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Abstract

Finite automata have two traditional applications in computer science: modeling

of �nite-state systems and description of regular set of �nite words. In the last

few years, several new applications for �nite-state automata have emerged, e.g.,

optimization of logic programs and speci�cation and veri�cation of protocols.

These applications use �nite-state automata to describe regular sets of in�nite

words and trees. I will describe such applications and will argue that we need

change the way we teach automata theory.

1 Introduction

The theory of �nite automata is one of the fundamental building blocks of the-

oretical computer science. It is covered in numerous textbooks and in any basic

undergraduate curriculum in computer science. Since its introduction in the

1950's, the theory had numerous applications in practically all branches of com-

puter science. In these applications, �nite automata are typically used in one

of two roles: as models or as descriptors; �nite automata are very often the ap-

propriate abstraction to model �nite-state systems, and �nite automata can be

used as descriptors of regular languages.

Over the last decade, I have been involved in two areas of research in which

automata theory is an essential source of tools: optimization of logic programs

and speci�cation and veri�cation of protocols. In these applications, however,

automata are not used in the same roles mentioned above. They are used as

descriptors, but not of regular languages, i.e., regular sets of �nite words. Instead,

they are used to describe sets of more complex objects, namely, in�nite words

and trees. The theory of such automata had been a subject of research since the

1960s [Bu62, TW68, Ra69] and is also covered in some books [TB73, Ei74, GS84];
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see [Ha85, Tho90] for recent surveys. Unlike, however, the theory of automata

on �nite words, the theory of automata on in�nite words or trees is not widely

known. Furthermore, my experience has been that many researchers are not very

comfortable working with this theory,

In this paper I will describe two applications of the theory of automata on

in�nite words and trees: the �rst application, taken from [CV92] (see also [Va92]),

is to optimization of logic database programs and the second application, taken

from [VW86b], is to veri�cation of �nite-state programs. The description here

is sketchy on some of the details; for more details the reader is referred to the

original papers. My goal in this paper is twofold. First, I'd like to promote

the theory of automata on in�nite words and trees by demonstrating that it

provides a powerful set of abstractions and tools to computer scientists. My

hope is that this theory will become more widely known and applicable to a

variety of problems in computer science. Second, and perhaps more important,

I'd like to argue that we ought to change the way we teach automata theory. I

will come back to this point at the concluding section of the paper.

2 Optimization of Datalog Programs

It has been recognized for some time that �rst-order database query languages

are lacking in expressive power [AU79, GM78, Zl76]. Since then, many higher-

order query languages have been investigated [AV89, Ch81, CH80, CH82, Im86,

Va82]. A query language that has received considerable attention recently is

Datalog, the language of logic programs (known also as Horn-clause programs)

without function symbols [K90, Ul88, Ul89], which is essentially a fragment of

�xpoint logic [CH85, Mo74].

The gain in expressive power does not, however, come for free; evaluating

Datalog programs is harder than evaluating �rst-order queries [Va82]. Recent

works have addressed the problems of �nding e�cient evaluation methods for

Datalog programs (see survey in [BR86]) and developing optimization techniques

for Datalog (see [MP91, Na89b, NRSU89]). The techniques to optimize evalu-

ation of queries are often based on the ability to transform a query into an

equivalent one that can be evaluated more e�ciently [RSUV93]. Therefore, de-

termining equivalence of queries is one of the most fundamental optimization

problems. Naturally, the problem of determining equivalence of Datalog pro-

grams has received attention. Unfortunately, Datalog program equivalence is

undecidable [Shm87].

Since the source of the di�culty in evaluating Datalog programs is their

recursive nature, the �rst line of attack in trying to optimize such programs is

to eliminate the recursion. The following example is from [Na89a].

Example 1. Consider the following Datalog program �

1

:

buys(X ;Y ) : �likes(X ;Y ):

buys(X ;Y ) : �trendy(X); buys(Z ;Y ):



It can be shown that �

1

is equivalent to the following nonrecursive program.

buys(X ;Y ) : �likes(X ;Y ):

buys(X ;Y ) : �trendy(X); likes(Z ;Y ):

Consider, on the other hand, the following Datalog program �

2

:

buys(X ;Y ) : �likes(X ;Y ):

buys(X ;Y ) : �knows(X ;Z); buys(Z ;Y ):

It can be shown that �

2

is not equivalent to the following nonrecursive program:

buys(X ;Y ) : �likes(X ;Y ):

buys(X ;Y ) : �knows(X ;Z); likes(Z ;Y ):

In fact, �

2

is inherently recursive, i.e., it is not equivalent to any nonrecursive

program.

Thus, a problem of special interest is that of determining the equivalence

of a given recursive Datalog program to a given nonrecursive

2

program. This

problem is the main focus of this section.

A nonrecursive program can be rewritten as a union of conjunctive queries.

Thus, containment of a nonrecursive program in a recursive program can be

reduced to the containment of a conjunctive query in a recursive program. The

latter problem was shown to be decidable; in fact it is EXPTIME-complete

[CK86, CLM81, Sa88b]. Thus, what was left open is the other direction, i.e., the

problem of determining whether a recursive program is contained in a nonrecur-

sive program. Chaudhuri and Vardi [CV92] attacked this problem by investigat-

ing the containment of recursive programs in unions of conjunctive queries. They

showed that containment of recursive programs in unions of conjunctive queries

is decidable. It follows that equivalence to nonrecursive programs is decidable

(see also [Mey93]).

The key idea underlying the result is the observation that a recursive program

can be viewed as an in�nite union of conjunctive queries. These conjunctive

queries can be represented by proof trees, and the set of proof trees corresponding

to a given recursive program can be represented by a tree automaton. This

representation enables us to reduce containment of recursive programs in unions

of conjunctive queries to containment of tree automata, which is known to be

decidable in exponential time [Se90]. The size of the tree automata obtained in

the reduction is exponential in the size of the input; as a result, we obtain a

doubly-exponential time upper bound for containment in unions of conjunctive

queries.

