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ABSTRACT: We characterize the states of knowledge that are attainable in distributed
systems, where communication is done by unreliable message exchange. The reason that
certain states of knowledge are unattainable is a conservation principle which says that
information about "nature" that can be obtained by combining all of the knowledge of
the members of a closed system is preserved. We axiomatize the class of formulas in the
propositional modal logic of knowledge that are valid in attainable knowledge states, and
we determine the complexity of the decision problem.
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YL imroduction

A recent and exciting paradigm in the area of distributed systems, first put fomrard by Halpern
and Moses [HM1YL is that the right way to understand distributed protocols is by considering how
communication changes the state of knowledge of distributed processes. To quote from [HMI1], “Many
tasks in a distributed system directly involve the achievement of specific states of knowledge, and
others crucially depend on a variety of constraints on the state of knowledge of the parties involved”.
This paradigm has inspired computer scientists (cf. [CM, FHV1, Leh, Pa, PR]) to study an area that
has so far been in the realm of economics [Aul, philosophy [Hi], and artificial intelligence [MH] - the
ogic of kngewiedgﬁ,

In order to formalize reasoning about knowledge, we need semantic models for knowledge. The
most common approach to modelling knowledge, due to Hintikka [Hi], is based on the possible worlds
sermaniics. In this approach, the information that a “player” (or “agent” or “process”) has about the
world may be incomplete; rather than knowing precisely what the actual state of the world is, the
piayer may only know that the actual state of the world belongs to a given set of possible states (the
so-called possible worlds). A plaver then knows a fact © to be true if o is true in 2ll the states that

the player thinks are possible. Possible world semantics has been formalized using either Kripke
structures [Krl or modal siructures [FV]. When used to model knowledge, modal structures are called
knowledge structures [FHV 11

We can use these semantic models for knowledge to interpret formulas in the logic of knowledge.
These formulas are propositional modal formulas, where for every player i we have a modality K.
intuitively, the formula K;p says “player i knows ¢”. In order to understand the nature of knowledge
better, it is helpful to characterize knowledge by axiom watizinig valid formulas {the formulas that are
satisfied by all knowledge siructures). It turns out that the well-known modal logic 85 {which is
described in the body of the paper) is a sound and complete axiomatization for knowledge struciures,
which may suggest that S5 is an appropriate formalism for rea soning about knowledge in distributed
systems,

Knowledge structures can be viewed as absiract models for knowledge. MNamely, they model all
possible states of knowledge with no concern as to how knowledge is acquired in the first place. To
reason formally about knowledge in distributed systems, we need, however, to know which states of
knowledge are attainable in such systems. In particular, since players in distributed systems commu-
micate with each other exclusively by exchanging messages, we need to know what states of knowledge
are atiainable via such communication.

To this end we start with a concrete model of knowledge. The basic element in this model is 2
run. A run is a description of a distributed system over time: it consisis of a description of the “real
world™ or “nature”, which we assume does not change as a result of communication in the system,
the players’ initial information about nature, and the messages sent and received by the players. Two
runs are equivalens with respect to a player i, or “i-equivalent”, if they are indiscernible as far as
player ¢ is concerned. A player i is said to “know” o in a run S if @ is true in all runs that are

i~equivalent to “7 (This concrete model of knowledge is suggested in [CM, DFIL, HE, HM1, PR, 27],

and is also implicit in [Dw].) It is not hard to verify that under this interpretation of “know”. the
i ; J 5

axiom system S5 that we have discussed is sound. That is, the axioms and rules of inference of §5

ail hold under this interpretation,

f.l)

bove concrete model, ie., the knowledge

turns out that we do nor get a// knowledge
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structures. In other words, there are knowledge structures that describe knowledge states that are
aﬁaﬁaﬁﬁa%}@ via message exchange. In particular, 85 is not complete for reasoning about knowledge

in distributed systems! For example, if the only primitive proposition is p and if the only players are

i and 2, then the formula
(1) K {lpn ~EPA~EpINV (~p A KBy vp A Ky~p))
is not satisfiable in distributed systems, even though it is S5-consistent. To get a complete axiomatization

it is necessary to augment 85 with an additional axiom. (We shall see that if there is another primitive
proposition besides p or if there is another player besides plavers 1 and 2, then {1} is satisfiable in
stributed systems.) -

To better understand this phenomenon, it is useful to consider the logic of knowledge and implicit
knowledge. Implicit knowledge, introduced by Halpern and Moses [HM1], is the knowledge that can
be obtained by pooling together the knowledge of a group. Put differently, the implicit kﬁowledge of

o

group & Is what someone could infer given complete knowledge of what each member of G knows.
For example, if Alice knows @ and Bob knows g = @4, then together they have implicit knowledge

-
i

fhes

o]

®2, even though neither of thern might individually know ¢;. The basic feature of message-based
knowledge is conservarion of implicit knowledge of nature: that is, communication among the players
cannot increase the implicit knowledge of the group as a whole about nature. This conservation
principle is dymamic, in that it deals with changes in knowledge. Surprisingly, this dynamic principle
has consequences on saric implicit knowledge. Even more surprisingly, this principle not only affects
what (static} implicit knowledge the players can have as a group but also what (static) knowledge
individual players can have.

The main point that we are trying to get across in this paper is that knowledge in a distributed
ysiems depends in a crucial way on the way in which processes communicate with each other. Here
we investigate one particular model of communication, but this model is not more basic than other
prevalent models. For example, in our model communication is unreliable. As we shall point out in
the paper, if we assume that communication is reliable, than the effect on the attainable knowledge

states is drastic. We believe that the issue of how communication affects knowledge deserves a great

The outline of this paper is as follows. In Seciion 2, we give the syntax and semantics of runs.

Section 3, we state and prove the conservation principle for implicit knowledge. In Section 4 we

.

describe a property of implicit knowledge that follows from the conservation principle, and we give

v
an axiom that e::a;:;iz.zms: this property. In Section 5, we discuss 2 concrete example which shows that
is not a complete axiomatization for communication-based knowledge. Specifically, we show that

la {1) above is not satisfiable under communication. In Section 6, we give two sound and

complete axiomatizations for knowledge under message exchange; one axiomatization involves implicit

knowledge, and the other does not. In Section 7 we show that if we assume that communication is
reliable, then the set of attainable knowledge states is restricted drastically. In Section 8, we discuss

the effect of changing the class of messages. Sections 9-11 study the model theory of our framework,

Section 9 reviews the definitions of knowledge worlds from [FHV1], and Section 10 characterizes

those knowledge worlds that can arise under message exchange, which are called message-based

knowledge worlds. In Section 11, we show that implicit knowledge behaves badly in general but nicely

h some remarks in Section 12,

in message-based orlds. We conclude wi
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We assume that there is 2 fixed finite set of primitive propositions, and a fixed finite set & of

players. The class of formmulas is the smallest set that contains the primitive propositions, is closed
under the Boolean connectives ~ and A, and contains Ko if it contains @, for each player i, The
class of exiended formulas is defined similarly, except that also I is an extended formula if @ is. Thus,
extended formulas allow also the modal operator J (“It is implicit knowledge that”}.

We are about to give the syntax and semantics of runs. Throughout this paper, we assume that
comumunication is synchronous and proceeds in “rounds”. We assume that messages may be losi, that
is, never received. (As we shall show later, if messageg are gzmmn teed to be delivered, then the

st o

-situation ahamge& radically.} We also assume that if a nessage is ever received, then it is received in

the round it was sent.

