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CHAPTER 5

FUNDAMENTALS OF DEPENDENCY THEORY

Moshe Y. Vardi'
IBM Almaden Research Ccnter

5.1 Introduction

A database management system (DBMS) is essentially a computer system containing a large permdnent
store of data, with special routines and procedures for handling that data. As such systems evolved over
the years, certain ideas emerged as the key features of DBMSs: integration, views, and data inde;pen-

dence.

Integration means that a DBMS enables many applications to share data in common, thus sharing
costs and eliminating redundancy. Inte_ération does not mean that all applications have to adopt the rs;ame
view of the data. Rather, every application can have its own view, thus “seeing” only the data that is
relevant to it. Finally, data independence means that the application programs are shielded from the
details of the physical organization of the data, and they need not be affected by a physical reorganiza-

tion of the data.

The main problem with DBMSs that were developed in the 1960s was that they did not quite
achieve data independence. While application programs did not have to deal with details of phﬁsiwl
storage, they were still dependent on the ordering in which data was stored, on the way in which 1li was

indexed, and on the access paths that were a priori chosen by the database designer.

The relational model was introduced by Codd [Co70} with the goal of achicving a greater degree of

data independence. It is based on two fundamental ideas:

(1)  All information in a relational database is represented as data values in relations (tables).

' ) 1
(2) No information is represented by the ordering among columns or tuples (rows) in the relations.
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Thus, one can say that the relational model of data is almost devoid of semantics. A tuple in a relation
represents a relationship between certain values, but it does not represent any information about the

nature of this relationship, such as whether it is a one-to-one or a one-to-many relationship.

One approach to remedy this deficiency is to devise means to specify the missing semantics. fhese
semantics specifications are called semantic or integrity constraints, since they specify which databases are
‘meaningful for the application and which are meaningless. Of particular interest are the constraints

called data dependencies, or dependencies for short.

Dependency theory, the theory of data dependencics in the relational model, has been an active
area of research in the last decade. This article is meant to serve as an introduction to this area. Rather
than deseribe the historical development of the theory, we shall describe it with the wisdom of hindéight.

More comprehensive surveys can be found in the books [Ma83,Ul82] and in [FVBG}. :
5.2 Basic Definitions

5.2.1 The Relational Model

We now describe the mathematical model that aims at cépturing our intuition about tables whcrciboth
columns and tuples are essentially unordered. The first thing that we model is the fact that (;olumné. ina
table have names; these are the column headings. In dependency theory they are called attr_ibutesf We
assume that attributes are symbols taken from a given finite set U={A,, . . . ,A }. Following custobuy
notation- in dependency theory, we use the letters A,B,C,...,H to denote attributes, and we use
R,S,....X ',Y;Z to denote attribute sets. We usually do not distinguish between the attribute A an;ﬂ thej_
attribute set {A}. The union of X and Y is denoted by XY. Thus, ABD denotes the set {A,B ,D}.i The

~

complement of X in U is denoted by X.

Underlying each column in a table there is a domain of values, out of which the entries m that
column are taken. Thus, with each attribute A we associate a set DOM (A), called the domain of A. For
simplicity we assume that DOM (A) is an infinite set. (This assumption is not always realistic. Conéj.ider’,
for example, the attribute SEX .) We denote by Dom the set | J DOM(A). ’ ‘

' ACU ‘

A tuple spanning a set of columns is essentially an assignment of an entry to cach column, vjﬁhere
the entries are taken from the corresponding domains. Thus, a 7uple on an attribute set X is a mabping
wX-+Dom, such that u(A)EDOM(A) for all A€X. A relation on X is a set of tuples on X. (We do ndﬁ)t yet -
require that this set be finite, even though this seems to be a very reasonable requirement, but we fa]low

it to be either finite or infinite. We shall come back to this point later.) If I is a relation on X, then X is
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called the scheme of 1.
Here are some more conventions. We denote tuples by the letters u,v, - - -, and we denote kela-
tions by the letters I,J, - - - . Unless explicitly stated otherwise, a tuple is a tuple on U and a relation is

a relation on U.

Example 5.1
Consider the following table:

EMP DEPT MGR
Hilbert Math Gauss
Pythagoras Math Gauss
Turing Computer Science von Neumann

This is a relation on the attribute set {EMP.DEPT,MGR}. The domain of EMP is the set of cmploirees,
the domain of DEPT is the set of departments, and the domain of MGR is the set of managers. The
relation consists of three tuples, each one being a2 mapping from the set of attributes to their associated
domains. For example, the first tuple is a mapping u such that z(EMP)= Hilbert, u(DEPT)=Mathi and 7
u(MGR)= Gauss. 8

5.2.2 Operations on Relations

We now describe two operations of Codd’s relafional algebra [Co72b]. The projection operation is a
unary operations on relations whereby a subset of the columns is selected. That is, if I is a relation bn X
and ¥ is a subset of X, then the projection of I on ¥, denoted w,(I), is obtained by deleting the collﬁmns

corresponding to attributes in ¥ —X and eliminating duplicate tuples in the result.

We now give a formal definition. For a tuple w on X and YCX, we denote by w[Y] the restrii:tion
of w to Y. Thus, w[¥] is a tuple on ¥. (Note that for tuple w on X and ah attribute A €X, w[d] is a tuple
on A, while w(A) is an element in DOM(A). We will not distinguish, however, between the two.) Let/
be a relation on X and YCX. Then w,(I)={w[Y¥]: wel}. Thus w,(I) is a relation on ¥. |

Example 5.2 Let I be the relation in Example 5.1. @ 5ppr 'MGR}(I) is the relation:

DEPT MGR
Math Gauss
Computer Science von Neumann

'"{EMP,’DEPT}(I) is the relation: .
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EMP DEPT

Hilbert Math

Pythagoras Math

Turing Computer Science

The join operation can be viewed as the dual of the projection cperation. It combines togéther
tuples from several relations when these tuple agree on the columns that they have in common. For-

mally, if 7, . . . ,I, are relations on X,, . .., X,, respectively, then their join, denoted 7, * - - - *I* (or
k k '

* 1), is a relation on X = | X, defined by
i=1 j=1
x
- Ij={w isatupleon X : w[XJ.]EI}., for 1=j=k}.
i=1
Note that the join is commutative and associative.
Example 5.3 Consider the two relations of Example 5.2. Their join is the relation of Example 5.1. l

The reader may wonder whether the projection and the join are inverse to each other. The follow-

ing examples shows that this is not the case.

