state v′. In other words, P σv,v′ =

∑
γ∈Γv

σ(v)(γ) · pv,γ,v′.

For all v ∈ V \ F , let y′(v,γ) =
∑

v′∈V \F α(v′)
∑∞

n=0(P
σ)nv′,vσ(v)(γ). In other

words y′(v,γ) denotes the “expected number of times that, using the strategy σ,
starting in the distribution α, we will visit the state v and upon doing so choose
action γ”. We don’t know yet that these are finite values, but assuming they
are, for v ∈ F , let y′v =

∑
v′∈V \F

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′). This completes the

definition of the entire vector y′.

Lemma 1. The vector y′ is well defined (i.e., all entries y′(v,γ) are finite).

Moreover, y′ is a feasible solution to the constraints of the LP in Figure 3.

See the appendix for the proof.
Now we argue that

∑
v∈Fi

y′v = Prσα(3Fi). To see this, note that for v ∈ F ,
y′v =

∑
v′∈V \F

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) is precisely the “expected number of times

that we will transition into state v for the first time”, starting at distribution α.
The reason we can say “for the first time” is because only the states in V \F are
included in the matrix P σ. But note that this italicised statement in quotes is
another way to define the probability of eventually reaching state v. This equal-
ity can be establish formally, but we omit the formal algebraic derivation here.
Thus

∑
v∈Fi

y′v = Prσα(3Fi) ≥ ri. We are done with (1.) ⇒ (2.).

(2.) ⇒ (1.). We now wish to show that if y′′ is a feasible solution to the multi-
objective LP such that

∑
v∈Fi

y′′v ≥ ri > 0, for all i = 1, . . . , k, then there exists

a memoryless strategy σ such that
∧k

i=1 Prσα(3Fi) ≥ ri.
Suppose we have such a solution y′′. Let S = {v ∈ V \F |

∑
γ∈Γv

y′′(v,γ) > 0}.
Let σ be the memoryless strategy, given as follows. For each v ∈ S

σ(v)(γ) :=
y′′(v,γ)∑
γ′∈Γv

y′′v,γ′

Note that since
∑

γ∈Γv
y′′(v,γ) > 0, σ(v) is a well-defined probability distribution

on the moves at state v ∈ S. For the remaining states v ∈ (V \ F ) \ S, let σ(v)
be an arbitrary distribution in D(Γv).



Lemma 2. This memoryless strategy σ satisfies
∧k
i=1 Pr

σ
α(3Fi) ≥ ri.

Proof. The proof is in the appendix. Here we very briefly sketch the argument.
We can think of a feasible solution y′′ to the LP constraints as defining a
“stochastic flow”, whose “source” is the initial distribution α(v), and whose
sinks are F . By flow conservation, vertices v ∈ V \ F that have positive outflow
(and thus positive inflow) must all be reachable from the support of α, and must
all reach F , and can not reach any vertex with zero outflow. The strategy σ is
obtained by normalizing the outflow on each action at the states with positive
outflow. It can be shown that, using σ, the expected number of times we choose
action γ at vertex v is again given by y′′(v,γ). Therefore, since transitions into the

states v ∈ F from V \F are only crossed once, the constraint defining the value
y′′v yields y′′v = Prσα(3{v}). Please see the appendix for the complete proof. ⊓⊔

This completes the proof that (2.) ⇒ (1.).

(3.) ⇔ (1.). Clearly (1.) ⇒ (3.), so we need to show that (3.) ⇒ (1.).

Let U be the set of achievable vectors, i.e., all k-vectors r = 〈r1 . . . rk〉 such

that there is a (unrestricted) strategy σ such that
∧k

i=1 Prσα(3Fi) ≥ ri. Let
U⊙ be the analogous set where the strategy σ is restricted to be a possibly
randomized but memoryless (stationary) strategy. Clearly, U and U⊙ are both
downward closed, i.e., if r ≥ r′ and r ∈ U then also r′ ∈ U , and similarly with
U⊙. Also, obviously U⊙ ⊆ U . We characterized U⊙ in (1.) ⇔ (2.), in terms
of a multi-objective LP. Thus, U⊙ is the projection of the feasible space of a
set of linear inequalities (a polyhedral set), namely the set of inequalities in the
variables y given in Fig. 3 and the inequalities

∑
v∈Fi

yv ≥ ri, i = 1, . . . , k. The
feasible space is a polyhedron in the space indexed by the y variables and the
ri’s, and U⊙ is its projection on the subspace indexed by the ri’s. Since the
projection of a convex set is convex, it follows that U⊙ is convex.