We assume that some fixed truth assignment to the primitive propositions is “the actual truth
assignment”, or “nature”. An aliernative viewpoint {which is useful, for example, in statistics [Sa])
is that instead of primitive propositions and truth assignments, there is a fixed finite set of primurive
states, and that “nature” is one of these primitive states. To make it easier to pass back and forth

e . . o . . .

between these two viewpoints, we shall usually refer to a truth assignment as a primitive state. Let
@¢ be the set of primitive states.
We begin with an intuitive description of the “initial information” of each player, and how

communication takes place. At the beginning {(or “in the Oth round”} each player i is “told” a set

T(i) of primitive states, one of which is nature. We view T() as player s initial information about

;«-@

wature. In particular, if 7() = u’§ "where 7 is nature, then player / knows completely about nature,
and if T{/) is the set of all primitive states, then player / knows nothing about naturs. "One intuitive
way to think about what we have just said is that before there is any communication between the
players, each player “studies nature”, and player i “learns” T{i} (that is, player  gains the information
that nature is 2 member of the set T(/)}. No player has any information about any other player’s

nitial information about nature. After players obtain this initial information about nature, all infor-

mation is gained by messages that are sent between the players. Intuitively, no one ever “studies
nature” again {we also assume that nature never changes}, We make this assumption, since we are
interested in characterizing the knowledge of each player when new information is gained only by
message exchange. We leave as a problem how to characterize the knowledge of each player when

it is possibie for a player to gain directly more information about nature at any time.

In each round, each player number of messages to the other players. For example,

¢

gs
5
DJ
"”11

G o
in round 3, player { may send three messages to player 2, no messages to player 3, and one message

3,
to player 4.

We now discuss the class .# of messages. As we shall see later, in order to get our completeness
results, the class «# must be sufficiently rich; for example, the class of formulas {or even the class
of extended formulas} is not sufficiently rich to serve as the class of messages, [t is technically

onvenient to distinguish two types of messages: messages abour the past, and messages about the future.
“Messages about the past” talk about previous rounds: for example, on round 7, one message about
the past is “l sent message o to player ; in round 5. “Messages about the future” make certain

3

promises about future n nessages; for example, on round 7, one message about the future is “¥f ¢ holds

messages [ will send to plaver ; are in the set ®”. We shall
o W

In the case of messages about the past, honesty means that
he ressage is true {our sernantics is such that this will aummaiiazﬁfﬁy guarantes that the sender of

&
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was frue whm he sent W In the case of messages about the

It is convenient to consider messages about the

rhe promises made must be kept. Thus, at
a %a's‘:ﬁr (féai;e? messages about the fu%ure may be rmdamoﬁ d%s?‘mms& Shortly, we shall discuss other
reasons why we distinguish between messages about the past and messages about the future. The
class % of messages consists of the following (where o is a message and @ is a finite set of messages):
i. Messages about the past:

a. “I knew 8 just after round »”, where 8 is an extended formula.
b. I sent message ¢ (o player j in round 7.

c. "L sent precisely the set ® of messages to player J in round 7,

received message ¢ from player ; in round 7.
e. "I received precisely the set @ of messages from player ; in round r

f. “Bvery message that I sent in round r to player ;

[ still know o bf—: true”

g Each finite Boolean combination of messages about the past.
2. Messages about the future:
“If o) holds in round r, then in round r the only messages [ will send to player j are in the set
@7, where y is a message about the past.

I sent message ¢ to player j in round 7’ is 2 message about

&

Note that, for example, the message *
@

the past, even if ¢ is a message about the future. Note also that messages about the {uture simply

k>

restrict the class of future messages. In particular, sending no more messages at all automatically
makes a message about the fuiure honest.

2

the message § is sent in round s+ 1, then

5

in our @xampﬁasﬁ we often find it convenient to allow extended formulas as messages. If § is an
1 k

this message § can be viewed as

€4y £

I knew @ just after round ;
Why are we so restriclive as to which messages about the future that we allow? First, it is shown

in [HF] that serious problems arise if too general messages about the future are allowed. In . particular,

o

% i

with more general messages about the future it is hard to make sense out of “honesty”, and there
does ot seem to be a reasonable and natural semantics. Second, the messages we have define
a3

d are
Third,
we shall show later {in Section 8) that in a certain sense, our results still held if more messages are

Il we need in order for our results (in particular, our complete axiomatizations) to go through,

allowed; however, adding more messages can considerably complicate the semantics. Finally, with the
of messages we have defined, runs have the following nice property: if § is a k-round run, and

1 the (k + 1)st round no messages are sent {and, of course, none are received), then the resuli is

a (k+ 1)-round run. In particular, every run is the prefix of an arbitrarily long run. If we were {o

allow messages about the future to be closed under Boolean combinations, then we would lose this

example, if a player were to send both & mes&ag@ about the future and its negation,
f

re is no way to

fulfiil both of these “promises”

/e not define 2 “message about the past” by player i in round r to be simply an arbitrary
disjunction of histories of player { up to round r {where a “history of player [ up to round 77 is a

complete description of the set 7 of primitive states that he learned from nature in round 0. along

with a complete description of the messages sent and receive by player i in each round 5 where
Lx i would have to be infinite there
ar messages about the future} that plaver 1 could
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We need a few more definitions before we can give the formal definition of the syntax and
semantics of runs. If 2 message ¢ about the pasi is a Boolean combination of messages 1, ..., @p
each of one of the types {a) - (I}, then we say that each o, {1 <m <1} is a direcr submessage of .
if 1 sent message ¢ to playver j in round #7 is a direct submessage of p, then let us sav that @ directiy
imvolves r, and similarly for the other messages of types {a) - {f). For example, the message

“Y knew § just after round 27 V “I sent message ¢ to player j in round 57,
where  is the message “1 sent message § to player j in round 37, direcily involves rounds 2 and 5
but does not directly involve round 3. Intuitively, ¢ directly involves r if round r is mentioned “at

-

the top level” of .

o]

t is also convenient to say that the message about the future “If ¢ holds in

ound r, then in round r the only messages I will send to player ; are in the set @7, directly involves

round r.
We no begm the formal definition of the syntax and semantics of runs. A k-round run is a tuple
(v, 7" sent, received), where {2} v € 9 (thus, v is a primitive state}; (b} 7 is a function T° g?mz@?';

&

and {c¢) sent is a function sent: P x F {?2;““,«5«:} oy {and similarly for received). Intuitively, v is
“nature”; 7{7) gives player ’s “initial information about nature”, as discussed earlier; sent(i,/, 7} is the
set of messages sent by player 7 1o player ; in round r, and received(s,/,7) is the set of messages

i from player j in round r. We assume that y € T(i) for each player i (that is,
the possibilities that plaver ¢ learns is possible in the Oth round). We alsc assumse
@ = received(i, /,0) for each i j (that is, no messages are sent or received in the Oth
round}. Intuitively, in the Oth round, players learn their initial information about nature, and in
rounds 1,2,..., players communicate with each other. We also make the following assumptions:

1.

2. If @ is a message aboutl the past that directly involves round r and ¢ € sent(i,; k), then r<k

'&z:@wad(z ko Dyssent(f, 1,k + 1) (“Fach message is received in the round in which it was sent”™).

{“'Messages about the past’ are really about the past™).