Example 5.4 Let I be the relation

A B C
0o 0 0
1 0 1
Then 5 (I)* 5 (I) is the relation
A B C
0O 0 0O
1 0 1
0 0 1
1 ©0 0
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Example 5.5
" Let I be the relation

|

A B
0 0
0 1
Let J be the relation
B C
0 o
0 1
. Then @ 4, (/*J) is the relation
A B
0 0
and w,-(I*7) is the relation
B C
o 0
0 1

The following lemma asserts that the above examples are typical.

Lemma 5.1

. . m.
(1) - Let I be a relation on X, and let X, ... ,X, be attribute sets such that X=|JX,. Then

i=i

"I(_: * ay ().
=1 7
k
(2) - Letl,..:,I, berelationsonX,, .. .,X,, respectively. Then “x,( *L)cl.
: k=1
The si.niultaneous; projection of 7 on X, . . . ,X,, (as in Lemma 5.1(1)) is called a decomposition. If
_ m |
we are lucky to have that 7= * ay (I), then we say that the decomposition of I to wy (I), . . . .7y ) is
. . 1 L]
, ‘ R

lossless, since these relations can be joined to recover the original relation with no loss of information. If
m .

IC * 4, (I), then we say that the decomposition is lossy we use C to denote containment, and we use C
: 1 . .
j=t
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to denote proper containment).
5.3 Functional Dependencies

5.3.1 Motivation

When designing a relational database, we are often faced with a choice between alternative sets of rela-
tion scheme. Some choices are better than others for various reasons. Consider, for example, the data-

base in Example 5.1. This database suffers from several problems, called anomalies by Codd [Co72a]:

(1)  Redundancy. The information that Gauss is the manager of the Mathematics Dcpartmeht is

repeated more than once.

(2)  Possible inconsistency. Suppose now that we are asked to change Hilbert’s manager from Gauss
' to von Neuman. Then we are faced with the situation that the Mathematics Department has two

managers. It is doubtful whether that was the intention of the change.

Indeed, it seems that a better database design would be to store the data in relations as in Example /5.2,

which does not suffer from the above anomalies.

A close look at the problem suggests that the source of the problem is that the first design igﬁores
certain deﬁeﬁdeﬁcics in the data, e.g., the fact that (as we suppose) every department has a uﬂique
manager. In other words, there is a functional dependency between DEPT and MGR. We start now with

the study of functional dependenmcs and shall come back later to the issue of database design.

5.3.2 Functional Dependencies

A functional dependency (abbr. fd) is a statement thet describes a semantic constraint on jdata
[Co72a]. Formally, an fd is an expression of the form X-¥, read X functionally determines Y, whdfre X
and ¥ are attribute sets. X-Y is over an attribute set R if XYCR. X-Y is safisfied by a relation I on R if
X-Y is over R and for all tuples u,v€/, if u[X]=v[X], then «[¥]=v[Y]. Intuitively, I satisfies X-Y if
I[XY] can be viewed as a function ffom tuples on X to tuples on ¥. I satisfies a set 3 of fd’s if / satisfiés
all fd’s in E A set I of fd’s is said to be over an attribute set R if all fd’s in ¥ are over R, e.g., thE set
{A-B,BC-D} is over the set ABCDE. |

Example 5.6. Consider again the relation:



04/04/2011 14:37 IFAX canon730i@rice.edu » Arnetta Jones 1007/054

EMP DEPT MGR

Hilbert Math Gauss
Pythagoras Math Gauss
Turing = Computer Science von Neumann

It is easy to verify that this relanon satisfies the fd’s EMP-DEPT, DEPT-MGR, and MGR-DEPT It
does not, however, satisfy the fd DEPT-EMP. n

A set of fd’s can be viewed as a semantic specification for the database. That is, if we are given a
set Z of {d’s, then only relations that satisfy all fd’s in X are considered ““meaningful.” Relations thait do
not satisfy some fd in T cannot be actual representation of the data for the application in mind. In drdér
to allow for symbolic manipulation of semantic specification, it stands to reason that we should be abﬂe to
test mechanically for equivalence a.nd redundancy. Two scts A and T of fd’s are equivalent if theyr are
satisfied by the same relations, i.e., if 7 satisfies A if and only if I satisfies £, for all relations /. In‘ that
case we also say that A is a cover for . A set 2 of fd’s is redundant if there is a proper subet A of %,

i.e, ACZ, such that A and = are equivalent.

It is easy to see that both equivalence and redundﬁncy reduce to a more basic notion, that of irjnpli-
cation. A set Z of fd’s implies an fd o, denoted 2o, if I satisfies o whenever [ satisfies 2, for all jrela-
tions /. Clearly, £ is redundant if and only if therc is some fd o €= such that 2—{c}}o. Also, A a.pd 3
are equivalent if and only if Al o for all v €X and Z|=8 for all 3€A. 1

, The relevance of implication to database theory became apparent in Bernstein’s work on dataibase
~ design [Ber75,Ber76], and was confirmed in later works, e.g., [BMSU81,Ri77]. Today unpllcat1$n is

copsidered to be perhaps the most fundamental notion in dependency theory.

So far we bave allowed both finite and infinite relations. We can try to be more realistic and icon—
sider only finite relations. Thus, “-'e say _t]iat = JrA‘im't.e*:ly implies o, denoted Z| 79 if I satisfies o wihen-
ever I satisfies = for all finite relations I. Clearly, if Z|=o, then also I ¢ @, but the reverse entailment
does not seem to hold a priori. That is, it is conceivable that T 79 but there is some infinite relation J

such that /3 and I'fo.

As we said, we are interested in automaticmhnipulation of fd’s. So we would like to solve thé fol-
lowing decision problems. The-implication problem is to decide, given a set X of id’s and an fd o,
whether 2 o. The finite implication problem is to decide, given a set Z, of fd’s and an fd o, whétherr
zE 7. Note that these are two independent decision problems. That is, a solution to any one of ﬁém

does not solve the other one.
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The reader may ask why we bother to deal with unrestricted implication at all, since finite implica-
tion seems to be the more interesting notion. The answer is that the relationship between implication

and finite implication is a very significant onec, as we shall see later.

5.3.3 Functional Dependencies and First-Order Logic

It is ﬂot hard to see that, as was observed by Nicolas [Ni78], fd’s can be represented as sentences in
first-order logic. There is a minor difficnlty, since our definition of relations is different from the iwra),r
relations are usually defined. For the sake of this translation we assume that the atiributes are ordered.
Thus; if R={A,, . . . ,A,}, then rather than view a relation on R as a set of mappings from R to Dom, we
can view it as a subset of DOM(A )X - - - XDOM(4,). For examble, if R=ABCD, then we can assiume
that the attributes A, B, C, and D label the first, second, third, and fourth columns, correspondingly.