Suppose that there is a point r ∈ U \ U⊙. Since U⊙ is convex, this implies
that there is a separating hyperplane (see, e.g., [GLS93]) that separates r from
U⊙, and in fact since U⊙ is downward closed, there is a separating hyperplane
with non-negative coefficients, i.e. there is a non-negative “weight” vector w =
〈w1, . . . , wk〉 such that wT r =

∑k

i=1 wiri > wTx for every point x ∈ U⊙.

Consider now the MDP M with the following undiscounted reward structure.
There is 0 reward for every state, action and transition, except for transitions
to a state v ∈ F from a state in V \ F ; i.e. a reward is produced only once, in
the first transition into a state of F . The reward for every transition to a state
v ∈ F is

∑
{wi | i ∈ {1, . . . , k} & v ∈ Fi}. By the definition, the expected

reward of a policy σ is
∑k

i=1 wi Prσα(3Fi). From classical MDP theory, we know
that there is a memoryless strategy (in fact even a deterministic one) that max-
imizes the expected reward for this type of reward structure. (Namely, this is a
positive bounded reward case: see, e.g., Theorem 7.2.11 in [Put94].) Therefore,
max{wTx | x ∈ U} = max{wTx | x ∈ U⊙}, contradicting our assumption that
wT r > max{wTx | x ∈ U⊙}. ⊓⊔



Corollary 1. Given an MDP M = (V, Γ, δ), a number of target sets Fi ⊆ V ,

i = 1, . . . , k + k′, such that every state v ∈ F =
⋃k+k′

i=1 Fi is absorbing, and an
initial state u (or even initial distribution α ∈ D(V )):

(a.) Given an extended achievability query for reachability, ∃σB, where

B ≡
k∧

i=1

(Prσu(⋄Fi) ≥ ri) ∧
k+k′∧

j=k+1

(Prσu(3Fj) > rj),

we can in time polynomial in the size of the input, |M |+ |B|, decide whether
∃σ B is satisfiable and if so construct a memoryless strategy that satisfies it.

(b.) For ǫ > 0, we can compute an ǫ-approximate Pareto curve P(ǫ) for the
multi-objective reachability problem with objectives 3Fi, i = 1, . . . , k, in time
polynomial in |M | and 1/ǫ.

The proof of the Corollary is in the appendix.

4 Qualitative multi-objective model checking

Theorem 3. Given an MDP M , an initial state u, and a qualitative multi-
objective query B, we can decide whether there exists a strategy σ that satisfies
B, and if so construct such a strategy, in time polynomial in |M |, and using only
graph-theoretic methods (in particular, without linear programming).

Proof. (Sketch) By the discussion in Section 2, it suffices to consider the case
where we are given MDP, M , and two sets of ω-regular properties Φ, Ψ , and we
want a strategy σ such that

∧

ϕ∈Φ

Prσu(ϕ) = 1 ∧
∧

ψ∈Ψ

Prσu(ψ) > 0

Assume the properties in Φ, Ψ are all given by (nondeterministic) Büchi au-
tomata Ai. We will use and build on results in [CY98]. In [CY98] (Lemma 4.4,
page 1411) it is shown that we can construct from M and from a collection Ai,
i = 1, . . . ,m, of Büchi automata, a new MDP M ′ (a refinement of M) which
is the “product” of M with the naive determinization of all the Ai’s (i.e., the
result of applying the standard subset construction on each Ai, without impos-
ing any acceptance condition).4 This MDP M ′ has the following properties. For
every subset R of Φ∪ Ψ there is a subset TR of corresponding “target states” of
M ′ (and we can compute this subset efficiently) that satisfies the following two
conditions:

4 Technically, we have to slightly adapt the constructions of [CY98], which use the
convention that MDP states are either purely controlled or purely probabilistic, to
the convention used in this paper which combines both control and probabilistic
behavior at each state. But these adaptations are straightforward.