3. if o is a message about the [uture that directly involves round », and if @ € sent(i,/, k), then r >k

o

“‘Messages about the future’ are really about the future™).
Finally, we wish to say that every message is honest. It is convenient for us to refer toc an honest

ge sent by player | as i-honeyr. When we say that a message iy honest, we mean that if it was

k]
o
=
and
<
~Z

y player /, then it is {~honest. To formaliy define what an i-honest message is, we assume
mfi uctively that we have completely defined k-round runs {in particular, we have defined honesty for

ocund runs, and insisted that every message be honest in a k-round run}. We then define what it
means for a k-round run § io satisfy an axtmdﬁd formula o {(written § = p). We then define what

I

o
P
tod

eans for 2 message @ (¢ be i~honest n g {(k + 1j-round run § {written § =;p}), and ‘we then insist
that every message in a {k+ ;E}wmuné, run be hsﬁ@si, The base case (k =0} has been taken care of,
since no rmessages are sent in the Oth round,

P

= {Y, 3’, sent, received) and S = (¥, 77, sent’, received’) are i-equiv-

same information in the Oth round of both runs”).

(i player j and each round r with | <r <k (“plaver i sends the
same m@ssages to each plaver in i%’*e same rounds of both runs™).
. W e . . "
3. received{i, ], r) = received (7, /. 7} for each p&mﬁﬁr 7 and each round r with 1 < r <k {(“plaver | receives

the same messages

player | cannot

Ly

laver i thinks run .

PR
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We now define what ii means for a k-round run § to satis{y an extended formula ¢ (written § F @).
& ?m;}@ where p is a primitive propesition, if §= (y, T, sent, receive c%} and p is true under ghe truth

assignment vy.

I

S Eep 5 H oo

3. SFEoiAp if §Sk=o and § = g,
- op gl : o § .
d, § kKo il 3\ %:m“ @ whenever 8 ~; 5.
S £ ooy t o r\- g P,
5. SkIpif § ko for each § such that §' ~; S for every i € &,

Intuitively, part {éi}é of the definition says that piayer i knows @ in a k-round run if ¢ is satisfied by
every k-round run thai player ;i thinks is pOSSi‘bi@i Part {5) of the definition says that ¢ is implicit
knowledge in a k-round run if ¢ is satisfied by every k-round run that @vez:ifoae thinks is possible (cf.
{z%M.ZER It is useful to note for later use that the following formulas are valid {satisfied by every

P

3: Kjp= Jp {“Anvthing known by player i is implicit knowledge”}, and Ko A Koy = 0y) = Kjog
{ V‘* at player { knows is closed under modus ponens™),
¥ r b e b e e b . s . ; . 5 s -
H Ok £k, then the k' ~round prefix of a k-round run (y, T, sent, rece weﬁ} is defined in the obvious

umare the b £ - N 7 AN

way: the &' -round prefix is (y, 7, sent’, received’ ), where sent' (i, /, ) = sent(i,j,r) for each i,/ and each
. 3 . . e . o

r< k', and similarly for received’,

Finally, we define what it means for a message @ € sent(,/,5), where 1 € s<k + 1, to be i-honest

i
7, sent, recel Jeﬁ) {written § F« @)

in a {k+ ij-round run S=(y,
L. 8k “I knew 6 just after round ” if §' k= X8, where § is the r-round prefix of S.
Z. “I sent message @ to plaver j in round 77 if ¢ € sent(i, /,r).

3%

if ©=sent{l, ], r).

i

I sent precisely the set @ of messages to player j in round r

4. . “I received message ¢ from player j in round »” if @ € received(i, J, f'}.

5. ;1 received precisely the set @ of messages from player j in round /7 if @ = received(t, j, 7).

é. vy message that | sent in round » to player ; 1 still know to be true” if § ;9 whenever
@ € sent{l, J, r}

é 5

8. 85 =g Agy 8 o and 8 =0,
9. § k= “If § holds in round », then in round r, the only messages 1 will send to player j are in the

o i

st (B IF @l (oY » o 1 g ) £ 1 ¢ | i I T
set @7, if either {a} r>k+ 1, (b) §" B¢, where § is the r-round prefix of §, or (¢} sent(i,/, F)S@.

The reader should note that in part (9}, we are def fining what it means for a message ¢ about the

Ind

future, which may have been sent in an early round of S, to be honest in 5. Intuitively, clause {a) of part

(9

{9} bas the effect that a message about the future directly involving, say, round 17, is always

considered honest before round 17.
The following lemma, whose siraightforward proof is omitted, will be used later.

thar § ~; 5'. Then § b0 iff 8 =,0, for everv message @

irmplicit knowledge

In this section, we give a fundamental principle of communication-based knowledge, which says
that no amount of communication in a closed sysiem can change the implicit knowledge about nature

Af

stem. This principle is guite robust, and holds independent of our assumptions that commu-

s synchronous, that communication is uzxzeiéasi& that if a message is received, then it is
in the round it was sent, etc.

5 s a keround run, and r <k, then we say that o is implicik krowledge after v

T
where & s the r-round prefixz of 5.
i
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. ple | cit knowledge: Ler ¢ be a propositional formula, and les S be a k-round
run. Assume that O < r amd G s& k. Then g is implicit knowledge after r rounds of S if and only if
s implict knowledge ﬁfier s rounds ¢

hus, implicit knowledge about nature never changes after the Oth round. The conservation principle

o

is false if p is not required to be a propositional formula, that is, if p is not a formula about nature.
For @X&ﬁ’ﬁ%}%ﬁ if @ is Kyp, where p is a primitive proposition, and if player 1 learns nothing from
nature (in round 0} but learns that p is true in round | because of a message from player 2, then o
is implicit knowledge after round 1 (it is even known by player 1 after round 1), but it is not implicit

knowledge after round 0 {it is even false after round 0).

We now prove the conservation principle. It suffices to show that o is implicit knowledge after r
rounds of § if and only if o is implicit knowledge after the Oth round of §. If ¢ is implicit knowledge
after the Oth round of §, then it is easy to see that o is implicit knowledge after » rounds of § {this
is because nature never changes, and information about nature is never tost). Assume now that ¢ is
not implicit knowledge after the Oth round of §. We shall show that @ is not implicit knowledge
after ~ rounds of $. Let & be (y, T, sent, received). Since o is not implicit knowledge after the Oth
round of £, it follows from our definition of satisfaction that there is some primitive state § such
that (2} B does not satisfy ¢, and (b} B ¢ T(i) for every player i. Let §' be (8, 7, sent, received). Thus,

o~

H " £ . s e . N N . . - . . .
3" s just like §, except that the primitive state in S is § instead of v. It is straightforward to see
thym §o i 3 e PR . . . . ;.
that § is a k-round run. The only nontrivial issue is to show that every message in § is honest.

But this follows from Lemma 2.1, since every message in § is honest, 1nd §’ is i-equivalent to § for
every player {. MNow 5 does not satiss y @, since § does not satisfy @. Thzrefore, since S is i-equivalent
to § for every plaver {, it follows maz @ is not implicit knowledge after » rounds of §. This was to
be shown.

&, A pnew sxiom

this section, we present an interesting new axiom, which we shall show is sound. Like the

conservation principle, this axiom is quite robust under a number of chan nges in our assumptions.