Consider now the fd AB-C. We can express it by the first-order sentence
(VY abe c,d,d,)((Rabe,d, ARabc,d) Dc,=c,)).

Here (Vabc,c,d d,) is shorthand for (VaVb¥c Ve, ,Vd Vd,), ie., all variables are universally qupnti-
fied. R is the predicate symbol referring to the relevant relation. (Note that we have used here indivi-
dual variables as in [BV81,Fa82] rather than tuple variables as in [Ni78].) It is easy to see that we can

express arbitrary fd’s in this manner.

Since fd’s are first-order sentences, we can apply certain operations to them. For-example, if cr% and
T are fd’s, then we can consider oAT. Now oAt is not an fd, but it is a perfectly legitimate first~();rder
sentence. Similarly, we can consider -o. That means that the implication and the finite implication
problems can be reduced to classical decision problems for flrst-ordcr logic. Let == {0'1, NN I 2 'fhen
E|=o- if and only if o A - - * A, A-0 is unsatisfiable, and E|= so if and only if ,A * - * AG A-O s ﬁrhtety
unsamﬁable. (A sentence is (finitely) satisfiable if it has a (finite) model. It is (finitely) unsatisfiable if

it has no (finite) model.)

By Godel’'s Completeness Theorem, unsatisfiability i§ partially Jécidable That is, there is a ipro-
cedure P, with the following property. When given an unsatisfiable sentence 7, P, will terminate and tell
us that 7 is unsatisfiable. When given a sausﬁable sentence 7, P, w111 either terminate and tell us that T
is satisfiable or it will not terminate. Since u:nphcatlon reduces to unsatisfiability, it follows that the

implication problem is partially decidable.

Oﬁ the other hand, it is easy to see that finite satisfiability and, thercfore, finite nonimplication are
also partially decidable. To find out whether + is finitely satisfiable we- just have to epumerate all f;inite

structures and check whether they happen to be models of 7. Since the collection of finite models (up to
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isomorphism) is clearly enumerable, if r is finitely satisfiable, then our procedure will terminate and will
tell us that = is finitely satisfiable. If T is not finitely satisfiable, then our procedure will not termif\atc.

Let us call this procedure P,.

Suppose now that satisfiability and finite satisfiability coincide, that is, whenever there is a mc?»del,
then there is also a finite model. Then both satisfiability and nons#tisfiabi]ity are partially decid#ble.‘
But then it follows that they are actually decidable [Ro67]. Given a sentence 7, we simply run both P,
and P, in parallel. Now, one of these procedures is guaranteed to terminate with an answer, anﬂ of
course we can never get contradictory answers. So we have a decision procedure for satisfiability. §We
know very well, however, that satisfiability of first-order logic is undecidable, which means that satijsﬁa—
bility and finite satisfiability do not coincide. But for many classes of first-order sentences satisfiabji]ity
and finite satisfiability do coincide, and for such elasses satisfiability is décidable. Indeed, the stanﬂard
technique for proving decidability for classes of first-order sentences is by proving that satisfiabiljtyiand
finite satisfiability coincide [IDG79]. Similarly, if we could prove that implication and finite implication
coincide for fd’s, then it would follows that the implication preblem is decidable (and of course so ;also

would be the finite implication problem, since it would be equivalent to the implication problem).

Let us see now what kind of first-order sentences we get when we reduce (finite) implication of %fd’s
to first-order (finite) unsatisfiability. As we saw before, fd’s are ‘essentially universal sentences. When
we reduce (finite) implication to (finite) unsatisfiability, we take the conjunction of several fd’s witﬂ the
negatioh of an fd. The resulting sentence o A * * + Ao A~c can be written as an V *EI " scnténcc, that is, a
sentence in prenex normal form whose quantifier prefix consists of a string of universal quantificrs%fol-
lowed by a string of existenﬁal quantifiers. The class of suéh sentences is knoﬁn as the initially exrenjm'ed
Bernayes-Schonfinkel cla;vs. We abbreviate this long name and call this class the BS class. The BS if:lass
has been studied by logicians in the 1920s, and they have shown that satisfiability and finite satisfiability

~ for this class coincide [DG79]. Thus, we have proven the following theorem.

Theorem 5.1 For fd’s, implication and finite implication coincide, and the corresponding decision pji-ob-

lems (Whiéh also coincide) are decidable.

This was the good news. The bad news is that though the decision problem. for the BS claés is
decidable, it is highly intractable; even nondeterministic algorithms for this problem réqui.rg: exponential
time [Le80]). Thus, reducing implication of fd’s to unsatisfiability of BS sentences does not give fus, a
practical algorithm. Since the sentences that arise from the reduction of implication to msaﬁsfiaﬂility
form a proper subclass of the BS class, we 'still can hope to find a better alg’_orithAm for the implica;ﬁon
problem for fd’s. To develop such an algorithm we have to study the properties of fd’s in more detail.

\



04/04/2011 14:38 IFAX canon730i@rice.edu » Arnetta Jones 1010/054

10

5.3.4 Formal System for Functional Dependencies

We now try to gain better understanding of fd implication by studying formal systems. Formal sysiems
consists. of axiom schemes and inference rules (axiom schemes can be viewed as inference rules with no
premises). Given a formal system F, a derivation of a dependency o from a set Z of fd’s is a sequence

T ,0,, where o is o and each o, is either an instance of an axiom scheme or follows from preced-

e
ing delﬁcndcncies in the sequence by one of the inference rules. 2o denotes that there is a deﬁvatiqjm' of
o from =. We say that F is sound if Si-o entails Z|F o, and it is complete if 2o entails Zto. (Note
that we are now talking solely about unrestricted implication, since we know that implication and ﬁinite
implication coincide for fd’s.)

Since fd’s can be expressed as first-order sentences, it might be argued that there is no need to
develop formal systems for fd’s, because any formal system for first-order logic will do. I.-Iowcver,f fd’s
are just a fragment of first-order iogic, a fragment that seems to be suitable to expressing integrity ?con-
straints of databases. As we are trying here to pain better understanding into implication of fd’s%, we

would like to have a formal system which would enable us to infer only fd’s and not general first-order

sentences, unlike a formal system for first-order logic.

Formal systcﬁ:s for implication of fd’s were first studied by Armstrong [Arm74], even thoug]ﬁ the
importance of implication was not yet realized when his paper appeared in 1974. We present here a for-
mal system FD that is somewhat different from Armstrong’s system. FD consists of one axiom scheme

and two inference rules:

FDO (reflexivity axiom): FX-@.

FD1 (transitivity): X-¥, Y-ZFX-Z.

FD2 (augmentation): X-Y-XZ-YZ.