(I) If a trajectory of M ′ hits a state in TR at some point, then we can apply
from that point on a strategy µR (which is deterministic but uses memory)
which ensures that the resulting infinite trajectory satisfies all properties
in R almost surely (i.e., with conditional probability 1, conditioned on the
initial prefix that hits TR).

(II) For every strategy, the set of trajectories that satisfy all properties in R and
do not infinitely often hit some state of TR has probability 0.

We now outline the algorithm for deciding qualitative multi-objective queries.

1. Construct the MDP M ′ from M and from the properties Φ and Ψ .
2. Compute TΦ, and compute for each property ψi ∈ Ψ the set of states TRi

where Ri = Φ ∪ {ψi}.5

3. If Φ 6= ∅, prune M ′ by identifying and removing all “bad” states by applying
the following rules.

(a) All states v that cannot “reach” any state in TΦ are “bad”.6

(b) If for a state v there is an action γ ∈ Γv such that there is a transition
(v, γ, p, v′) ∈ δ, p > 0, and v′ is bad, then remove γ from Γv.

(c) If for some state v, Γv = ∅, then mark v as bad.

Keep applying these rules until no more states can be labelled bad and no
more actions removed for any state.

4. Restrict M ′ to the reachable states (from the initial state u) that are not
bad, and restrict their action sets to actions that have not been removed,
and let M ′′ be the resulting MDP.

5. If (M ′′ = ∅ or ∃ψi ∈ Ψ such that M ′′ does not contain any state of TRi
)

then return No.
Else return Yes.

Correctness proof: In one direction, suppose there is a strategy σ such that∧
ϕ∈Φ Prσu(ϕ) = 1∧

∧
ψ∈Ψ Prσu(ψ) > 0. First, note that there cannot be any finite

prefix of a trajectory under σ that hits a state that cannot reach any state in TΦ.
For, if there was such a path, then all trajectories that start with this prefix go
only finitely often through TΦ. Hence (by property (II) above) almost all these
trajectories do not satisfy all properties in Φ, which contradicts the fact that all
these properties have probability 1 under σ. From the fact that no path under σ
hits a state that cannot reach TΦ, it follows by an easy induction that no finite
trajectory under σ hits any bad state. That is, under σ all trajectories stay in
the sub-MDP M ′′. Since every property ψi ∈ Ψ has probability Prσu(ψi) > 0 and
almost all trajectories that satisfy ψi and Φ must hit a state of TRi

(property
(II) above), it follows that M ′′ contains some state of TRi

for each ψi ∈ Ψ . Thus
the algorithm returns Yes.

5 Actually these sets are all computed together: we compute maximal closed compo-
nents of the MDP, determine the properties that each component favors (see Def.
4.1 of [CY98]), and tag each state with the sets for which it is a target state.

6 By “reach”, we mean that starting at the state v = v0, there a sequence of transitions
(vi, γ, pi, vi+1) ∈ δ, pi > 0, such that vn ∈ TΦ for some n ≥ 0.



In the other direction, suppose that the algorithm returns Yes. First, note
that for all states v of M ′′, and all enabled actions γ ∈ Γv in M ′′, all transitions
(v, γ, p, v′) ∈ δ, p > 0 of M ′ must still be in M ′′ (otherwise, γ would have been
removed from Γv at some stage using rule 3(b)). On the other hand, some states
may have some missing actions in M ′′. Next, note that all bottom strongly
connected components (bscc’s) of M ′′ (to be more precise, in the underlying
one-step reachability graph of M ′′) contain a state of TΦ (if Φ = ∅ then all states
are in TΦ), for otherwise the states in these bsccs would have been eliminated at
some stage using rule 3(a).

Define the following strategy σ which works in two phases. In the first phase,
the trajectory stays within M ′′. At each control state take a random action that
remains in M ′′ out of the state; the probabilities do not matter, we can use any
non-zero probability for all the remaining actions. In addition, at each state,
if the state is in TΦ or it is in TRi

for some property ψi ∈ Ψ , then with some
nonzero probability the strategy decides to terminate phase 1 and move to phase
2 by switching to the strategy µΦ or µRi

respectively, which it applies from that
point on. (Note: a state may belong to several TRi

’s, in which case each one of
them gets some non-zero probability - the precise value is unimportant.)