2
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2.1 Preliminaries

Automata on Trees: Let N denote the set of positive integers. The variables

x and y denote elements of N*. A tree � is a subset of N*, such that if xi 2 � ,

where x 2 N* and i 2 N , then also x 2 � and and if i > 1 then also x(i�1) 2 � .

The elements of � are called nodes. If x and xi are nodes of � , then x is the

parent of xi and xi is the child of x. The node x is a leaf if it has no children. By

de�nition, the empty sequence � is a member of every tree; it is called the root.

A branch of � is a subset � � � such that � 2 � and for each x 2 � either x is

a leaf or there is a unique i such that xi 2 �.

A �-labeled tree, for a �nite alphabet �, is a pair (�; �), where � is a tree

and � : � ! � assigns to every node a label. Labeled trees are often referred to

as trees; the intention will be clear from the context. The set of �-labeled trees

is denoted trees(�).

Proviso: In this section we consider only �nite trees.

A tree automaton A is a tuple (�;S; S

0

; �; F ), where � is a �nite alphabet,

S is a �nite set of states, S

0

� S is a set of initial states, F � S is a set of

accepting states, and � : S�� ! 2

S*

is a transition function such that �(s; a) is

�nite for all s 2 S and a 2 �. A run r : � ! S of A on a �-labeled tree (�; �) is

a labeling of � by states of A, such that the root is labeled by a initial state and

the transitions obey the transition function �; that is, r(�) 2 S

0

, and if x is not

a leaf and x has k children, then hr(x1); : : : ; r(xk)i 2 �(r(x); �(x)). If for every

leaf x of � there is a tuple hs

1

; : : : ; s

l

i 2 �(r(x); �(x)) such that fs

1

; : : : ; s

l

g � F ,

then r is accepting. A accepts (�; �) if it has an accepting run on (�; �). The tree

language of A, denoted T (A), is the set of trees accepted by A.

An important property of tree automata is their closure under Boolean op-

erations.

Proposition1. [Cos72] Let A

1

; A

2

be automata over an alphabet �. Then there

are automata A

3

, A

4

, and A

5

such that L(A

3

) = �

�

�L(A

1

), L(A

4

) = L(A

1

)\

L(A

2

), and L(A

5

) = L(A

1

) [ L(A

2

).

The constructions for union and intersection involve only a polynomial blowup

in the size of the automata, while complementation may involve an exponential

blow-up in the size of the automaton.

The emptiness problem for tree automata is to decide, given a tree automaton

A, whether T (A) is empty.

Proposition2. [Do70, TW68] The emptiness problem for tree automata is de-

cidable in polynomial time.

Proof: Let A = (�;S; S

0

; �; F ) be the given tree automaton. Let accept(A) be

the minimal set of states in S such that

{ F � accept(A), and

{ if s is a state such that there are a letter a 2 � and a transition hs

1

; : : : ; s

k

i 2

�(s; a) \ accept(A)

�

, then s 2 accept(A).



It is easy to see that T (A) is nonempty i� S

0

\ accept(A) 6= ;. Intuitively,

accept(A) is the set of all states that label the roots of accepting runs. Thus,

T (A) is empty precisely when no initial state is in accept(A). The claim follows,

since accept(A) can be computed bottom-up in polynomial time.

A problem related to emptiness is the containment problem, which is to

decide, given tree automata A

1

and A

2

, whether T (A

1

) � T (A

2

). Note that

TL(A

1

) � T (A

2

) i� T (A

1

) \ T (A

2

) = ;. Thus, by Proposition 1, the contain-

ment problem is reducible to the emptiness problem, though the reduction may

be computationally expensive.

Proposition3. [Se90] The containment problem for tree automata is EXPTIME-

complete.

Conjunctive Queries and Datalog: A conjunctive query is a positive exis-

tential conjunctive �rst-order formula, i.e., the only propositional connective al-

lowed is ^ and the only quanti�er allowed is 9. Without loss of generality, we can

assume that conjunctive queries are given as formulas �(x

1

; : : : ; x

k

) of the form

(9y

1

; : : : ; y

m

)(a

1

^: : :a

n

) with free variables among x

1

; : : : ; x

k

, where the a

i

's are

atomic formulas of the form p(z

1

; : : : ; z

l

) over the variables x

1

; : : : ; x

k

; y

1

; : : : ; y

m

.

For example, the conjunctive query (9y)(E(x; y)^E(y; z)) is satis�ed by all pairs

hx; zi such that there is a path of length 2 between x and z. The free variables

are also called distinguished variables. We distinguish between variables and oc-

currences of variables in a conjunctive query, but we only consider occurrences

of variables in the atomic formulas of the query. For example, the variables x

and y have each two occurrences in (9y)(E(x; y) ^E(y; z)). An occurrence of a

distinguished variable in a conjunctive query is called a distinguished occurrence.

A union of conjunctive queries is a disjunction

s

_

i=1

�

i

(x

1

; : : : ; x

k

)

of conjunctive queries.

A union of conjunctive queries �(x

1

; : : : ; x

k

) can be applied to a database

D. The result

�(D) = f(a

1

; : : : ; a

k

)jD j= �(a

1

; : : : ; a

k

)g

is the set of k-ary tuples that satisfy � in D. If � has no distinguished variables,

then it is viewed as a Boolean query; the result is either the empty relation or

the relation containing the 0-ary tuple.