Note that the above axiom and rules are schemes; any attribute set can be substituted for X, Y, and Z

Example 5.7 Let U=ABCDE, lct 2 consists of the fd’s A~B, A~C, and BC-DE, and let o be A-»E.i We
show that Zro. By FD2, we have A-BrA-AB and A-CFAB-BC. By FDl1, we 'jhave ‘
A-AB,AB-BCHA-BC, and A-BC,BC-DEFA-DE. Now, by FD0, we have F-DE-E, so by another ai[pprli—‘r
cation of FD1, we get SFA-E. = ' o

Before proving soundness and completeness, we need a technical lemma.
Lemma 5.2 XY, X-ZFX-YZ.

Proof By FD2, X~Y+-X-XY, and X~Z-XY-YZ. The claim follows by FD1. m
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Theorem 5.2 The system FD is sound and complete.
Proof

Soundness: To prove soundness it suffices to show that the axiom and the inference rules are soﬁnd.
¥DO is vacuously sound. Let I be a relation, and let u,v€I. Suppose that I satisfies X~¥ and Y-Z. If -
u[X] v[X], then u[¥Y]=v[F], so u[Z]=v[Z]. Thus, I satisfics X+Z, and FD1 is sound. Finally, suppose |
that I satisfies X-¥Y. If u[XZ]=v[XZ], then u[X]=v[X], so u[Y]-—v[Y], and therefore #[¥Z]= v[YZ]
Thus, 7 satisfies XZ-YZ, and FD2 is sound.

Completeness: We have to show that if S o, then Z-o. We prove the contrapositive: if Z¥o, ihcn
2o
Let o be X-¥. Define an attribute set X' ={A : S-X-A}. By FDO and FD2, we have that FX-A,
+ , ! .
for A€X, so XCX . By Lemma 5.2, we have that EI-X»X+. We claim that ¥ is not a subset of 1X+.
Suppose it is. Then by FDO, ZFX +—>Y, and since we know that Z-X-X +, it follows, by FD1, that El—X-Y

, . . ' +
- a contradiction. Thus, there must be some attribute B that is a member of ¥ but not a member of X .

We construct a relation as follows. I consists of two tuples u and v, such that « and v agrce pre- :
cisely on X *. For example, u[A]=0 for cach attribute A, v[A]=0 for cach attribute A €X , and v[A]=1
for each attribute A €U—X . Clearly, #[A]=v[X] but &[¥]#v[Y]. So I does not satisfy X-Y.

We now claim that I satisfies 2. Let §-T be an fd in £. Suppose that #{§]=v[S]. But then we
must have that SgX+. Thus, by FD2, we have that S—-TI—X+-»T. Now, by FDO and FD2, we have that
. + '
FT-A for A€T. Therefore, by FD1, we have that Z-X +-A, for all attributes A €7. But then TCX and.
u[T]=v[T]. ' ‘
Thus, I satisfies ¥ and it does not satisfy o, so Zjv. B

Note that the above proof is also a direct proof that for fd’s implication and finite implication coincide,
since the counterexample r¢lation that we have constructed is "finite (a counterexample relation for an

implication £} o is a relation that satisfies £ but not o).

5.3.5 Functional Dependencies and Propositional Logic

What is perhaps the most important fact about implication of fd’s is buried in the proof of the coinp]ljcte- '
ness of the system FD. Before stating it, we need some definitions. A two-fuple relation is a relation
that contains at most two tuples. To make things simpler we assume that a two-tuple relation consis'&s of
precisely two, possibly identical, tuples. We say that a set 3, of fd’s implies an fd o with respect to ?wo—
tuple relations, denoted E|=2 , if if I satisfies o whenever I satisfies =, for all two-tuple relatloris

Clearly, if 2|= 70, then also E|= a. The proof of Theorem 5.2 shows that the reverse entailment Blso
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holds.

Theorem 5.3 Let X be a set of fd’s, and ¢ be an fd. Then o if and only if E|=fc if and only of
2F,c.m

The reader may wonder why the sudden interest in two-tuple relations. After all, most real c}lata-

~ bases usually contain more lthan just two tuples. Before explaining the importance of Theorem 5.3; we
define a new notion of imlilication, seemingly unrelated to our previous definition. This definiﬁén is
based on viewing fd’s as formulas in propositional logic. According to this view, each attribute caTn be
viewed as a propositional symbol that can be assigned truth values. Thus, we define a relational fruth
assignment & as a mapping y:U-{0,1}. We extend  to give truth assignment to attribute sets by defining

¥(X)= I $(A). That is,  assigns the value 1 to X if and only if it assigns the value 1 to all attributes in
Aex ' 1

X. We can now extend relational truth assignments to assign truth values to fd’s in the following
manner: § assigns the value 1 to XY if only if whenever y(X)=1, then also y(¥)=1. For examp}c if
¥(A)=1, $(B)=1, and $(C)=0, then |y(A~B)=1 and y(AB~-C)=0. We can also extend ¥ to scts oﬂfd’s

by defining W(Z)= II (o). That is, ¢ assigns the value 1 to the set I if and only if it assigns the value 1
oEx -
to all fd’s in . We say that that a set 3 of fd’s propositionally implies an fd o, denoted =k » 6‘, if

¥(Z)=1 entails $(c)=1 for any relational truth assignment . This notion of implication for dependen-
’ !
cies may seem to be quite unmotivated. Surprisingly enough, propositional implication turns out to coin-

cide with implication.
Theorem 5.4 [Fa77b] Let Z be a set of fd’s, and ¢ be an fd. Then Zf o if and only if leé o.

Proof By Theorem 5.3, it suffices to show that 3}, o iff 2} o. The basis for this equivalence is a sim-

ple correspondence between relational truth assignments and two-tuple relations.

Let ¢ be a relational truth assignment. Then I¢={u,v} is a two tuple relation such that u[A]=\jr[A]
iff w(A)=1. Let I={u,v} be a two-tuple relation. Then W, is a relational truth assignment such that
y(A)=1iff u[A]=v[A]. Let v be any fd. The reader can verify that Y(r)=1 iff 1, satisfies 7, and I s;atis-
fies 7 iff ,(7)=1. Similar correspondence holds for sets of fd’s. Suppose now that Z|-, o. We want to
show that Tf » @ Let § be a relational truth assignment such that y(Z)=1. Then 1, satisfies 3, %and
since 2, o, it must be the case that 1, satisfies o. But then y(o)=1. We have shown that y(Z)=1
entails y(o)=1 for any relational truth assignment o, so Zf p @- An analogous argument shows that if
3k, o, then also Zf=, ¢. ® -

~ The significance of Theorem 5.4 is that it enables us to view fd’s as formulas in propositional ldgic.