We claim that this strategy σ meets the desired requirements - it ensures
probability 1 for all properties in Φ and positive probability for all properties
in Ψ . For each ψi ∈ Ψ , the MDP M ′′ contains some state of TRi

; with nonzero
probability the process will follow a path to that state and then switch to the
strategy µRi

from that point on, in which case it will satisfy ψi (property (I)
above). Thus, all properties in Ψ are satisfied with positive probability.

As for Φ (if Φ 6= ∅), note that with probability 1 the process will switch at
some point to phase 2, because all bscc’s of M ′′ have a state in TΦ. When it
switches to phase 2 it applies strategy µΦ or µRi

for some Ri = Φ ∪ {ψi}, hence
in either case it will satisfy all properties of Φ with probability 1. ⊓⊔

5 Quantitative multi-objective model checking.

Theorem 4.

(1.) Given an MDP M , an initial state u, and a quantitative multi-objective query
B, we can decide whether there exists a strategy σ that satisfies B, and if so
construct such a strategy, in time polynomial in |M |.

(2.) Moreover, given ω-regular properties Φ = 〈ϕ1, . . . , ϕk〉, we can construct an
ǫ-approximate Pareto curve PMu,Φ(ǫ), for the set of achievable probability
vectors UMu,Φ in time polynomial in M and in 1/ǫ.

Proof. (Sketch.) For (1.), by the discussion in Section 2, we only need to consider

extended achievability queries, B ≡
∧k′

i=1 Prσu(ϕi) ≥ ri ∧
∧k

j=k′+1 Prσu(ϕj) > rj ,

where k ≥ k′ ≥ 0, and for a vector r ∈ (0, 1]k. Let Φ = 〈ϕ1, . . . , ϕk〉. We are
going to reduce this multi-objective problem with objectives Φ to the quantitative
multi-objective reachability problem studied in Section 3. From our reduction,



both (1.) and (2.) will follow, using Corollary 1. As in the proof of Theorem
3, we will build on constructions from [CY98]: form the MDP M ′ consisting of
the product of M with the naive determinizations of the automata Ai for the
properties ϕi ∈ Φ. For each subset R ⊆ Φ we determine the corresponding subset
TR of target states in M ′.7

Construct the following MDP M ′′. Add to M ′ a new absorbing state sR for
each subset R of Φ. For each state u of M ′ and each maximal subset R such that
u ∈ TR add a new action γR to Γu, and an new transition (u, γR, 1, sR) to δ. With
each property ϕi ∈ Φ we associate the subset of states Fi = {sR | ϕi ∈ R}. Let
F = 〈3F1, . . . ,3Fk〉. Let u∗ be the initial state of the product MDP M ′′, given
by the start state u of M and the start states of all the naively determinized
Ai’s. Recall that UMu,Φ ⊆ [0, 1]k denotes the achievable set for the properties
Φ in M starting at u, and that UM ′′

u∗ ,F
denotes the achievable set for F in M ′′

starting at u∗.

Lemma 3. UMu,Φ = UM ′′

u∗ ,F
. Moreover, from a strategy σ that achieves r in

UMu,Φ, we can recover a strategy σ′ that achieves r in UM ′′

u∗ ,F
, and vice versa.

The Lemma is proved in the appendix. It follows from the Lemma that: there

exists a strategy σ in M such that
∧k′

i=1 Prσu(ϕi) ≥ ri ∧
∧k
j=k′+1 Prσu(ϕj) > rj

if and only if there exists a strategy σ′ in M ′′ such that
∧k′

i=1 Prσu∗(3Fi) ≥

ri ∧
∧k

j=k′+1 Prσu∗(3Fj) > rj . Moreover, such strategies can be recovered from
each other. Thus (1.) and (2.) follow, using Corollary 1. ⊓⊔

6 Concluding remarks

We mention that although our quantitative upper bounds use LP methods,
in practice there is a way to combine efficient iterative numerical methods for
MDPs, e.g., based on value iteration, with our results in order to approximate
the Pareto curve for multi-objective model checking. This is because the results
of [PY00] for multi-objective LPs only require a black-box routine that optimizes
(exactly or approximately) positive linear combinations of the LP objectives. We
omit the details of this approach.