A (Datalog) program consists of a set of Horn clauses. A predicate that

occurs in head of a rule is called an intensional (IDB) predicate. The rest of

the predicates are called extensional (EDB) predicates. Let � be a Datalog

program. Let Q

i

�

(D) be the collection of facts about an IDB predicate Q that

can be deduced from a database D by at most i applications of the rules in �



and let Q

1

�

(D) be the collection of facts about Q that can be deduced from D

by any number of applications of the rules in �, that is,

Q

1

�

(D) =

[

i�0

Q

i

�

(D):

If Q is 0-ary, then Q

1

�

is viewed as a Boolean query.

We say that the program � with goal predicate Q is contained in a union of

conjunctive queries � if Q

1

�

(D) � �(D) for each database D. It is known (cf.

[MUV84, Na89a]) that the relation de�ned by an IDB predicate in a Datalog pro-

gram �, i.e., Q

1

�

(D), can be de�ned by an in�nite union of conjunctive queries.

That is, for each IDB predicate Q there is an in�nite sequence '

0

; '

1

; : : : of con-

junctive queries such that for every database D, we have Q

1

�

(D) =

S

1

i=0

'

i

(D).

The '

i

's are called the expansions of Q.

A predicate P depends on a predicate Q in a program �, if Q occurs in the

body of a rule r of � and P is the predicate at the head of r. The dependence

graph of � is a directed graph whose nodes are the predicates of �, and whose

edges captures the dependence relation, i.e., there is an edge from Q to P if P

depends on P . A program � is nonrecursive if its dependence graph is acyclic,

i.e., no predicates depends recursively on itself. It is well-known that a nonrecur-

sive program has only �nitely many expansions (up to renaming of variables).

Thus, a nonrecursive program is equivalent to a union of conjunctive queries.

Containment of Conjunctive Queries: Let �(x

1

; : : : ; x

k

) and  (x

1

; : : : ; x

k

)

are two conjunctive queries with the same vector of distinguished variables. We

say that � is contained in  if �(D) �  (D) for each database D, i.e., if the

following implication is valid

8x

1

: : :8x

k

(�(x

1

; : : : ; x

k

)!  (x

1

; : : : ; x

k

))

A containment mapping from a conjunctive query  to a conjunctive query �

is a renaming of variables subject to the following constraints: (a) every distin-

guished variable must map to itself, (b) a constant must map to itself, and (c)

after renaming, every literal in  must be among the literals of �. Conjunctive-

query containment can be characterized in terms of containment mappings (cf.

[Ul89]).

Theorem4. A conjunctive query �(x

1

; : : : ; x

k

) is contained in a conjunctive

query  (x

1

; : : : ; x

k

) i� there is a containment mapping from  to �.

It will be convenient to view a containment mapping h from  to � as a

mapping from occurrences of variables in  to occurrences to variables in �.

Such a mapping has the property that v

1

and v

2

are occurrences of the same

variable in  , then h(v

1

) and h(v

2

) are occurrences of the same variable in �.



Expansion Trees: Expansions can be described in terms of expansion trees.

The nodes of an expansion tree for a Datalog program � are labeled by pairs of

the form (�; �), where � is an IDB atom and � is an instance of a rule r of �

such that the head of � is �. The atom labeling a node x is denoted �

x

and the

rule labeling a node x is denoted �

x

. In an expansion tree for an IDB predicate

Q, the root is labeled by a Q-atom. Consider a node x, where �

x

is the atom

R(t), �

x

is the rule

R(t) : �R

1

(t

1

); : : : ; R

m

(t

m

);

and the IDB atoms in the body of the rule are R

i

1

(t

i

1

); : : : ; R

i

l

(t

i

l

). Then x has

children x1; : : : ; xl labeled with the atoms R

i

1

(t

i

1

); : : : ; R

i

l

(t

i

l

). In particular, if

all atoms in �

x

are EDB atoms, then x must be a leaf. The query corresponding

to an expansion tree is the conjunction of all EDB atoms in �

x

for all nodes x in

the tree, with the variables in the root atom as the free variables. Thus, we can

view an expansion tree � as a conjunctive query. Let trees(Q;�) denote the set

of expansion trees for an IDB predicate Q in �. (Note that trees(Q;�) is an

in�nite set.) Then for every database D, we have

Q

1

�

(D) =

[

�2trees(Q;�)

� (D):

It follows that � is contained in a conjunctive query � of there is a containment

mapping from � to each expansion tree � in trees(Q;�), i.e., a mapping, which

maps distinguished variables to distinguished variables and maps the atoms of

� to atoms in the bodies of rules labeling nodes of � .

Of particular interest are expansion trees that are obtained by \unfolding"

the program �. An expansion tree � of a Datalog program � is an unfolding

expansion tree if it satis�es the following conditions: (a) the atom labeling the

root is the head of a rule in �, and (b) if a node x is labeled by (�

x

; �

x

), then

the variables in the body of �

x

either occur in �

x

or they do not occur in the

label of any node above x. Intuitively, an unfolding expansion tree is obtained

by starting with a head of a rule in � as the atom labeling the root, and then

creating children by unifying an atom labeling a node with a \fresh" copy of a

rule in �. Note that if a variable v occur in the atom labeling a node x but not

in the atoms labeling the children of x, then v will not occur in the label of any

descendant of x.

We denote the collection of unfolding expansion trees for an IDB predicate

Q in a program � by u trees(Q;�). It is easy to see that every expansion tree

can be obtained by renaming variables in an unfolding expansion tree. Thus,

every expansion tree, viewed as a conjunctive query, is contained in an unfolding

expansion tree. The following proposition follows immediately.

Proposition5. Let � be a program with a goal predicate Q. For every database

D, we have

Q

1

�

(D) =

[

�2u trees(Q;�)

� (D):



Example 2. Figure 1 shows expansion trees for the IDB predicate p in the fol-

lowing transitive closure program.

r1 : p(X;Y ) : � e(X;Z); p(Z; Y )

r0 : p(X;Y ) : � e

0

(X;Y )

Note that the variable X is re-used in the child of the root of the expansion

tree, while a new variable W is used instead of X in the child of the root of the

unfolding expansion tree.