Namely, the fd A, - - - A,»B, - - - B, can be viewed as the formula AA--MNIBA---AB, wherei the
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A’s and the B’s are viewed as propositional symbols. Furthermore, such a formula is equivalent to a set
of Horn formulas, and so is its negation. (Horn formulas are lformulas in one of the following forms:
AN -AA-B,B,or ~A V- V-4, where the A’s and B are propositional symbols.)_ For exan:}ple,
the formula ADBC is equivalent to the set {ADB,ADC}, and the formula ~(ADBC) is equivalent to the
set {A,-Bv-C}. Thus, the conjunction G.A - Ao A0 is equivalent to a set of Horn formulas.‘ V\j(hile
no polynomial algorithm is known for satisfiability of propositional logic, for Horn formulas satisfiaﬁility
can be tested in polynomial time. So, as a consequence of Theorem 5.4, we obtain a polynomial jtimcr

algorithm for the implication problem for fd’s.

Interestingly, a polynomial time algorithm for fd implication was discovered by Beeri and Bernstein
[BB79] independently of the discovery of the correspondence between fd’s and propositional logic. Iheir
algorithm is based on a fast construction of closure sets with respect to a given set of fd’s. Formally, the
closure of an attribute set X with respect to a set £ of fd’s, denoted el (X), is the set {A : S X-A} (so
the set X ¥ in the proof of Théorcm 5.2 is exactly ¢ly(X)). Note that XCcl;(X). The proof of the foliow-

ing lemma is easy and is left to the reader.
Lemma 5.3 XEX-Y if and only if YCelg(X). m.
Thus, to test implication of X+Y¥ by X it suffices to construct c/5(X) and then to test whether Y C cly (X ).

Algorithm 5.1
Input: A set = of £d’s and an attribute set X.
Output: cl;(X).
CLOSURE(Z,X)
begin
Y:=X;
while there exists an fd S-T in 2 such thatSCY and TCY de Y:=¥T
end while |
return(Y)
' end. '
: V_Ve have to show that CLOSURE(Z,X) terminates and indeed returns cls(X).
Lemma 5.4 CLOSURE(Z,X) terminates and returns cly(X).

Proof The aigorithm clearly terminates. Let Z be the set constructed by the algorithm. We show first
‘that ZCel;(X) by induction on the steps of the algorithm. That is, we show that ¥ Cely(X) at all st#ges_
of the algorithm. Originally, the claim is true, since ¥=X. Suppose now that the claim is true for ¥, and

that there is an fd §-T in = such that § CY. Itis casy to see that in this case T XA for all A €Y7 (use
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the formal system FD). Thus, YTCcly(X).

It remains to show that it is impossible that Z is a proper subset of cl;(X). Suppose it is, anﬁ let
Becly(X)—Z. Since B€cly(X), it means that SFX-B. Let I={x,v} be a two-tuple relatioﬁ such %that_
u[A]=v[A] iff A€Z. Clearly, I does not satisfy X-B. We claim now that / saﬁsfies Z. Suppose it does
not. Then there must be some fd §-T in ¥ such that SCZ but T¢Z. But in this case the algorithm could
not have terminated. -Thﬁs, I satisfies =, but it does not satisfies X8, so SEX-B - a contradiction. It

follows that Z=cl (X). =

The alert reader may have noticed the similarity in the proofs of Theorem 5.2 and Lemma 5.4. Indeed,

one can view an execution of the algorithm as an organized derivation in the formal system FD.

Example 5.8 Let U=ABCDEF, and let X consists of the fd’s A-B, A-C, and BC-DE. Let us calcﬂlate
cls(A). Initially Y=A. We then apply the fd A-B, since ACY, and set Y=AB. We then apply the fd
A~C and set Y=ABC. Finally, we apply the fd BC~DE and set Y=ABCDE. So cls(A)=ABCDE.u

It is not hard to implement CLOSURE to run in polynomial time. Beeri and Bernstein showed how

to implement it to run in linear time.

Theorem 5.5 [BB79] The implication problem for fd’s can be solved in time that is linear in the length of

the input. B

5.3.6 Covers
Now that we can test implication efficiently, we can also test equivalence and redundancy efficientlyi In
particﬁ.lar, we can find efficiently nonredundant covers. (Recall the A is a cover for = if A and 3 are ‘

cquivalent.)

Algorithm 5.2 .
Input: A set 3 of fd’s.

Output: A nonredundant cover of =.

NONREDUN(Z)
"begin ’ |
A:=3; ' ‘ _ _ \

for each fd o in A do
if A—{c}Fo then A:=A= {c}
end for
return(A)

end. ' ' - o - _ ;
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Example 5.9 Let U=ABC, and let = consist .of the the fd’s A~B, B~A, B~C, and A~C. Then NbN-
REDUN(Z) returns the set {A+8,8-A ,A~C}. Note that the set returned by the algorithm depends on the
order in which ¥ is presented. If I is presented in the order {A-B,A-C,B-+A,B~C}, then NON-
REDUN(Z) returns the set {A—B,B-+A,B~C}. Note that {A~B,B~A,AB~C} is also a nonredundant cbver
of Z. m

The above example shows Vthat a given set of fd’s can have many nonredundant covers, some of
which may not be a subset of the given set. For economical reasons it is desirable to find the cover Fith
the smallest number of fd’s. Formally, A is a minimum cover of = if A is a cover of Z and whenevcr?I‘ is
also a cover of = then |A|=<|'|. Algorithm 5.2 supplies us with nonredundant covers, but these are not

necessarily minimum covers.
|

Theorem 5.6 [Ma80] There is an algorithm for finding minimnm covers in time that is quadratic in the

length of the input. =

At this poiﬁt the reader may suspect that everything we care to know about fd’s can be four;td in
polynomial time. Unfortunately, ‘this does not seem to be the case, as is demonstrated by a slight vai‘iant
of the minimum cover prbblem, which is to find a minimum contained cover of Z. A cover A of E‘ isa
contained cover if AC 5.‘ A is 2 minimum contained cover of 2 if itis a contained cover of =, and uhere
is no smaller contalned cover of 5. Formally, the minimum contained cover problem is: given a set E of

fd’s and an integer k, is there a contained cover A of X such that JA|=k?
Theorem 5.7 [Ber75] The minimum contained cover problem is NP-complete, M

NP-complete problems are problems that can be solved in polynomial time using “guessés” (111 the
minimum cover problem we can guess a subset of £ and check that it'is a cover of £ and has at mt‘i)st k
fd’s), but probably cannot be solved in polynomial time by any deterministic algorithm. We assume fam-

iliarity with the theory of NP -completeness. A good textbook in the subject is [GI79].