Deline a primitive siate formula to be a formula that completely describes a primitive state. For
example, il there are exactly two primitive propositions, namely p and g, then up to equivalence,
there are exactly four primitive state formulas, mma%y pANGg, pA~g, ~pAg, and ~pA ~g. The new
axiom is:

where o i3 2 :}m‘*ﬂ?i:& state forrula, and where

i

Lo, are all the players, WNote ihaa K;~a appears
f it is implicit knowledge that a

within this new axiom for every player /. This axiorn says that
@rimiiiw state is impossible, then the stronger fact is true that some player knows that the primitive
state is impossible. In other words, if by putting all of their information together the players could
rule out the primitive state &, then some player, by himself, could have ruled out «. This is quite
surprising, since we might imagine that it could happen that the reason it is implicit knowledge that

a primitive state is impossible is because of some complicated Mombmaiim& of “high depth knowledge”

of the various players (we shall define the depth of formulas s hortly}.
To prove the soundness of this axiom, let us consider ihe conirapositive. The contrapositive says

that if all of the players individually think that the primitive state o is possibie, then ~a is not implicit
knowledge. We now show that this is true about an arbitrary k-round run S. Assume that in §, all
of the players think that the primitive state « is possible. So, all of the players think that « is possible

ad of 5. We now show that ~a is not implicit knowledge after the 0th round. Let

e
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~

be the O-round prefix of §. Let §” be a O-round run in which « is the primitive state, and which

ig f-equivalent to S° for every player i. Thus, each plaver learns. the same information from nature

. N o . ¢ . s 3 R e P . . :

in {the Oth round of) " as in §'. Since all of the players think that « is possible after the Oth round
LY B o &

p Y ¥ B P . ¢ . ¥ p .
- is sasy to see that § is indeed & run. Since § |=x, and since §7 ~; § for every player i,

it follows that ~z is not implicit knowledge after the Oth round of §, which was to be shown. Hence,
by the conservation principle for implicit knowledge, it follows that ~a is not implicit knowledge after
the kth round. Hence, ~a is not implicit knowledge in §, which was to be shown.

Example 41, We now show that the formula that results by allowing « in our new axiom be 2
primitive proposition p, rather than a primitive state formuls, is not sound if there are at least two

'fr’g titive propositions. Assume that there are two primitive propositions p and g, and two players,

¢ Bob. Consider the O-round run where both p and g are false, and where, in the Oth round,

—

Alice learns that p and ¢ are either both trus or both false and Bob learns that ¢ is false (but he
q _ L

learns nothing about p). Then ~p is implicit knowledge, since Alice and Bob could combine their

information and learn that p is false. However, neither Alice nor Bob know that p is false. Thus,
Lp

5
§

the new axiom does not hold if we were to let « be p. ®

We just showed thai one generalization of our new axiom is not sound. We now give a sound
generaiézaiioa. Let us say that player 7 is indifferens to the primitive proposition p if for each truth
assignment ; that player / thinks is possible, he also thinks that the truth assignment ' is possible,
where ' is the same as 7 except that p is true in ¢ if and only if p is false in +. Let a be a partial
state formulo, that is, a formula which describes a truth assignment to 2 subset ¥ of the primitive

propositions {if X were the set of all primitive propositions, then w: would have a primitive state

formula}. If every player is indilferent to every primitive proposition that is not in X, it is not hard
to show that J~a= ({j~aV ...V K, ~ea), is still sound, even though « is only a partial state formule,
and not a {full} primitive state formula. This may be bmportant in praciice, where there may be
infinitely many primitive propositions, but where, except for those in a small set X, every player may

be indifferent to all of thern.

[¢4

I

To help understand the new axiom, we now give a general principle of implicit knowledge which

hias the new axiom as a corollary. We begin with some definitions. If T is a set of extended formulas,

and o is a single extended formula, then we say that T implies o, written 2 ko, if every run that
satisfies every member of X also satisfies 0. Thus, 2 ko if there is no “counterexample” run that

e .

satisfies every member of I but does not satisfy o. We may write I B o if it is not the case that

I 2 ig 2 singleton {v}, then we may write v = o for {v} Fo.

ormula @, denoted depth{y), is defined as follows:

i, depth{p)=0C if p is a primitive proposition

the denth for formulas, not for extended formulas.

2. 4@ )
3. depth{py A @2} = max{depth(p), depth(p))}
4. depth{&p) = 1 + depth{p)

ly

st the players be §, .. 7. Let us say that an extended formula o follows from the depth

v i there are formulas @), .., g, each of depth ar most k, such that

N
1 b g
i @rg? = g

me insight aboutl implicit knowledge in runs. We shall show that
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heorem 4.2, Let @ be g depth k& formuda that is implicis knowledge in run S, that is, § = Io. Then v follows

from rhe depth k knowledge of the players in run §.

This theorem follows easily from a result’in Section 11. It is surprising for the same reasons we gave

earlier ihat our new axiom is surprising: we might imagine that it could happen that the reason that
v is implicit knowledge is because of some complicated combination of high depth knowledge of the
various plavers. '

We now show that our new axiom f@ lows directly from a special case of this theorem. We need
the following simple lemma.
Lemma 4.3, Ler I be a set of propositional formulas, and let o be a primitive state formula. If 3 | ~a, then

¢ B ~a for some ¢ € 2,

Proof. Assume that o

s

~g for each ¢ € 2. 1t follows easily that the truth assignment represented

by o makes o true for every o € 5. It again follows easily that 2 B¢ ~a. The lernma follows. B

We now show that the new axiom follows from Theorem 4.2 and Lemma 4.3, Assume that J~eo
holds in run §. We must show that § k= K~ for some player i. Since ~a is a propositional formula,
it follows from z.h@osem 4.2 that ~a follows from the depth 0 knowledge of the players in run .
That is, there are propositional formulas @y, ..., ©

1o @) B oo By Lemma 4.3, o, = ~a for some player i, Hence, § = K;~a. This was to be shown,

such that § k= K, for each player 7, and

a1

8. An S5consistent formuls that is not satisfisble under communication

Assurne that there is only one primitive proposition p, and only two players, Alice and Bob. Let
o be the formula -

(2) K tice € A~ Ky liceP /N 7 “?{.Eobfg WV {~p A ~K glice™P N K‘Eaé ~p})

This is formula {1} from the introduction, where we have replaced plavers 1 and 2 by Alice and
Bob. It is masy to verily that o is 85-consistent (in the sense that there is & model of 85 which

satisfies this formula). In this section, we show that no run satisflies . Thus, ~¢ is valid in our
n parti , this shows that S5 is not a complete axiomatization for knowledge under
message exchange. In the next section, we give two sound and complete axiomatizations {one using
implicit knowledge and one not using implicit kﬁéwiadg@}m

Let @y be the formula p A ~X f\ Kgepp, which says that p is true, and that neither Alice nor
1 7 Alice? “Bob! Vs

o

s

Hob knows that p is true. Let ¢, be the formula - gt A o K g pioo ~p N Kgop ~p, which says that p is false,

that Alice does not know that p is false, and that Bob knows that p is false. Then the formula o
that we wish to show is not satisfied by any run is Ky (p1Vea).