?

?

?

?

(b)(a)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(X,Y), p(X,Y) :- e'(X,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(X,Y), p(X,Y) :- e'(X,Y)

p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(X,Y), p(X,Y) :- e'(X,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(X,Y), p(X,Y) :- e'(X,Y)

p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)

p(W,Y), p(W,Y) :- e'(W,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(W,Y), p(W,Y) :- e'(W,Y)

p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

Fig. 1. (a) Expansion Tree (b) Unfolding Expansion Tree

2.2 Proof Trees

The basic idea behind proof trees is to describe expansion trees using a �nite

number of labels. We bound the number of labels by bounding the set of variables

that can occur in labels of nodes in the tree. If r is a rule of a Datalog program

�, then let var num(r) be the number of variables occurring in IDB atoms in r

(head or body). Let var num(�) be twice the maximum of var num(r) for all

rules r in �. Let var(�) be the set fx

1

; : : : ; x

var num(�)

g. A proof tree for �

is simply an expansion tree for � all of whose variables are from var(�). We

denote the set of proof trees for a predicate Q of a program� by p trees(Q;�).

The intuition behind proof tree is that variables are re-used. In an unfolding

expansion tree, when we \unfold" a node x we take a \fresh" copy of a rule r

in �. In a proof tree, we take instead an instance of r over var(�). Since the

number of variables in var(�) is twice the number of variables in any rule of



�, we can instantiate the variables in the body of r by variables di�erent from

those in the goal �

x

.

Example 3. Figure 2 describes an unfolding expansion tree and a proof tree for

the IDB predicate p in the transitive-closure program of Example 2. In the proof

?

?

?

?

(b)(a)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(W,Y), p(W,Y) :- e'(W,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(W,Y), p(W,Y) :- e'(W,Y)

p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(W,Y), p(W,Y) :- e'(W,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

p(W,Y), p(W,Y) :- e'(W,Y)

p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)

p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e'(X,Y)

p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)

p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

Fig. 2. (a) Unfolding Expansion Tree (b) Proof Tree

tree, instead of using a new variable W , we re-use the variable X.

A proof tree represents an expansion tree where variables are re-used. In

other words, the same variable is used to represent a set of distinct variables in

the expansion tree. Intuitively, to reconstruct an expansion tree for a given proof

tree, we need to distinguish among occurrences of variables.

Let x

1

and x

2

be nodes in a proof tree � , with a lowest common ancestor x, a

and let v

1

and v

2

be occurrences, in x

1

and x

2

, respectively, of a variable v. We

say that v

1

and v

2

are connected in � if the goal of every node, except perhaps for

x, on the simple path connecting x

1

and x

2

has an occurrence of v. We say that

an occurrence v of a variable v in � is a distinguished occurrence if it is connected

to an occurrence of v in the atom labeling the root of � . From this de�nition,

it follows that connectedness is an equivalence relation and it partitions the

occurrences of variables in the proof tree. We denote the equivalence class of an

occurrence v of a variable v in a proof tree � by [v]

�

. We will omit � when it is

clear from the context.

Example 4. Consider the proof tree in Figure 2. The occurrences of the variable

Y in the root and in the interior node are connected. Both occurrences of Y

are distinguished. The occurrences of the variable X in the root and in the leaf



are not connected. The occurrence of X in the root is distinguished, but the

occurrence of X in the leaf is not distinguished.

Every proof tree corresponds to an expansion tree and hence to an expansion.

We want to de�ne containment mappings from conjunctive queries to proof

trees such that there is a containment mapping from a conjunctive query to

a proof tree i� there is a containment mapping from the conjunctive query to

the expansion corresponding to the proof tree. The de�nition should force a

variable in the conjunctive query to map to a unique variable in the expansion

corresponding to the proof tree.

A strong containment mapping from a conjunctive query � to a proof tree �

is a containment mapping h from � to � with the following properties:

{ h maps distinguished occurrences in � to distinguished occurrences in � , and

{ if v

1

and v

2

are two occurrences of a variable v in �, then the occurrences

h(v

1

) and h(v

2

) in � are connected.

We now relate containment of programs and strong containment mappings.

Theorem6. Let � be a program with goal predicate Q, and let � = [

i

�

i

be a

union of conjunctive queries. Then � is contained in � if and only if for every

proof tree � 2 p trees(Q;�) there is a strong containment mappings from some

�

i

to � .

We will use the characterization above to obtain upper bound for containment

of programs in conjunctive queries.

2.3 Upper Bounds

The main feature of proof trees, as opposed to expansion trees, is the fact that

the numbers of possible labels is �nite; it is actually exponential in the size of

�. Because the set of labels is �nite, the set of proof trees p trees(Q;�), for an

IDB predicate Q in a program �, can be described by a tree automaton.

Proposition7. Let � be a Datalog program with a goal predicate Q. Then there

is an automaton A

p trees

Q;�

, whose size is exponential in the size of �, such that

T (A

p trees

Q;�

) = p trees(Q;�).

Proof: We sketch the construction of the automaton

A

p trees

Q;�

= (�; I [ facceptg; I

Q

; �; facceptg)

The state set I is the set of all IDB atoms with variables among var(�). The

initial-state set is the set of all atoms Q(s), where the variables of s are in

var(�). The alphabet � = I � R where R is the set of instances of rules of �

over var(�). The transition function � is constructed as follows:



{ Let � be a rule instance

R(t) : �R

1

(t

1

); : : : ; R

m

(t

m

);

in R, where the IDB atoms in the body of the rule are R

i

1

(t

i

1

); : : : ; R

i

l

(t

i

l

).

Then hR

i

1

(t

i

1

); : : : ; R

i

l

(t

i

l

)i 2 �(R(t); (R(t); �)).