Notice that if we could actually find minimum contained covers in polynomial time, then we dould
clearly solve the minimum cover problem in polynomml time. Thus, Theorem 5.7 can be v1cwed as

strong evidence to the mtractabmty of fmdmg minimum contained covers.
5.4 Database Schema Deéign

5.4.1 Normal Forms

We,have argued in §3.1 that certain ways of storing the data might be befter than other ways. In the

example studied, it is better to storerthc dé.ta in two relations, onc on {EMP,DEPT} and onfe on
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{DEPT,MGR}, rather than store it in one relation on {EMP,DEPT,MGR}. The decisions on the organi-
zation of the data are taken during the database design process. We concentrate here on one aspect of
that process, which is the design of the database schema. The database schema specifies a list of relation
schemes and a set of relations that are meaningful for each relation scheme. The latter is specified by -
means of dependencies. Formally, a rclatia-rn schema is a pair (R,X) where R is a relation scheme, i-E., a

| set of attributes, and T is a set of id’s over R. (Note that we distinguish between a relation schijeme,

which is just an attribute set, and a relation schema, which consists also of a set of fd’s.) A dataLbase
: k §

schema is a collection D=((R,Z,), . . . ,(R,,Z;)) of relation schemas, where | JR,=U. A database B
i=1- |
over D is an assignment of a relation to each relation schema in D, that is, each relation schema (Rl,E )

in D is assigned a relation on R, that satisfies 2

Example 5.10 A database schema for the database of Example 5.1 is

({EMP ,DEPT ,MGR},{EMP~DEPT ,DEPT~-MGR})).

A database schema for the database of Example 5.2 is

(({EMP ,DEPT} {EMP-DEPTY}),

({DEPT ,MGR},{DEPT-MGR})).

The probléms described in §3.1 follow from the fact that an fd is more than just a semantic }con-
- straint; it is also a description of a basic piece of data. The fd DEPT-MGR says that every dcpartment
has a unique manager, and it also intuitively says that the rclationship between departments and
managers is an independent semantic relationship. Without this functional dependency, the relat;oqshlp
between department and managers would hévg been merely a projection of the relatienship bettiveen
employees, departments, and managers, and there would be no anomalies. Thus, the source of the djrob-
lem is the embedding of an independent semantic relationship in a bigger context. Note, however,% that

the mere presence of an fd does not nécessarily cause a problem.

Example 5.11 Consider the database schema (({EMP,DEPT ,SAL},{EMP-DEPT ,EMP-SAL}])), wiﬂi the

database
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EMP DEPT . SAIL ‘
Hilbert Math $20000
Pythagoras Math $25000
Turing Computer Science | $40000

For this database there is no problem of redundancy and possible inconsistency, even though the re,la!iion-
ship between, say, employees and their departments is embedded in a bigger coﬁtext, thaf of
{EMP,DEPT,SAL}. The differcnce between this example and the problematic one is that here the biigger
relationship, that of {EMP,DEPT,SAL}, is not independent from the smaller one, that of {EMP,DEIj’T},
since EMP functionally determines both DEPT and SAL. m |

The above observations on the problem led Codd to the definition of the several normal forms
[Co72a,Co74]. We jump immediately to the strongest of them, the so-called Boyce-Codd Normal Form
(BCNF). We first need a few definitions. Let D=((R,Z)). . . . ,(R,,Z,)) be a database schema, and let

k |

Z=|JZ;. We say that an attribute set X is a determinant of R, if XCR, and there is an atiribute A €R X
such that 2=X-A. X is a superkey of R, if XCR, and S X-R,. We say that D is in BCNF if whenever X
is a determinant of R, then X is a superkey of R,. The intuition behind this definition is that if X iis a

determinant of R, but not a superkey of R,, then we have a semantic relationship embedded within a

bigger independent context.

Ekample 5.12 The database schema

(({EMP ,DEPT ,MGR}{EMP ~DEPT ,DEPT~MGR}))

is not in BCNF, since DEPT is a determinant but not a superkey. The database schema

({EMP ,DEPT},{EMP-DEPT)}),
({DEPT ,MGR} {DEPT-MGR}))

is in BCNF. m !

S |
5.4.2 Normalization through Decomposition ' : : :

The solution suggested in §3.1 to the problem of anomalies was to change the database schema from
-(({EMP sDEPT ,MGR HWEMP-DEPT DEPT-MGR]))

to
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({EMP ,DEPT} {EMP-DEPT)),
({DEPT,MGR} {DEPT-MGRY})),

and at the same time replace the relation on {EMP,DEPT,MGR} by its projections on {EMP, DEPT} and
{DEPT MGR}.

We noted before, however, that a decomposition of a relation into its projection can be lossy. For-

tunately, the presence of £d's can guarantee the losslessness of the decomposition.

_ Theorem 5.8 [He71] Let 1 be a relation on R, and let X, ¥, and Z be attribute sets such that XYZ=R. If

I satisfies XY, then the decomposition of I into w (I} and w,,(7) is lossless.

Proof Let J=m,(I)*m,,(I). We know that ICJ, so we have to show that JCI. Let ué€J. Then
u[XY)€my,(I) and u[XZ]€w,,(I). Thus, there are tuples v,wé€l such that u[XY]=v[XY] jand
u[XZ]=w[XZ].  Consequently, v[X]=w[X], and since I satisfies X-¥, it follows that
w[XY]=v[X¥]=u[xY]. Thus w[XYZ]=u[XYZ], so w=u, since XYZ=R. ® |
This suggests the process of normalization through decomposition. We need first some notaiiiion.'
Let X be a set of fd’s, and let X be an attribute set. Then wy(2)={8~T : §~-T€Z and STCX}. iLt:t
D=((R,Z,), . ..,(R,,Z;)) be database schema that is not in BCNF. Thcn there is a relation schema
(R',E) and an attribute set X such that X is a determinant of R, but is not a superkey of R,. ThaJt is,

there is an attribute A€R,—X such that ZFX-A, where 2=|_JZ,. We then replace (R,Z) by two i&ela-

i=1 "
tion schemas (R;.%;) and (&;,=;), whero R, =XA, K, =R,—~{4}, and Zj=7 (3.
H

Corresponding to the decomposition of the relation schema (R ,2;) there is the decomposition of the

. . . 1 2 s ras L evee
relation on R, into relations on R; and R;. This decomposition is justified becanse.of Theorem 5.8.

: i
Since the process of normalization through decomposition produces smaller and smaller relation

schemes it is clear that it must terminate producing & database schema in BCNF.