J?

is instructive to give two proofs that ¢ is not satisfiable. The first proof, which is somewhat

informal, proceeds as follows.

by

be a k-round run that satisfies ¢. Since everyihing Alice knows is true, it follows that §
N fpgb "thwefos"& Alice does not know whether p is true or false in 8. Also, Alice can

as follows:

fu
ji
v
1]
e

[ know that either @y or @~ holds. Assume thas @y holds, Then p would be triee, and Bob would not
know zf?az p‘ is frue, just as } do not kinow thar p is rue. In panicular, since we would both think that

is false, we would not have implicis knowledge that p is true. This follows irmmediately

from f}f axiom ip = (K .0V Egopp) of Section 4, where the primirive state formula « is ~p. In the

aext round. Bob could correcily send me a message sayving thot he does not know thot p is false. This

P



01/04/2010 15:38 IFAX canon730i@rice.edu - Karen Lavelle go12/021

would 1ell me that @q is false, since oy implies that Bob knows that p is false. Since I already know
that either @1 or @y holds, I could then deduce thar ®y holds. Bur oy implies that p is true, and 50 I
would deduce thar p is true. In particular, a,fms" the next round, Bob and I would have implicit knowledge
that p is true. This violates the conservarion prmczp!e Jer implicit knowledge, since I already observed
that p was not Implicit knowledge. This contradiction sfww thar 1 is impossible. Therefore, g holds,
and so p is false. I have just proven that p s false, and so [ know that pis false in run S, Bur this
contradicts the fact thar | do not krnow wﬁ:a}zs P iswrue or false in run §f

he second proof shows directly, without appealing to the notion of implicit knowledge, that ¢ is

unsatisfiable. Let § be a k-round run that satisfies 9. Now o implies ~K ., ~1, since if Alice knows

M .

h it is clear that the formula K g..p2 is
inconsistent. We have shown xh&i Alice. thinks that @y is possible. This means that there is some
k-round run Sy that is Alice-equivalent to

thai @ is faisc, then she knows that ¢ is true, althoug

(5]

nd that satisfies @;. In particular, p is true in §;. Let

P

Sy be just fike §), except that p is false m .§5. As in the proof of the conservation principle for

implicit knowledge, it is easy to see that 8 5. a2 k-round run, which is both Alice-equivalent and

Bob-equivalent to §y. Now S| k= o, and so Sy Fp. Hence, §1 b= ~Kpg~p. Therefore, since S and
52 are Bob-equivalent, it foliows that §; o~ {50 p. Mow 84 is Alice-equivalent to §, since S5, is
Alice-equivalent to 5y, which is Alice- eqmmé to §. So, since § k=, it follows that Sy B oiVer.

Clearly S, B @y, since Sy = ~p. Hence, §2 =@y, In particular, §5 k= Kggp~p. But we showed t

g b= «wi&gabwp, This is a contradiction.

We have just given two proofs that there is no run that satisflies ¢ when (a) there is exactly one
@rimé&:%% proposition p and :{b‘} Alice and Bob are the only players. However, if either {3} or {(b) is
false, then there is a run that satislies 9. We now exhibit a run that satisfies o if (b} is false, and

leave as an amusing exercise for the reader to {ind a run that satisfies ¢ if {2} is false.

i3

Example 5.1,  Assume that there are three players (Alice, Bob, and Charlie}, and one primitive

proposition p. We now exhibit & I-round run that satisfies o, In fact, it is convenient to exhibit two

such runs, 5y and 5.

Sy, the primitive g)ropesim@n p is true; in the Oth round of run §y, neither
Alice nor Bob learn that p is true, but Charlie learns that p is true. In round | of §;, Alice receives

a message from Charlie saying: “In the next round, I will not send any messages to Bob” (it is easy

to see that this can be viewed as one of our messa ages about the future). 'In round 2 of §;, Alice

v

receives a message from Bob saying: “I do not know that pis true”, and a message from Charlie
saying:
the Oth round of run §,, Alice does not learn that

p is false, then Bob knows that p is false”. In 5»«« the primitive proposition p is f{alse; in

7 is false, but both Bob and Charlie learn that

e

-~

is false. In round 1 of §;, Charlie receives a message from Bob saying: “I know that p is false”. Eﬂ
round 1 of 51, Alice receives a message from L%mz‘?zza sayving: “In the next round, I will not send any
messages to Bob”. In round 2 of §;, Alice receives a message [rom Bob saying: “I do not know that

<

p is true”, and a message {rom Charlie saying: “If p is false, then Bob knows that p is false”. No
other messages are sent in either run. MNote %hai the two runs are Alice-equivalent. In both runs,

Adice still does not know whether p is true or false after the second round.

cause the fwo

runs are Alice-equivalent, and in one run p is true, while in the other, p is false.

'

of w1

3

We now show that @ is satisfied by, say, run S0 In Sy {that is, at the end of round

”zs

Alice knows that Bob does not know that p is true. This is because {a} Bob told her in round 2 that
o

he {Hob) does not know that

is true, and {b} she knows that he did not learn that p is true in

{Charlie p *“smis&% Alice that

rtainly didn’t send any messages).
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MNow Alice knows that there are two possibilities: (i) p is true, and (i) p is false, In case (i}, Alice
knows (as we §U.si saw} that Bob does not know that p is true, and she of course knows that she
does not know that p is true: hence, Alice knows that if case {i) holds, then formula p; holds, Alice
lso knows that if case (i) holds, then Bob knows that p is false (since Charlie told her this, and
since once Bob knows that p is false, Bob always knows that p is false.) In case (ii), she of course
also knows that she does not kaaw that p is false. Hence, Alice knows that if case (i) holds, then
formula @) holds. So Alice knows that either o; or ©, holds. Hence, run Sy satisfies K. (0Ver);
hat is, run §y satisfies . W

W ‘,«
e

o

vty

£

]

&, Complets sxic

4

matizations and decision problems

n we give a sound and complete axiomatization for the extended formulas that are

that is, which are satisfied by every run. We also give a sound and complete

v where only formulas, rather than extended formulas, are allowed in the axioms,

We Iﬁegiﬁ by presenting the classical axiom sysiem S5 (or actually, its generalization to multiple
players). Following Halpern and Moses [HM2], we refer to the system as S5, when there are
plavers ?{, ...,#. The axioms are:

1

- All substitution instances of propositional tautologie

44;

X
-3
,‘%
R3]

o

Whatever player { knows is true”),

X,ap*:*« ig.K,-q; {“Player { knows what he knows™)

o ~Kio= Kip~Kip  (“Player ¢ knows what he does not know).

» Kot AKi(pr = @2) = Kjpa  (“What player i knows is closed under modus ponens’).

There are two rules of inference: modus ponens {“from ; and @1 2@y infer @7’ and knowledge

generalization (“from g infer Keo”). )
We now give Halpern and Moses’ system 557, which they show is a sound and complete

axiomatization for knowledge and implicit knowledge in Kripke siructures [HM2]. S57, contains all
of the axioms and rules of 85, along with some axioms for bmplicit knowledge. The first implicit
tnowledge axiom is:

@

ﬁfg w=fp (“Whatever each individual player knows is implicit knowledge”}.
The remaining axioms of 857, say that implicit knowledge behaves like individual knowledge.

- lp=o

lp=ilp

mM@%@

fpr ANy = g2} = Joo

Let ML, (where ML stands for “Message Logic™) be S5/, along with our new axiom from Section

¥, b
fva=e (Ky~a VLV K ~a),

hEl

where a is a primitive state formula. MNote that f;~a appears within this new axiom for every plaver

4

are now ready to state our {:nmgﬂezmizss theorem for extended formulas. Of course, since we
are interesied in communication, we only con

r the case where there are at least two plavers. (We
note that for the case of exactly one player, we would just add another axiom which says fp== Ko,

H

which the one plaver is plaver 1.)

is @ sound and compleie or valid extended formudas in runs with n > 2 players.
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5 3

Theorem 6.1 is hard to prove. Details will appear in a later version [F

/21 of this paper.

natural to ask for a sound and complete axiomatization when only formulas, rather than

| formulas, are allowed in the axioms (that is, where the axioms do not mention implicit
knowl eége». We now give such an axiom system, which we call ML,~ (where the superscripted

et

minus sign refers to the fact that implicit knowledge is not part of the language}. The system consists

of §5,, along with a new axiom, which we shall give shortly.