{ Let � be a rule instance

R(t) : �R

1

(t

1

); : : : ; R

m

(t

m

);

inR, where all atoms in the body of the rule are EDB atoms. Then haccepti 2

�(R(t); (R(t); �)).

It is easy to see that the number of states and transitions in the automaton

is exponential in the size of �.

We now show that strong containment of proof trees in a conjunctive query

can be checked by tree automata as well.

Proposition8. Let � be a Datalog program � with goal predicate Q, and let �

be a conjunctive query. Then there is an automaton A

�

Q;�

, whose size is expo-

nential in the size of � and �, such that T (A

�

Q;�

) is the set of proof trees � in

p trees(Q;�) where there is a strong containment mapping from � to � .

Proof: We sketch the construction of A

�

Q;�

.

Every state of the automaton includes a subset of atoms of � that has not

yet been strongly mapped to � . Such unmapped atoms may share variables

with atoms that have already been mapped. Therefore, also included in the

state description is a partial mapping that indicates the images of the mapped

variables. A transition on input symbol (�; �) results in mapping of zero or more

unmapped atoms to the body of �. The remainder of the unmapped atoms are

partitioned among the sequence of states prescribed by the transition.

The automaton A

�

Q;�

is (�;S [ facceptg; S

Q

; �; facceptg). The sets I and

� = I �R are as in the proof of Proposition 7. We assume that the conjunctive

query � has a set of variables V

�

. The state set S is the set I � 2

�

� 2

V

�

�var(�)

.

The second component in S represents the collection of subsets (of atoms) of �

and the �nal component contains the set of partial mappings from V

�

to var(�).

The start-state set S

Q

Consists of all triples (Q(s); �;M

�;s

), where the variable

of s are in var(�) and M

�;s

is a mapping of the distinguished variables of � into

the variables of s. The transition function is constructed as follows:

{ Let � be a rule instance

R(t) : �R

1

(t

1

); : : : ; R

m

(t

m

);

in R, where the IDB atoms in the body of the rule are R

i

1

(t

i

1

); : : : ; R

i

l

(t

i

l

).

Then

h(R

i

1

(t

i

1

); �

1

;M

0

) : : : ; (R

i

l

(t

i

l

); �

l

;M

0

)i 2 �((R(t); �;M ); (R(t); �))

if the following hold:



1. � can be partitioned into �

0

; �

1

; : : : ; �

l

, where �

0

is mapped to atoms in

the body of � by a mappingM

�

0

that is consistent with M ,

2. M

0

is a partial mapping that extends M and is consistent with M

�

0

.

3. �

j

and �

k

can share a variable only if this variable is in the domain of

M

0

and its image is in both t

i

j

and t

i

k

.

4. If a variable occurs in �

j

and it is in the domain of M

0

, then its image

is in t

i

j

.

{ Let � be a rule instance

R(t) : �R

1

(t

1

); : : : ; R

m

(t

m

);

inR, where all atoms in the body of the rule are EDB atoms. Then haccepti 2

�((R(t); �;M ); (R(t); �)) if there is a mapping that extends M and maps all

literals in � to atoms in the body of �.

It is easy to see that the number of states and transition in the automaton

is exponential in the size of � and �.

We can now reduce the containment problem for Datalog programs in unions

of conjunctive queries to an automata-theoretic problem.

Theorem9. Let � be a program with goal predicate Q, and let � = [

i

�

i

be a

union of conjunctive queries. Then � is contained in � if and only if

T (A

p trees

Q;�

) �

[

i

T (A

�

i

Q;�

):

Proof: By Theorem 6, � is contained in � if and only if for every proof tree

� 2 p trees(Q;�) there is a strong containment mappings from some �

i

to � .

By Propositions 7 and 8, the latter condition is equivalent to

T (A

p trees

Q;�

) �

[

i

T (A

�

i

Q;�

):

Theorem10. Containment of a recursive Datalog program in a union of con-

junctive queries is in 2EXPTIME.

Proof: By Proposition 1, we can obtain an automaton A

�

Q;�

, whose size is ex-

ponential in the size of � and �, such that

T (A

�

Q;�

) =

[

i

T (A

�

i

Q;�

):

Thus, by Theorem 9, containment in a union of conjunctive queries can be re-

duced to containment of tree (resp. word) automata of exponential size. Since

containment of tree automata can be decided in exponential time (Proposi-

tion 3), the result follows.



One may wonder whether the algorithm given by Theorem 10 can be im-

proved. It turns out that the algorithm is essentially optimal, since it is shown

in [CV92] that the containment of recursive programs in union of conjunctive

queries is complete for 2EXPTIME.

3 Veri�cation of Finite-State Programs

While program veri�cation was always a desirable, but never an easy task, the

advent of concurrent programming has made it signi�cantly more necessary and

di�cult. Indeed, the conceptual complexity of concurrency increases the likeli-

hood of the program containing errors. To quote from [OL82]: \There is rather

large body of sad experience to indicate that a concurrent program can withstand

very careful scrutiny without revealing its errors."

The �rst step in program veri�cation is to come up with a formal speci�-

cation of the program. One of the more widely used speci�cation languages for

concurrent programs is temporal logic, which was introduced by Pnueli [Pn77]

(c.f. [MP92]). Temporal logic comes in two varieties: linear time and branch-

ing time ([EH86, La80]); we concentrate here on linear time. A linear temporal

speci�cation describes the computations of the program, so a programmeets the

speci�cation (is correct) if all its computations satisfy the speci�cation.

In the traditional approach to concurrent program veri�cation (cf. [HO83,

MP81, OL82]) the correctness of the program is expressed as a formula in �rst-

order temporal logic. To prove that the program is correct, one has to prove that

the correctness formula is a theorem of a certain deductive system. Construct-

ing this proof is done manually and is usually quite di�cult. It often requires an

intimate understanding of the program. Furthermore, there is no hope of con-

structing the proof completely algorithmically. The only extent of automation

that one can hope for, is to have the proof checked by a machine and possibly

to have some limited heuristic help in �nding the proof.