Example 5.13 [UlI82} Let U=CTHRSG, where ¢ stands for “Course,” T stands for *“Teacher,” H sténds ’
for “Hour,” R stands for “Room,” § stands for “Student »” and G stands for “Grade.” X cons1sts of thc

following fd’s:
- C-T each course has only one teacher,

HR-C only one course can meet in a room at one time,
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-HT-R a teacher can be only in one room at one time,
CS-G each student has only one grade in each course, and
HS-R a student can be in only one room at one time.

We start with the database schema (U,2). This schema is not in BCNF, since CS is not a superkey df U,
but CS~G is in £. Thus, we decompose U into CSG and CTHRS. The resulting database schema is
((CSG,Z,),(CTHRS ,%,)), where 3 = (£)={CS-G}, and T, = o7y ps(S) ={C~T ,HR-C ,HT-R HS-R}.

This schema is still not in BCNF, since C is not a superkey of CTHRS, but C-T is in z,. So we
decompose CTHRS into CT and CHRS. The resulting database schema = is
((CSG 2 1),(CT,Z,),(CHRS 2 ), where 2 =7 (£,)={C~T}, and X,= 7 4o (Z,)={HR-C ,HS-R}. |

This schema is still not in BCNF, since HR is not a superkey of CHRS, but HR~C is in 3 e So we
decompose CHRS into HRC and HRS. The resulting database schema is ' |

((CsG,{cs-G),
(cr.{Cc-TD,
(HRC {HR~C})
(HRS {H5-R}))

The four relation schemas of this database schcfna tabulate respectively:
e grades for students in courses,

] the teacher of each course,

L the hours and rocoms where each course meet, and

N the rooms in which students can be found at given hours.

This design is not a very good one. Rather than kcelﬁ information about the rooms in which %stu-
dents can be found at given hours, it would make more sense to keep the information about the couijrses
that students take at given hours. If we added to X the fd CH-R (which is redundant, since it fqllbws
from the other fd’s), then we could have decomposed CHRS into HRC and HSC, yielding a more iﬁtui-

tive database schema. m

5.4.3 Problems with BCNF
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In order to do normalization through decompositions we have to be able to check for violation of Bd:NF.

Unfortunately, checking violations of BCNF is probably an intractable problem.

Theorem 5.9 [BB79] The following problem is NP-complete: determine for a given database schema D
whether D is not in BCNF.

Proof To prove that the problem is NP-complete we first have to show that it is in NP, and then we have

to show that it is NP -hard, i.c., we have to reduce a known NP- -complete problem to it.

We first show that the problem is in NP, i.e., can be solved in polynomial time using “guesses.”
k

Let D=((R,,Z), . ..,(R,,Z})), and let £=JS,. If D is not in BCNF, then there is some reldtion

i=1
scheme R;, an attnbute set XCR,, and an attribute A €R,—X such that ZFX-A but TX-R,. To check

that D is not in BCNF we guess R,, X, and A, and check that the above conditions are satisfied. Clearly,

this can be done in polynomial time.

To show that the problem is NP-hard we reduce to it the hitting set problem, which was shown tb be
NP-complete in [Ka72]. The hitting set problem is formulated as follows. Given a family B,...,B,
of subsets of a set T={A'1, ...,A '}, one has to decide if there exists a set WCT such that for each i,
1=i=m, W and B, have preciscly one clement in common. Such a W is called a hitting sez. We now
show a polynomial time algorithm that maps each instance the hitting set problem to a database sch¢ma,

such that there exists a hitting set if and only if the produced schema is not in BCNF.

We take the set U of attributes to be {A v ,ALB,, ,:C,D}. The database schema conslsts
of the following relation schemas. For each A, and B, such that A GB we have a relation schema
A B},{A ~B. }) We also have a relation schema (B, - - - B, C.,{B, - - - m—-C}). Finally, we also haye a

relation schema

(A1 -+ ACD ,'{C‘D--A1 S AH}U{AlAj-CD :i#j and there is some B, such that AEEBJ. and AjGBk})i.

Clearly, we can generate this schema in polynomial time. Let X consists of all the fd’s in the relajtion

schema.

Let WCT be a hitting set. Then for each B]. there is some A; such that AEWI"IB}.. Therefore,
EkW-B,. It follows that SFW-C. That is, W is a detcrminant of A, - -+ 4 CD. We claim that
cly(W)=WB, - - - B_C, so W is not a superkey of this relation schema. To prove this we have to show
that for every fd 7 in X either the left-hand side of 7 is not a subset of cl5(W) or the right-hand 51de of T

is a subset of cly(W). This can be shown by a case analysxs.

Ve,
[
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Conversely, suppose that D is not in BCNF. A case analysis shows that the violation can be on}ly in
the last relation scheme. Suppose that WCA, - - - A CD is a determinant but not a key. This can happen

only if W has precisely one element in common with each of the B,’s. So WNT is a hitting set. W

Theorem 5.9 indicates one prdblcm with normalization through decomposition. There is another
problem with normalization, which goes beyond the issue of computational tractability. The basic iidea
underlying normalization is that of replacing a problematic database schema with a nonproblematic one.
But this would clearly be meaningless unless the new schema in some sense represents the old one. This
issue, the relationship between database schemas, is a significant issue in database theory, and we shall
not go into it here ([BBG78] is a good introduction to that subject). Rather we consider here normailiza-
tion of database schemas of the form (U,Z) (i.e., with a single relation schema). Such schemas are

called universal schemas.

Let D=(U,2) be a universal schema, and let D'=((R,,Z)), . .. .(R,,Z,)) be a database schema.
We want to find conditions under which it makes sense to say that D’ represents D. We have alréady
implicitly referred to one condition: that there is no loss of information in storing the data as a database
over D' rather than a database over D. There is, however, another natural condition: that all the Zifs be
implied by = and that the Z’s together imply all the dependencies in . To see why this is necesgary,

consider the following example.

Example 5.14 Let U=CAZ, where C stands for *“City,”” A stands for “Address,” and Z stands for “Zip;

code.” Z consists of the following dependencies
CA-Z city and address together determine the zipcode, and
Z-C the zipcode determines the city.

Let D=(U,Z), and let D'=((2C {Z-C}),(ZA,2)}. Consider the following database B on D':

Z C

10017 New York
10018 New York

Z A

10017 33 1st Ave.
10018 33 1st Ave.