Define a pure knowledge formula to be Boolean combination of formulas of the form K;p, where ¢
is arbitrary. For example, KopV (K ~Kap A ~Ka~p) is a pure knowledge formula, but p A ~Kjp is not.

%

Assume that there are n plavers 1, .., 7. Our new axiom is:
9 3
(3)  Klp=~a)2 Klp=s (Kj~aV .. VK, ~),

for all players i, all pure knowledge formulas ¢, and all primitive state formulas .

s

Note that K;~o appears within this new axiom for every player j. A loose translation of this
axiom is “If player i knows that some ‘pure knowledge’ ¢ is incompatible with some primitive state
«, then player i knows the stronger fact that the pure knowledge ¢ forces some player to know that
the primitive state a is impossible”. We now show that this somewhat unintuitive axiom (3} is sound.
if not, then let § be a run that does not sa’iisfy (3). So 8§k K{p= ~a) and § ¥ Ko=), where
 is the formula Kj~aV ...VX,~a. Since § ¥ K;{p=={), there is 2 run S" such that §~; S’ where
5 k=9 and § k= ~y¢. Since /~ag=>y is valid {this is our new Message Logic axiom), it follows that

. i . il o o7 v . vy
S’ 8 J~a. Therefore, there is a run §” such that §7 ~; 8 for every player j, where §" = «. Since
every “)E&"v v, it is siraighffos"wam to show that every pire knowledge formula satisfied

. ” PR ¢ . . . e + o .
Therefore, 57 k=, By transitivity of ~;, we know that § ~; §. Therefore,

s
o
b
joosd
@
o
o
5
w

v s ol 1 s bl
o ~ere), it follows that 3’ g2~ But we &inaﬂxy showed that §7 Foand § k= o

radiction. Henece, (3} is sound.

fice €{FW'5?{ﬁaé~ﬁ A Nfi‘i@ab ~p)=p)= Krfz’zc {m'"gz%inﬁ % WK}SG& ~p) S {K/i!icepv"gﬁobf?}}“

It is straightforward to verify that (4) implies that formula {2}

v & inn the new axiom {3} to be 2 primitive proposition, rather than a primitive
noi remain smmc%; even if o is the only primitive proposition that

&
2,
o
[y
n

&

» sound and complete axiomatization for valid formulas in runs.

y 6.1, is hard to prove. Details will appear in a later version [FHV2] of

what would happen if we were to allow only messages zbout the past

finition of the class of messages, we were to eliminate clause 2, which defines

A g future}.
Theorem 6.3. If only messages aboui the past are alloy e exactly rwo plavers, then our

7

However, our axiomatizations

axiomanizarions are still complete (that 5. Theorem 0.1 and 1
are not complete if there are ar leasr three players.

> theorern holds,
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restrict messages to be about the past, then our axiomatizations are not complete for at least three
plavers. Assume that there are three players, say, Alice, Bob, and Charlie, Let p be a primitive
proposition. If every rmessage is about the past, then it is impossible to arrive at a situation where

ice knows that Bob knows p and that Charlie does not know p: this is because Alice never knows
whether Bob has ju
abom the future, it is possible for Alice to know that Bob knows p and that Charlie does not know

ust told Charlie that p is true, It is instructive to see how, by allowing messages

(for pedagogical reasons, we shall use slightly more general “messages about the future” than we
iﬁzave already defined, although of course this is not essential). Bob sends a message to Alice, telling
her that he knows p and that he has never seni a message to Charlie and never will; Charlie sends
a message to Alice telling her that he does not know p; and Alice doss not send any messages to
Charlie. #

We close this section by giving the comiplexity of the decision problems for ML, and ML,”. It is

3%

known [HM2] that the decision problem for 85, {with n » 2} is PSPACE-complete, The next theorem

says that ML, and ML,” are no harder (and no easier) than $5,. Of course, in ML, and MIL,”, we
are interested only in the case when n 2 2, thal is, when there are at least two players,
‘heorew 6.4, The decision problems for ML, and ML,” are PSPACE-complete (when n 2 2).

7. Whet i communication is reliable?

[

in this section, we briefly consider the situation where communication is reliable, that is, where

messages can never be never lost. In this case, the set of states of knowledge that can arise is greatly

restricted, as we shall show. Mevertheless,

the conservation principle and our axioms are still sound,

N

as the reader can verify.

Let us say that two runs are eguivalent if they satisly the same extended formulas,

Theorem 7.1,  Assume thar there are only two players, and thar communication is reliable. Then every run is

equivalert fo a I-round run where both players send exactly one message.

& o g

at the two players are players I and 2. Let 5= (y, 7,sent, received) be a run {where
reliable). Of course, received is now redundant, since received(y, j, r) = sent(j,f, r} for

1 N s

is a set of primitive states, then let us say t%’]ax V' is possible initial informarion abow

o . N [P i .
| if there is some primitive state v such that § = (v, T, sent, received) is a run, where
{E} = f/ and {2} = T(2}. Intuitively, V' is possible initial information about nature for player 17

¥

ar as player 2 is concerned, all of player 1's messages would have been legal if ¥ would have
been player 1's initial information about naiure. Similarly, we define what if means for a set ¥ of

informarion abows neture for player

chen let 1y be the formula

(MK ~ar o @ TDA(N~K ~a: a € 1)

Ty says that player 1 thinks that precisely the primitive states in ¥ are possible. Let o

le initial information about nature for player 1}
ly, oy gives meusew the zn?ormaziaﬁ ’;‘é‘*a‘t plaver 2 has about plaver ! in §. Simnilarly, define
eceived’) be a sm run {with v and 7 the same as in &), where the only

o

similarty for plaver 2. It is not

he theorem. &

I
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Corollary 7.2.  Assume thar there are only two players, and that communication is reliable. Let the set of
primitive states be fixed. Then there are only a finite number of distinct equivalence classes of runs (where iwo
runs are in the same equivalence class if they satisfy the same extended Jormulas).