A di�erent approach was introduced in [CES86, QS82] for �nite-state pro-

grams, i.e., programs in which the variables range over �nite domains. The signif-

icance of this class follows from the fact that a signi�cant number of the commu-

nication and synchronization protocols studied in the literature are in essence

�nite-state programs. Since each state is characterized by a �nite amount of

information, this information can be described by certain atomic propositions.

This means that a �nite-state program can be viewed as a �nite propositional

Kripke structure and that it can be speci�ed using propositional temporal logic.

Thus, to verify the correctness of the program, one has only to check that the

program, viewed as a �nite Kripke structure, satis�es (is a model of) the propo-

sitional temporal logic speci�cation. This approach is called veri�cation by model

checking. The advantage of the model-checking approach, described in [AK86] as

\one of the most exciting developments in the theory of program correctness", is

that it can be done algorithmically. Model checking was originally developed for

branching time [CES86, QS82], but was later extended also to linear time [LP85].

See [CG87] for a more recent survey.



In view of the attractiveness of the model-checking approach, one would like

to extend its applicability as much as possible. Unfortunately, the tableau-based

model-checking algorithms in the literature (cf. [LP85]) involve the intricacies of

the logic at hand and do not make intuitively clear what extensions are possible.

On the other hand, an approach based on the connection between propositional

temporal logic and automata theory seems to be more extensible.

The connection between propositional temporal logic and automata theory

has been quite extensively studied [GPSS80, Ka68, LPZ85, Pe85, Si83, SVW87,

VW94]. This connection is based on the fact that a computation is essentially an

in�nite sequence of states. Since every state is completely described by a �nite

set of atomic propositions, a computation can be viewed as an in�nite word

over the alphabet of truth assignments to the atomic propositions. One of the

most enlightening results in this area is the fact that temporal logic formulas

can be viewed as �nite-state acceptors. More precisely, given any propositional

temporal formula, one can construct a �nite automaton on in�nite words that

accepts precisely the sequences satis�ed by the formula [VW94].

To use the above connection, we view a �nite-state program as a �nite-state

generator of in�nite words. Thus, if P is the program and ' is the speci�cation,

then P meets ' if every in�nite word generated by P , viewed as a �nite-state

generator, is accepted by ', viewed as a �nite-state acceptor. This reduces the

veri�cation problem to a purely automata-theoretic problem: the problem of

determining whether the language L(P ) � L(') is empty, where L(P ) is the

language generated by P and L(') is the language accepted by '.

There are a number of bene�ts from this approach. First, we obtain a very

simple and clean algorithm for model checking for linear time temporal logic

(compared to the algorithm in [LP85]). This algorithm makes the complexity

bounds of [LP85] obvious and even lets us extend them. We can easily show

that the space complexity of model checking is polynomial in the size of the

speci�cations and polylogarithmic (in fact O(log

2

n)) in the size of the model.

Note that this is quite signi�cant as the programs to which model checking is

applied can be very large and using even linear space could make implementation

di�cult. Another aspect of model checking that is made much more straightfor-

ward is the introduction of a fairness assumption on the execution of the program

as is done in [CES86, EL85a, EL85b, LP85].

A second bene�t of our approach is that it makes extending model check-

ing to more expressive temporal logics easy. The standard temporal logic, which

consists of the connectives X (\next"), G (\always"), and U (\until"), either

cannot express certain properties [Wo83] or cannot express them conveniently

[BK84, KVR83, LPZ85]. For that reason, extended temporal logics was intro-

duced in [Wo83, VW94], and past temporal connectives were introduced in

[BK84, KVR83, LPZ85]. (Tableau-based model checking was extended to tem-

poral logic with past connectives in [LP85]). To extend our model-checking algo-

rithm to these logics, one only needs to show that given a formula in these logics,

one can build a �nite automaton on in�nite words that accepts the models of

the formula. The rest of the algorithm goes unchanged.



3.1 Preliminaries

Automata on In�nite Words The type of �nite automata on in�nite words

we consider is the one de�ned by B�uchi [Bu62]. A B�uchi automaton is a tuple

A = (�;S; �; s

0

; F ), where

{ � is an alphabet,

{ S is a set of states,

{ s

0

2 S is the initial state, and

{ � : S � � ! 2

S

is a nondeterministic transition function,

{ F � S is a set of accepting states.

A run of A over an in�nite word w = a

0

a

1

: : :, is a sequence s

0

; s

1

; : : :,

where s

i

2 �(s

i�1

; a

i�1

), for all i � 1. A run s

0

; s

1

; : : : is accepting if there is

some accepting state that repeats in�nitely often, i.e., for some s 2 F there are

in�nitely many i's such that s

i

= s. The in�nite word w is accepted by A if

there is an accepting run of A over w. The set of in�nite words accepted by A

is denoted L(A).

An important property of B�uchi automata is their closure under Boolean

operations.

Proposition11. [Ch74, Sa88, SVW87] Let A

1

; A

2

be B�uchi automata over an

alphabet �. Then there are B�uchi automata A

3

, A

4

, and A

5

such that L(A

3

) =

�

!

� L(A

1

), L(A

4

) = L(A

1

) \ L(A

2

), and L(A

5

) = L(A

1

) [ L(A

2

).

The constructions for union and intersection involve only a polynomial blowup

in the size of the automata, while complementation may involve an exponential

blow-up in the size of the automaton.

The following theorem states some important results about the emptiness

problem for B�uchi automata, i.e., the problem of determining for a given B�uchi

automaton A whether A accepts no word.

Theorem12.

1. [EL85a, EL85b] The emptiness problem for B�uchi automata is solvable in

linear time.