An important extension of the applications of our results is to extend the
asymmetric assume-guarantee compositional reasoning rule discussed in Section
2 to a general compositional framework for probabilistic systems. It is indeed
possible to describe symmetric assume-guarantee rules that allow for general
composition of MDPs. A full treatment of the general compositional framework
requires a separate paper, and we plan to expand on this in follow-up work.
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9988322, CCR-0124077, CCR-0311326, and ANI-0216467, BSF grant 9800096,
Texas ATP grant 003604-0058-2003,Guggenheim Fellowship; NSF CCF-04-30946.
7 Again, we don’t need to compute these sets separately. See Footnote 5.
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A Proofs missing from the text

A.1 Proof of Proposition 1

Proof. This is quite obvious, but we give a quick argument anyway. Suppose we
have such a strategy σ. Since the MDP is cleaned-up, we know that from every
state in V we can reach F with a positive probability. Suppose the strategy leads
to a history whose last state is v ∈ V \F , and that thereafter the strategy is such
that it will never reach F on any path. We simply revise σ to a strategy σ′ such
that, if we ever arrive at such a “dead” history, we switch and play according
to the memoryless strategy starting at v which reaches F with some positive
probability. Note that if σ is memoryless then so is σ′. ⊓⊔

A.2 Proof of Lemma 1

Proof. First, we show that for all v ∈ V \ F and γ ∈ Γv, y
′
(v,γ) is a well defined

finite value. It then also follows from the definition of y′v that y′v is also finite and
thus that the vector y′ is well defined. Note that because σ has the property that
∀v ∈ V Prσv (3F ) > 0, P σ is clearly a substochastic matrix with the property
that, for some power d ≥ 1, all of the row sums of (P σ)d are strictly less than
1. Thus, it follows that limn→∞(P σ)n → 0, and thus by standard facts about
matrices the inverse matrix (I−P σ)−1 =

∑∞
n=0(P

σ)n exists and is non-negative.
Now observe that

y′(v,γ) =
∑

v′∈V \F

α(v′)

∞∑

n=0

(P σ)nv′,vσ(v)(γ)

=
∑

v′∈V \F

α(v′)σ(v)(γ)

∞∑

n=0

(P σ)nv′,v

= σ(v)(γ)
∑

v′∈V \F

α(v′)(I − P σ)−1
v′,v

Next, we show that y′ is a feasible solution to the constraints in the multi-
objective LP in Figure 3. Note that, for each state v ∈ V \ F , the expres-
sion

∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) is precisely the “expected number of times

we will take a transition into the state v” if we start at initial distribution
α and using strategy σ, whereas

∑
γ∈Γv

y′(v,γ) defines precisely the “expected

number of times we will take a transition out of the state v”. Thus α(v), the
probability that we will start in state v, is precisely given by

∑
γ∈Γv

y′(v,γ) −



∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) = α(v). More formally, for each state v ∈ V \ F :

∑

v′∈V

∑

γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) =

∑

v′∈V

∑

γ′∈Γv′

p(v′,γ′,v)

∑

v′′∈V \F

α(v′′)

∞∑

n=0

(P σ)nv′′,v′σ(v′)(γ′)

=
∑

v′′∈V \F

α(v′′)
∑

v′∈V

∑

γ′∈Γv′

p(v′,γ′,v)

∞∑

n=0

(P σ)nv′′,v′σ(v′)(γ′)

=
∑

v′′∈V \F

α(v′′)
∞∑

n=1

(P σ)nv′′,v

The last expression is easily seen to be the expected number of times we will
transition into state v. It is clear by linearity of expectations that

∑
γ∈Γv

y′(v,γ)

gives the expected number of times we will transition out of state v. It is thus
clear that