& . el PP s . . . I | . o
‘roof.  Since there are only a finite number of distinct 1-round rums of the type &7 as defined in

the proof of Theorem 7.1, the result follows immediately, B

Theorem 7.1 and Corollary 7.2 contrast with the situation in which communication is unreliable,
For, let Sg be a k-round run in which Alice tells Bob in the first round that Alice knows that the
primitive proposition p is true, where RBob acknowledges to Alice in the second round that he received
this message from Alice, where Alice acknowledges o Bob in the third round that she received Bob’s

acknowledgment, and so on through the kth round. It is easy to see that Sk is not eguivalent to any

{k — 1}-round run, and that no two of the runs S, are equivalent,

We note that it follows from Corollary 7.2 that our axiomatizations in Section 6 are not complete
(aithough, as we have noted, they are sound). In particular, it can be shown that if there are exactly

two players and if o is a primitive state formula, then the formula (K1 Koo AN KK a) = ;ﬁgf&zf{}& is valid,

The reader should note that the results of this section apply only to the case of exactly two

1
players. The case of three or more players is currently under investigation
the class of messages

Theorem 6.3 and Section 7, we considered some effects of changing the class of messages. In
&?};is sami@nk we briefly discuss the effect more generally. Most importantly, it turns out that our class
of messages is rich enough that increasing the class in a reasonable way does not cause the set of
axioms to change. We now discuss what we mean by this claim.
{ all of the assumptions we have made hold, except that the class of messages is changed to ¥,
then let R(.%') be the set of all runs {involving these messages), and let A(.%') be the resulting
complete axiomatization for the valid extended formulas. Let .4 be the class of messages we have

allowed in this paper, and assume that M{i’&/ﬁj, Assume further that our axioms remain sound when
A is the class of mes sages {that | that 4(AYSA(A). Tt turns out that the completeness
proof then shows that A(.#) ( A7), that is,, our axiomatization is still complete.

it is instructive to give a false “proof” of this fact. It is easy to convince oneself that if A4S,
then 4(H)S4(#)). After all, if we have more possible runs, then there should be fewer valid
formulas. Therefore, in our case, 4(.#')c4(.#). Since by assumption 4(#)S4(4), it follows that
A(M) = A, as desired.

e class of models increases, then the set of axioms can only decrease

. in our case, a “model” is mor a run, but rather, a pair (§,#), where

of runs. Mamely, 88 is the set of runs that are conceivable; for us, & is

R{A4), where & is the class of messages. So the set of models is not necessarily comparable, even
T I 2

Let p and ¢ be primitive propositions. Let .4 contain exactly one message, namely,
I know p”, and let %, contain cyaetiy (WO messages, z}am&%y, "1 know p" and “I know g7, Let s

be the formula ~KKyg, and let r be the formula ~{((K;K2p) A Kilgh ~EsKog

)
{since there are no messages involving g}, but not in 4(.#>). We now sketch a proof

Fa

not in A(# ). We first show that v is in 4{.#). If not, then let S be a run

rz\ ~E3Kng). Since §
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one round of message exchange in S. Since player 1 knows g, for all player 1 knows, the following
occurred: player 2 learned that g was true in the Oth round, and told player 3 in the next round
that he {(p iayi::x' 2) knows g. In this case, player 3 would know that player 2 knows g. Since as far
as player

_ this gives a possible run, it follows that player 1 does not know that plaver
% does not know that pi&‘}f’{ff 2 knows ¢. This is a contradiction. We now show that r is not in
A(Ay). For, let § be a run where player 1 learns in round 0 that g s true, and where player 2 tells
player 1 that player 2 knows that p is true. Then § satisfies ~7, since plaver 1 knows that player 3
cannot know that player 2 knows g (since there are no messages involving ¢). Thus, 4(.4#{) and
A(Ay) are incomparable, even though A Sy, B

9. Knowledge structures and knowiedge worlds

In this section we briefly review the definition of knowledge worlds from [FHV1]. We first discuss
them informally.

Example 9.1. Assume there are two players, Alice and Bob, and that there is only one primitive

proposition p. There are various “levels” of knowledge. At the “QOth level” (“pature”), assume that
pis true. The ist level tells each player’'s knowledge about nature. For example, Alice’s knowledge
at the fst level could be “I (Alice) don't know whether p is true or false”, and Bob's could be “I
{Bob) know that p is true”. The 2nd level tells each player's knowledge about the other player’s
knowledge about nature. For example, Alice’s knowledge at the 2nd level could be “I know that Bob
knows whether p is true or {alse”, and Bob's could be “I don't know whether Alice knows 77, Thus,
Alice knows that either p is true and Bob knows it, or else p is false and Bob knows it. At the 3rd
level, Alice’s knowledge could be “I know thai ;.;030 does not know whether I know about p”. This
can continue {or arbitrarily many levels. B

We now give the formal definition of a (knowledge) world. We assume a fixed . finite set of
primitive propositions, and a fixed finite set & of players. A Oth-order knowledge assignment, fp, is a
truth assignment to the primitive propositions. We call </u> a I-ary world (since its “length” is 1}.
Assume inductively that k-ary worlds <fp, ... /i ~1 > have been defined. Let W be the set of all k-ary
worlds. A kth-order knowledge assignment is a function fre: P2 Intuitively, /i associates with each
player a set of “‘possible k-ary worlds”. There are certain semantic restrictions on fx, which we shall
list shortly. These restrictions enforce the properties of knowledge mentioned above. We call
<o,k > 2 (k+1)—ary world. (Although we shall deal only with worlds, we note for completeness
that an infinite sequence <[y /1.5, ... > is called a knowledge structure if each prefix <fg, ../ro1> is 2

keary world for each k)

E

P
foeunt

Before we list the restrictions on f, let us reconsider Example 9.1, In that example, /5 is the truth
assignment that makes p true. Also, fj{Alice) = {p. o} (where by p (respectively, j)} we mean the
-»aw wag’id <fo >, where fp is the

/1{Bob) = {p}. Saying fi(Alice)= {p,5} m now whether p is true or false.
We can write the 2-ary world <fpf1 > as <p, {Alice~{p, i}, Bobw{ {pt}>. Let us denote this 2-ary
world by wi;. Let wy be the 2-ary world <‘:p {Alice~{p, p} g:éobw{pﬂx@ and et wy be

<P, féﬁiaewép} Bobw={p}}>. In Example 9.1, f>{Alice) = fwi,wnl, since Alice thinks both wy {where

#

o

truth assignment that makes true (respectively, false}), and

v

e

eans that Allce does not

pis true and Bob knows i) and wo iwhe;s p is false and Bob knows it} are possible worlds. Similarly,

= fwy, w3}, since Bob thinks both w; (where p is true and Alice does not know it} and wy

vhere p is true and Alice knows it) are possible worlds.

A (k+1)-ary world <fp, ... Jx > must satisfy the following restrictions for each player i

Y

,m
i
{
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K1y <o oJior > € 00,100k 21 (*The real k-ary world is one of the possibilities, for each player”}.

In our &3 :f‘imﬂ ¢, we see that indeed p € fi(Alice) and p ¢ f" (Bob)., Furthermore, wy € fa{alice)
,{Bob), where we recall that wy is the “real” Z-ary world <51 >.

peg
o
£
§
??‘
ey

(K23 I <gp, o1 > € 100, and k> 1, then g o1 U) = fi.1{{) (“Player { knows exactly what he
knows™). Let us consider our example. Alice thinks there are two possible 2-ary worlds,
pamely wy and wy, since fH{Alice) = Iwy, wa}l. I we write wy a5 <gp,g1 >, then indsed gy {Alice)
= {p, fr = f1(Alice), as required. Intuitively, although Alice has doubts about Bob’s knowledge,

she has no doubts about her own knowledge. Thus, in all 2-ary worlds she considers possible,

her knowledge is identical, namely, she does not know whether p is true or false.