2. [VW94] The emptiness problem for B�uchi automata is complete for NLOGSPACE.

(The second clause in the Theorem uses the equality NLOGSPACE=co-NLOGSPACE;

cf. [Im88].)

We also consider alternating B�uchi automata. An alternating B�uchi automa-

ton is a tuple A = (�;S; �; s

0

; F ), where

{ � is an alphabet,

{ S is a set of states,

{ s

0

2 S is the initial state, and

{ � : S � � ! B

+

(S) is a transition function,



{ F � S is a set of designated states.

Here B

+

(S) is the set of positive Boolean formulas over S (i.e., Boolean formulas

built from elements in S using ^ and _), where we also allow the formulas true

and false.

A run tree of A over a in�nite word w = a

0

a

1

: : : is an in�nite S-labeled tree

r such that r(�) = s

0

and the following holds:

if jxj = i, r(x) = s, and �(s; a

i

) = �, then x has as children nodes

x1; : : : ; xk for some k � jSj, and the truth assignment that assigns true

to the states in r(x1); : : : ; r(xk) and assigns false to the other states

satisfy �.

For example, if �(s

0

; a

0

) is (s

1

_ s

2

)^ (s

3

_ s

4

), then the nodes of the run tree at

level 1 includes the label s

1

or the label s

2

and also include the label s

3

or the

label s

4

. Note that if �(s; a

i

) = true, then x need not have any children, and we

cannot have �(s; a

i

) = false, since false is not satis�able. Note also that a B�uchi

automaton is an alternating B�uchi automaton where all transitions are simple

disjunctions. (The formalization of alternation in terms of Boolean transitions

is in the spirit of [BL80, Le81], as opposed to the distinction between existential

and universal states in [CKS81].)

A run tree r is accepting if every in�nite branch in r includes in�nitely many

labels in F . The in�nite word w is accepted by A if there is an accepting run of

A over w. The set of in�nite words accepted by A is denoted L(A).

What is the relationship between B�uchi automata and alternating B�uchi

automata? This is answered by the following theorem:

Theorem13. [MH84] Every alternating B�uchi automaton A is equivalent (i.e.,

accepts the same language) as some B�uchi automaton A

0

. Furthermore, the num-

ber of states of A

0

is at most exponential in the number of states of A.

Temporal Logics; Linear time propositional temporal logic (PTL) has been

de�ned in a number of publications [GPSS80, Pn77]. Formulas of PTL are built

from a set Prop of atomic propositions and are closed under the application of

Boolean connectives, the unary temporal connective X (next), and the binary

temporal connective U (until). PTL is interpreted over computations. A compu-

tation is a function � : ! ! 2

Prop

, which assigns truth values to the elements of

Prop at each time instant (natural number). For a computation � and a point

i 2 !, we have that:

{ �; i j= p for p 2 Prop i� p 2 �(i).

{ �; i j= � ^  i� �; i j= � and �; i j=  .

{ �; i j= :' i� not �; i j= '

{ �; i j= X' i� �; i+ 1 j= '.

{ �; i j= �U i� for some j � i, �; j j=  and for all k, i � k < j �; k j= �.



We will say that � satis�es a formula ', denoted � j= ', i� �; 0 j= '.

Computations can also be viewed as in�nite words over the alphabet 2

Prop

.

We shall see that the set of computations satisfying a given formula are exactly

those accepted by some �nite automaton on in�nite words.

3.2 Model Checking

Propositional Temporal Logic and B�uchi Automata: The following the-

orem establishes the correspondence between PTL and alternating B�uchi au-

tomata.

Theorem14. [MSS88] Given a PTL formula ', one can build an alternating

B�uchi automaton A

'

= (�;S; �; s

0

; F ), where � = 2

Prop

and jSj is in O(j'j),

such that L(A

'

) is exactly the set of computations satisfying the formula '.

Proof: The set S of states consists of all subformulas of ' and their negation

(we identify the formula :: with  ). The start state s

0

is ' itself. The set F

of accepting states consists of all formulas in S of the form :�U . It remains

to de�ne the transition function �. In the following de�nition, the dual � of a

formula obtained from � by switching _ and ^, by switching true and false,

and by negating subformulas of '; e.g., :p _ (q ^Xq) is p ^ (:q _ :Xq).

{ �(p; a) = true if p 2 a,

{ �(p; a) = false if p 62 a,

{ �(� ^  ; a) = �(�; a) ^ �( ; a),

{ �(: ; a) = �( ; a),

{ �(X ; a) =  ,

{ �(�U ; a) = �( ; a) _ (�(�; a) ^ �U ).

Note that �( ; a) is de�ned by induction on the structure of  .

By applying Theorem 13, we get:

Corollary15. [VW94] Given a PTL formula ', one can build a B�uchi automa-

ton A

'

= (�;S; �; s

0

; F ), where � = 2

Prop

and jSj is in 2

O(j'j)

, such that L(A

'

)

is exactly the set of computations satisfying the formula '.

We remark that the proof of Corollary 15 in [VW94] is di�erent than the

proof here; rather than go via alternating automata, the proof there goes through

\subword automata" and \set-subword automata". See the discussion in [VW94]

for a comparison between the two approaches.

Model Checking We are given a �nite-state program and a PTL formula that

speci�es the legal computations of the program. The problem is to check whether

all computations of the program are legal. Before going further, let us de�ne these

notions more precisely.



A �nite-state program is a structure of the form P = (W; s

0

; R; V ), where W

is a �nite set of states, s

0

2W is the initial state, R � W

2

is a total accessibility

relation, and V : W ! 2

Prop

assigns truth values to propositions in Prop for

each state in W . Let u be an in�nite sequence u

0

; u

1

: : : of states in W such

that u

0

= s

0

, and u

i

Ru

i+1

for all i � 0. Then the sequence V (u

0

); V (u

1

) : : :

is a computation of P . We will say that P satis�es an PTL formula ' if all

computations of P satisfy '. The veri�cation problem is to check whether P

satis�es '.