∑
γ∈Γv

y′(v,γ) −
∑

v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) = α(v). ⊓⊔

A.3 Proof of Lemma 2

Proof. Let us assume, for the sake of convenience in our analysis, that there is
an extra dead-end absorbing state vdead 6∈ F available, and an extra move γdead
available at each state,v, with p(v,γdead,vdead) = 1, and for each v ∈ (V \ F ) \ S,
instead of letting σ(v) be arbitrary, let σ(v)(γdead) = 1. In other words, from each
such state we simply move directly to an absorbing dead-end which is outside of
F . The assumption that such a dead-end exists is just for convenience: clearly,
without such a dead-end, we can use any (mixed) move at such vertices in our
strategy, and such a strategy would yield at least as high a value for Prσα(3Fi),
for all i = 1, . . . , k.

Let us now explain the reason why we don’t care about what moves are used
at states outside S in the strategy σ. Let support(α) = {v ∈ V \ F | α(v) >
0}. We claim S contains all states reachable from support(α) using strategy
σ. To see this, first note that support(α) ⊆ S, because for v ∈ support(α),
since

∑
γ∈Γv

y′′(v,γ) −
∑

v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) = α(v), and α(v) > 0, and

since y′′v′,γ′ ≥ 0 for all v′ ∈ V \ F and γ′ ∈ Γv′ , it must be the case that,∑
γ∈Γv

y′′(v,γ) > 0. Thus support(α) ⊆ S. Inductively, for k ≥ 0, consider any

state v ∈ V \ F , such that we can, with non-zero probability, reach v in k steps
using strategy σ from a state in support(α), and such that we can not reach v
(with non-zero probability) in any fewer than k step. For the base case k = 0,
we already know v ∈ support(α) ⊆ S. For k > 0, we must have α(v) = 0. But
note that there must be a positive probability of moving to v in one step from
some other state v′ which can be reached in k − 1 steps from support(α). But
this is so if and only if for some γ′ ∈ Γv′ , both p(v′,γ′,v) > 0 and y′′(v′,γ′) > 0 (

and thus σ(v′)(γ′) > 0). Hence,
∑

v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) > 0. Thus since∑

γ∈Γv
y′′(v,γ)−

∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) = 0, we must have

∑
γ∈Γv

y′′(v,γ) >
0, and thus v ∈ S. Hence S contains the set of nodes reachable from nodes in
the support of the initial distribution, support(α), using the strategy σ.



We will now show that Prσα(3Fi) ≥ ri, for all i = 1, . . . , k. Let us consider
the underlying graph of the “flows” defined by y′′. Namely, let G = (V,E) be a
graph on states of M such that (v, v′) ∈ E if and only if there is some γ ∈ Γv
such that y′′(v,γ) > 0 and p(v,γ,v′) > 0. Let W ⊆ V \ F be the set of vertices in

V \ F that have a non-zero “flow” to F , i.e., v is in W iff there is a path in G
from v to some vertex in F .

For v ∈ V \F , let zv =
∑

γ∈Γv
y′′(v,γ). Note that by the constraints of the LP,

for any vertex v ∈ S

α(v) = zv −
∑

v′∈V \F

∑

γ∈Γv′

p(v′,γ,v)y
′′
(v′,γ)

= zv −
∑

v′∈S

∑

γ∈Γv′

p(v′,γ,v)y
′′
(v′,γ) (because all flow into v comes from S)

= zv −
∑

v′∈S

∑

γ∈Γv′

p(v′,γ,v)y
′′
(v′,γ)

zv′∑
γ′∈Γv′

y′′(v′,γ′)

= zv −
∑

v′∈S

∑

γ∈Γv′

p(v′,γ,v)σ(v′)(γ)zv′

= zv −
∑

v′∈S

P σv′,vzv′

Now, let us focus on the vertices inW . Note that, by definition,W ⊆ S. Consider
the submatrix P σW,W obtained from P σ by eliminating the rows and columns
whose indices are not in W . Note that since there is no flow into a vertex in
W from a vertex outside of W , the above equalities yield, for each v ∈ W ,
α(v) = zv −

∑
v∈W P σv′,vzv′ . This can be written in matrix notation as αT |W =

zT |W (I − P σW,W ).
Now, note that since every vertex in W has a “flow” to F , in terms of

the underlying Markov chain of the substochastic matrix P σW,W , this means
that every vertex in W is transient, and that there is a power d ≥ 1, such
that (P σW,W )d has the property that all its row sums are strictly less than 1.