B

(K3}  <g0enfra> € mg{é} iff there is a (k — {)st-order knowledge assignment gp..; such that
€L o8l w258k > € (), 1Tk > 1 (s higher-order knowledge is an extension of s lower-order
knowledge”}. In our example, since Alice thinks esither p or J is possible, there is some 2-ary

world she thinks possible (namely, wi} in which p is true, and there is some 2-ary world she

thinks possible {namely, wo} in which p is false. Conversely, because she thinks wy and wy

4

are both possible, it follows that she thinks cither p or p is possible.

e now defline what it means for an {r+1)-ary world «<fh, .. /-0 to satisfy formula p, written

1
if r 2z depthi{e), where depth{g) is defined as in Section 4.
F=p, where p is o primitive proposition, il p is true unier the truth assignment fo.
g if <o, e > Fo.
oy App i <o, fr > Eor and <o, 0> Bes.
%*’{@ i <gn, ngrei > Eo for cach <gp, e > € LU

« < -

sider Example 9.1, Let wy and wy be, as before, the two 2-ary worlds that Alice

considers gossibi@o Then w; k= Apowp, since according to wy, the only l-ary world Bob considers
possible is <p >, Similarly, wo = Kygep~p. Hence, both wy and wy satisfy (KpeppV Kgep~p). Since both
of the Z-ary worlds that Alice considers possible satisfy {(KgoppV&een~p), it follows that in our
example <fo/1/2 > FKaltice(Kgob?Y Kpob~p)-

ing crucial lemyma shows a certain robustness in the definition of the satisfaction of a

-~

formula %E‘é a wefi i

Lemma 9.2, Assume thor depthio) =& and rz k. Then <Jg, v > Fo I <o, ... J > EFo.

10, Messsge-based knowledge worlds

of knowledge worlds, which we call “message-based

e worlds”. The reason for the name is that these turn oul to be precisely the worlds that

ased knowledge worlds are exactly the sa
iefined in Bection 9, Then (k+ 1)-ary message-based

{respectively, 2
éfamw%@ma worlds knowledge worlds </p, .../ > that satisfy the following

regiricts } /(i) is a set of k-ary message-based knowledge worlds,

whenever <gg,g1, ..8r1> €}, and whenever gy € g1(j) for every player j, then
calret > €0, What ndition (b} says is ithat whenever player { thinks that a world
o &h..1 > 15 possible, then he also thinks that every world <gp g1, ...& -1 > is also possible,
truth assignment gw consistent with everyone's knowledge about nature in w, that is,
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Oy

onsistent with g. Intuitively, a good way to think of this is that instead of players “imagining”
possible worlds that look like <gg.g1, ....8c~1 >, every player imagines “worlds” Lg1s w1 >, Where
automatically for every truth assignment gg consistent with g1, the player thinks that the world
<80.E1, i1 > is possible. - ‘

The next theorem shows that messaga, %sasau knowledge worlds correspond to the knowledge gained
in runs.

Theorem 10.1.  For each k-round run S and each nonnegative integer r, there is an r-ary message-based
knowledge world w= < fo,f1, ... fr—1 > such that § and w satisfy precisely the same formulas of depth r— 1 or
less. Conversely, for each rary "ﬂ*zessagc"»a’?ased knowledge world w, there is a k-round run § (for some k) such
that S and w sarisfy precisely the same formulos of depth r— 1 or less.

The difficult step of the proof consists of taking an arbitrary message-based knowledge world and

producing a run, including a complete description of what messages each player sends in each round

and which messages are lost, such that the world and the run satisfy the same formulas {of appropriate
depth).

%
H

. dmplicit knowledge in message-based knowledge worlds

Implicit knowledge of a group of gﬁayexs is the knowledge that can be obtained by pooling together
the group’s knowledge. Let <fp, ..fp > be a (k4 1j-ary world. For each plaver i, the set f; (i) consists
of all the k-ary worlds that player i thinks are possible. Thus, implicitly the players think that
precisely the k-ary worlds in p‘é;:, (i) are the possible ones. I v is a formula of depth r, where r < k,

then we say that <5, ..Jr > ‘Satisfies Ip if @ is satisfied by all the k-ary worlds in 1/ (0).
EF

Consider now an extension <fo, ..J%,Jke1 > of <fp, ../k>. In view of Lemma 9.2, we might be
tempted to believe that <fp, ...J% , fi+1 > satisfies Jp if and only if <fg, ....fr > satisfies fp. Unfortunately,
this is not the case; instead, implication holds in only one direction. Thus, if <3, .../ > satisfies Jo,
then also <fo, ..k, fke1 > satisfies Jp. But it is possible that <fp, .../ > does not satisfy Jo, while
CfQs oo Jrw1 > satisfies fo. This can @appm because a k-ary world w can be a member of ﬁ fkéz"}
even though no extension of it is 2 m emhef of m‘%jfgg,i,“z} {Note, however, that if a world is in j}{ (),

then some extension of it is in fi1(), estriction {K3) on knowledge worlds.)

Put differently, the extended formula 5&; where @ is 2 formula of depth %, is not a formula of
depth k + 1, but rather it is a formula of afb trary depth. To understand this, recall our example of
implicit knowledge from the introduction. If Alice - knows ¥ and Bob knows ¢ = o, then together they

have implicit knowledge of @, though neither of tﬁmm might individually know . Mow even though
the formula @ is of depth k, the formula ¢ can be of arbitrary depth, so the implicit knowledge of

@ is essentially knowledge of arbitrary depth.

inforiunately, the framework of knowledge structures

and knowledge worlds requires that formulas be assigned a well-defined depth, so this framework

cannot handle implicit knowledge (in particular Lemma 9.2 would fail for extended formulas if we
were to define depth(Jp) = 1 + depth{e)).

Surprisingly, in the context of message-based knowledge, implicit knowledge is quite “well behaved”

g
ge
The basis for this is the following property of me -based knowledge worlds.

sage
mma 11.1.  In a message-based Amw!&:éﬁe worl d, i & > 1, then <go, n8iwn> € (V5 1(i) if and only if
£ F

there s gp.1 such rthat <go, 8k —2.8km1 > €

Mote the strong similarity between L 11.1 and restriction (K3} on knowledge worlds. As we

oted earlier, Theorem 4.2 follows from Lemma 11.1.

B

M
o0
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As we said before, Lemma 11.%

communication, i follows from Lemma 11.1
Iew to be of s:iﬁm}:a k+1, We ca

knowledge structur

formulas. Details will be given in a la

Concluding remarks

a straightforward way,

does not hold for arbitrary knowledge worlds

that if o is

and

» Karen Lavelle go2o0/021

For message-based

&

formula of depth &, then we can define

n then define the semantics of extended formulas in message-based

101 to deal with extendsd

extend Theorem

er version of this paper.

The main point of the paper is that we cannot reason about knowledge without taking into account
how the knowledge is acquired in the first place.

knowledge is

unattainable in this model. We

the formulas that are wvalid in such siates,

We have

focused here on distributed systems where

acquired via unreliable message exchange. Certain knowledge states were shown to be
have characterized the attainable knowledge states and axiomatized

It turns outl that the basic feature of message-based

Thus our resulis, as well as recent results in [DM,

knowledge is conservation of implicit knowledge.
DM, PR, RPl, indicate that implicit knowledge is
analysis of distributed systems.
in this paper we have focused on a particular
are as follows
{. MNature never changes.

,and then all info

, then it is received in the r

2. Communication is synchronous, and proceeds

3. Communication is unreliable,

4. If a message is received at all

5. Messages are taken from a particulas

6. Players “receive information about nature”
without any further input “from the outside”

Though these
n

affects knowledge deserves a great deal

assumptions are guite natural, one may
ication, where the above assumptions are changed.
of further
paper opens up an interesting, and we hope fruitful, line

o1

fundamental concept to the understanding and

model of communication. Our main assumptions

in rounds.

ound it was sent.

class of messages.

gy

rmation is obtained by communication,

other models of commu-

We believe that the issue of how communication

want to consider

study. Thus beyond its technical contributions, this
of research.
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