The complexity of the veri�cation problem can be measured in three di�er-

ent ways. First, one can �x the speci�cation ' and measure the complexity with

respect to the size of the program. We call this measure the program-complexity

measure. More precisely, the program complexity of the veri�cation problem is

the complexity of the sets fP jP satisfies 'g for a �xed '. Secondly, one can

�x the program P and measure the complexity with respect to the size of the

speci�cation. We call this measure the speci�cation-complexity measure. More

precisely, the speci�cation complexity of the veri�cation problem is the complex-

ity of the sets f' jP satisfies 'g for a �xed P . Finally, the complexity in the

combined size of the program and the speci�cation is the combined complexity.

(These notions, implicitly suggested in [LP85], are the analogues of the notions

of data complexity, expression complexity, and combined complexity de�ned in

[Va82].)

Let C be a complexity class. We say that the program complexity of the

veri�cation problem is in C if fP jP satisfies 'g 2 C for any formula '. We

say that the program complexity of the veri�cation problem is hard for C if

fP jP satisfies 'g is hard for C for some formula '. We say that the program

complexity of the veri�cation problem is logspace complete for C if it is in C

and is logspace hard for C. Similarly, we say that the speci�cation complexity

of the veri�cation problem is in C if f' jP satisfies 'g 2 C for any program

P , we say that the speci�cation complexity of the veri�cation problem is hard

for C if f' jP satisfies 'g is hard for C for some program P , and we say that

the speci�cation complexity of the veri�cation problem is logspace complete for

C if it is in C and is logspace hard for C.

We now describe our automata-theoretic approach to the veri�cation prob-

lem. A �nite-state program P = (W; s

0

; R; V ) can be viewed as a B�uchi automa-

ton A

P

= (�;W; s

0

; �;W ), where � = 2

Prop

and s

0

2 �(s; a) i� (s; s

0

) 2 R and

a = V (s). As this automaton has a set of accepting states equal to the whole set

of states, any in�nite run of the automaton is accepting. Thus, L(A

P

) is the set

of computations of P .

Hence, for a �nite-state program P and a PTL formula ', the veri�cation

problem is to verify that all sequences accepted by the automaton A

P

satisfy

the formula '. By Corollary 15, we know that we can build a B�uchi automaton

A

'

that accepts exactly the sequences satisfying the formula '. The veri�cation

problem thus reduces to the automata-theoretic problem of checking that all

sequences accepted by the automaton A

P

are also accepted by the automaton

A

'

. Equivalently, we need to check that the automaton that accepts L(A

P

) \



L(A

'

) is empty, where L(A

'

) = �

!

� L(A

'

).

First, note that one can build an automaton that accepts the language L(A

'

)

by building the automaton A

:'

. By Corollary 15, the number of states in this

automaton is in 2

O(j'j)

. (A straightforward approach, starting with the automa-

ton A

'

and then using Proposition 11 to complement it, would result in a doubly

exponential blow-up.) To take the intersection of the two automata, we use The-

orem 11. Consequently, we can build an automaton for L(A

P

) \ L(A

'

) having

jW j � 2

O(j'j)

states. We need to check this automaton for emptiness. Using The-

orem 12, we get the following results.

Theorem16.

1. The program complexity of the veri�cation problem is logspace complete for

NLOGSPACE.

2. The speci�cation complexity of the veri�cation problem is logspace complete

for PSPACE.

3. Checking whether a formula ' is satis�ed by a �nite-state program P can be

done in time O(jjP jj � 2

O(j'j)

) or in space O((logjjP jj+ j'j)

2

).

We note that a time upper bound that is polynomial in the size of the program

and exponential in the size of the speci�cation is considered here to be reasonable,

since the speci�cation is usually rather short [LP85].

Theorems 16 re�nes the results in [LP85, SC85]. We believe, however, that

the automata-theoretic approach yields an algorithm that is much simpler and

clearer (we urge the reader to compare). We also believe that our space bound

for the program complexity is quite signi�cant as the programs to which model

checking is applied are often very large. For instance, if the �nite-state program

is given as a product of small components (P

1

; : : : ; P

k

), then model checking

can be done without building the product program, using space O((logjjP

1

jj+

: : :+ logjjP

k

jj)

2

), which is usually much less than the space needed to store the

product program. For a practical algorithm that is based on these ideas, see

[CVWY92].

4 Concluding Remarks

The examples above demonstrate the power and versatility of the theory of

automata on in�nite words and trees. Nevertheless, as I mentioned in the intro-

duction, my experience has been that many researchers are not very comfortable

working with this theory. I believe that this is caused by two reasons. First, the

theory is not well-known and it does lack the physical intuition that one can

bring to the theory of automata on �nite words (it is hard to conceive of a phys-

ical device reading an input of in�nite length). Second, I believe that this is a

result of the way that the theory of �nite automata is typically taught.



Finite-automata theory is typically taught as a mathematical theory of com-

putation with some applications to compiler construction. That is, �nite au-

tomata are thought as a very simple and robust model of computation with ap-

plications such as lexical analysis. One rarely, however, encounter applications

in a �nite-automata course; concrete applications are usually left to compiler-

construction courses. Thus, most students are left with the impression of �nite-

automata theory as a fairly abstract mathematical theory. I believe that the

theory ought be to be taught as a useful set of abstractions and tools for the

working computer scientist. The educational goal should be more than just to

train the students in rigorous and formal thinking, it should also be to provide

the students with the knowledge of basic tools. To that end, much more em-

phasis should be given to applications of automata theory. It will be useful to

identify applications that can be incorporated in undergraduate and graduate

automata-theory courses.
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