Consequently, limd→∞(P σW,W )d = 0 and the matrix (I − P σW,W ) is invertible,

with (I − P σW,W )−1 =
∑∞
i=0(P

σ
W,W )i), a nonnegative matrix. Thus, zT |W =

αT (I − P σW,W )−1 = αT (
∑∞

i=0(P
σ
W,W )i. From this it follows, again because no

vertex outside of W has a flow into W , that for each v ∈W :

zv =
∑

v′∈V \F

α(v′)
∞∑

n=0

∑

γ∈Γv

(P σ)nv′,vσ(v)(γ)

=
∑

γ∈Γv

∑

v′∈W

α(v′)

∞∑

n=0

(P σ)nv′,vσ(v)(γ)

(because all moves into v of strategy σ come from vertices in W )

=
∑

γ∈Γv

y′(v,γ)



where, in the last expression, the values y′(v,γ), not to be mistaken with y′′(v,γ), are

values from the vector y′ which we obtained in the proof that (1.) ⇒ (2.), from a
given memoryless strategy σ. In this case, the strategy σ in question is precisely
the memoryless strategy we just defined based on y′′. Thus, for all v ∈ W :

zv =
∑

γ∈Γv

y′′(v,γ) =
∑

γ∈Γv

y′(v,γ) (2)

We next show that in fact for all v ∈ W and γ ∈ Γv, y
′′
(v,γ) = y′(v,γ). For v ∈ W

and γ ∈ Γv, we have:

y′(v,γ) =
∑

v′∈W

α(v′)
∞∑

i=0

(P σW,W )iv′,vσ(v)(γ)

=
∑

v′∈W

α(v′)

∞∑

i=0

(P σW,W )iv′,v
y′′(v,γ)∑

γ′∈Γv
y′′(v,γ′)

=
y′′(v,γ)∑

γ′∈Γv
y′′(v,γ′)

∑

v′∈W

α(v′)

∞∑

i=0

(P σW,W )iv′,v

But recall that the “expected number of times we will transition out of state v”
is given by

∑
γ∈Γv

y′(v,γ) =
∑

v′∈W α(v′)
∑∞

i=0(P
σ
W,W )iv′,v.

Hence y′(v,γ) =
y′′(v,γ)

P

γ′∈Γv
y′′
(v,γ′)

∑
γ∈Γv

y′(v,γ). Thus, by using equation (2) and

canceling, we get y′(v,γ) = y′′(v,γ). Thus, since y′′ is a feasible solution to the LP,
we have that for any v ∈ F :

y′′v =
∑

v′∈V \F

∑

γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′)

=
∑

v′∈W

∑

γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) (because all flow into F is from W )

=
∑

v′∈W

∑

γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′)

= Prσα(3{v})

The last equality holds because, as we showed in the proof of ((1.) ⇒ (2.)), the
expression

∑
v′∈W

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) =

∑
v′∈V \F

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) is

exactly the “expected number of times that we will visit the vertex v ∈ F for the
first time”, which is precisely the probability Prσα(3{v}).

Thus, clearly,
∑

v∈Fi
y′′v =

∑
v∈Fi

Prσα(3{v}) = Prσα(3Fi). Thus, since we
have assumed that

∑
v∈Fi

y′′v ≥ ri, we have established that Prσα(3Fi) ≥ ri, for
all target sets Fi. ⊓⊔

A.4 Proof of Corollary 1

Proof. For (a.), consider the constraints of the LP in Figure 3, and add the
following constraints: for each i ∈ {1, . . . , k} add the constraint

∑
v∈Fi

yv ≥ ri,



and for each j ∈ {k+1, . . . , k+k′}, add the constraint
∑

v∈Fj
yv ≥ rj +z, where

z is a new variable, and also add the constraint z ≥ 0. Finally, consider the
new objective “Maximize z”. Solve this LP to find whether an optimal feasible
solution y∗, z∗ exists, and if so whether z∗ > 0. If no solution exists, or if z∗ ≤ 0,
then the extended achievability query is not satisfiable. Otherwise, if z∗ > 0, then
a strategy that satisfies ∃σB exists, and moreover we can construct a memoryless
strategy that satisfies it by using the vector y′′ = y∗ and picking the strategy σ
constructed from y′′ in the proof of (2.) ⇒ (1.) in Theorem 2.

Part (b.) is immediate from Theorem 2, and the results of [PY00], which
show we can ǫ-approximate the Pareto curve for multi-objective linear programs
in time polynomial in the size of the constraints and objectives and in 1/ǫ. ⊓⊔

A.5 Proof of Lemma 3

Proof. One direction is easy. Given such a strategy σ′ in M ′′, we follow in M ′

(and in M) the same strategy (of course, only the first component of states of
M ′′ matters in M), until just before it transitions to a state sR, at which point
it must be in TR, and at that point our strategy σ switches to the strategy µR.

This guarantees, for every ϕi ∈ Φ, Prσu(ϕi) ≥ Prσ
′

u∗(3Fi) ≥ ri.
For the other direction, suppose that the claim is not true, i.e. there is a

strategy σ in M which ensures probability Prσu(ϕi) ≥ ri, i = 1, . . . , k, but r 6∈
UM ′′

u∗ ,F
. Note that all states in F = ∪ki=1Fi are absorbing. From Theorem 2 we

know that UM ′′

u∗ ,F
= U⊙

M ′′

u∗ ,F
where U⊙

M ′′

u∗ ,F
is the set of value vectors achievable

by memoryless strategies. Recall, that UM ′′

u∗ ,F
= U⊙

M ′′

u∗ ,F
is convex, and that it

is downward-closed. Since r 6∈ UM ′′

u∗ ,F
, as in the proof of (3.) ⇒ (1.) in Thm. 2,

there must be a separating hyperplane, i.e., a non-negative weight vector w =
〈w1, . . . , wk〉 such that wT r =

∑k
i=1 wiri > wTx for every point x ∈ UM ′′

u∗ ,F
.

Consider M with the following reward structure, denoted rew(w): a trajec-
tory τ of M receives reward

∑
{wi | τ satisfies ϕi}. This is not the traditional

type of reward structure where reward is obtained at the states and transitions
of the trajectory; it is obtained only at infinity when the trajectory has finished
and we get a reward that depends on the properties that were satisfied. In [CY98]
optimization of the expected reward for MDPs with this kind of reward struc-
ture was studied and solved by reducing the problem to an MDP with a classical
type of reward. We reuse that construction here. Consider the MDP M ′′ aug-
mented with a traditional type of reward structure, denoted rew′′, in which each
transition of the form (u, γR, 1, sR) produces reward

∑
{wi | ϕi ∈ R}, while all

other transitions (and states and actions) give 0 reward. Let M̂ ′′ be a subMDP
of M ′′ that contains for each state u only one (at most) transition of the form
(u, γR, 1, sR), namely the one that produces the maximum reward (breaking ties
arbitrarily). Clearly, there is no reason ever to select from a state u any tran-
sition (u, γR′ , 1, sR′) that produces lower reward, thus, M ′′ and M̂ ′′ have the
same optimal expected reward. It is shown in [CY98] that the optimal expected
rewards in (M, rew(w)) and (M̂ ′′, rew′′) , and thus also in (M ′′, rew′′), are equal



to each other. Moreover, the optimum value in these MDPs is achievable, i.e.,
there are optimal strategies, and in fact a deterministic finite-memory optimal
strategy can be constructed.

The optimal expected reward in (M, rew(w)) is at least wT r (because strat-
egy σ achieves wT r), while the optimal expected reward in (M ′′, rew′′) is equal
to max{wTx | x ∈ UM ′′

u∗ ,F
}, because rewards are only obtained by transitioning

to a state in F . Therefore, wT r ≤ max{wTx | x ∈ UM ′′

u∗ ,F
}, contradicting our

hypothesis that wT r > max{wTx | x ∈ UM ′′

u∗ ,F
}. ⊓⊔