Does this database make sense? We claim it does not. Let us see why.
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Consider the tuples of the relation on ZA in B. This tuples represent data about addresses and tjheir
zipcodes. But thiﬁ data make sense only if with each pair (address, zipcoﬂe) we can associate a city. ‘ Let
¢, and c, be the associated cities. That is, with (10017, 33 1st Ave.) we associate the city ¢, and %vith
(10018, 33 1st Ave.) we associate the city ¢,. But we know that the zipcode determines the city, sﬁ ﬁom

: the data in the relation on ZC it follows that both ¢, and ¢, must be “New York.” But then we get|that

there are two zipcodes associated with the the same address in New York, which violates the fd CA 2.
The problem with D’ is that it represents the fd Z-C, but it does not represent the fd CA-Z. m

Thus, in order for a database schema D’ to represent a universal schema, the decomposition aséf.oci—
ated with D’ should be lossless, and D’ should preserve all dependencies in the universal schema. ?We
now formalize these¢ conditions. Let D=(U,Z) be a universal schema, and let
D'= ((R,Z), - . ..(R,,Z,)) be a database schema. We say that D' represents D if the following co?ndi-
tions hold:

(1) For evé.ry relation I on U that satisfies X, the decomposition of [ into -n-RI(I), “e ,ﬂR*(I) is ]jgoss-
Vlcss.
k
(2) ZFZ="and 2'FZ, where 2'= I,

Looking again at the decomposition process we sce that starting with a database schema D= (U ,ij) it
produces a database schema D’ such that condition (1) and haif of condition (2) above are satisfied iand

~ D' is m BCNF. What we would like is to strengthen that to get é database schema that represents D land

is in BCNF. Unfortunately, this is impossible.

Theorem 5.10 Let U=CAZ, and let E={CA-Z,Z-C}. There is no database schema in BCNF that
_ rcprcsents D= (U ).
Praof We have seen in Example 5.14 that the schema ((ZC,{Z-C}),(ZA,2)) does not represent D. \An

exhaustive analys1s shows that no database schema in BCNF rcprcsents D.m

Since ot every umversal databasec schema can be represented by a database schema in BCNF, this
_ raises a natural decision problem: given a universal database schema (U,X), decide if there exists a data-

base schema in BCNF that represents D. We call this the BCNF normaltzabthty problem.

Theorem 5.11 [BB79] The BCNF normalizability problem is NP-hard. m
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5.4.4 Third Normal Form and Normalization via Synthesis

We saw in the previous section that BCNF is too stringent. Given a database schema D= (U,X) it ié not
always possible to get a database schema in BCNF that represents DD, and even when it is possibl:E, it
might be computationally intractable. One solution to thc-problem is to consider a somewhat wehker
noﬁnal form that would be easier to use even though it may not solve all the anomalies. The Third Nor-

mal Form (3NF) is such a normal form [Co72a). (Historically; 3NF came before BCNFE.)
k

We need a few definitions. Let D=((R,,Z)), . - . ,(Rk,Ek))'be a database schema, and let Z= UE;-

i=1

We say that X is a key of R, if X is a superkey of R, and no proper subset of X is a superkey of R,.| An
attribute A €R,; is prime in R, if there is some key X of R, such that A€X. X is a sirong determinant ¢f R,
if XCR, and there is a nonprime attribute A €R ;— X such that TFX-A. We say that D is in 3NF if when-

ever X is a stropg determinant of R,, then X is a superkey of R;.

Example 5.15 Consider the vniversal schema (ABCD ,{AB-C}). ABCD is a superkey but is not a key.
ABD is a key. A, B, and D are prime attributes. AB is a strong determinant but is not a key, so} this
schema is not in 3NF. Consider now the schema ((ABC,{AB-~C}),(ABD ,@)). This schema is in 3NF and

it represents the previous schema. B

Example 5.16 Consider the unjversal schema (CAZ {CA~Z,Z-C]). CA is a key, so C is a prime attri-
bute. Z is a determinant, but it is not a strong determinant. This schema is in 3NF but is not in BCNF.

Consider the following database over this schema.

C A : A

New York 33 1st Ave. 10017
New York 34 1st Ave. 10017
New York 33 5th Ave. 10100

This database still sﬁffcrs from the anomalies described in §3.1. =

3NF is a relaxation of BCNF tﬁét is designed to make decomposition work. When we have a?n id
X-A in a relation scheme R, 'We-'wz_mt to decompose R, into XA and R,—A. If, however, A is prime, jthen
there some .key YCR, such that A€Y. When we dccomposé R; as suggested, the fd ¥Y-R, (since Y%is a
key) is lost, so the resulting schema does not represent the original one. If A is not prime, no such pjtob-
lem arises. Thus, 3NF does not solvé all the anomalies, but, as we shall soon see, it has the property
that every universal schema can be represented by a schema in 3NF. In fact, we even l]iave a polyno‘icnial'

time algorithm that produces such a schema. The algorithm, [Ber76], works by “‘synthesizing”' the
, - 1
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. . . . g !
relation schemas rather than refine the universal schema by successive decompositions. Thus, the

method is called normalization through synthesis.

Before describing the synthesis approach, we show that normalization through decomposxtxon 1s‘ not

a practical approach even when we try to achieve 3NF.

Theorem 5.12 [Bee85] The following problem is NP-hard: determine for a given database scheme D
whether D is not in 3NF. ' ‘

Proof To show that the problem is NP-hard we reduce to it the prime attribute problem, which was shbwn
to be NP-complete in [LO78]. The prime attribute problem is to determine for a universal schjéma
D=(U,Z) and an attribute A €/ whether A is prime in U. Let D=(U,E) be a universal schema, an(;i let
AEU. Let F be a new attribute. We define a universal schema D’=(U’,Z’'), where U’'=UF, %and
3'=3ZW{U-FIU{BF-U : B+ AJU{F-A}. We claim that A is prime in U if and only if D’ is in 3NF. |

The argument is as follows. Because of the fd U-F, every key of U is also a key of U’. In abdi-
tion, BF is a key of U’ for every B#A. Thus, A is prime in U’ if and only if it is prime in U. Furt]mr-’
more, all other attributes are prime in U’. Thus, F is a strong determinant of U’ if and only if A isgnot

prime in U. Since F is not a superkey of U/', D’ is in 3NF if and only if A is prime in /. ®
To describe the synthesis algorithm we need some technical machinery.
Lemma 5.5X-A, - - - A, FX-A, 1=<i=<k, and {X-A, : 1=<i<k}FX-A -+ A, . =

A a consequence of the above lemma, we can always convert our fd's to fd’s have a single attributé on
the right-hand side. Such fd’s are said to be in canonical form. For a set T of fd’s, let CANONICAL(Z)

a canonical cover of 2, i.e., a cover of ¥ where all fd’s are in canonical form.

Let  be a set of fd’s, and let X~ be an fd in S. We say that X~¥ is reduced in = if there is no
proper subset Z of X such that E|=Z Y. Clcarly, if X-¥ is not reduced, then we can replace it by ah id
with a smaller left-hand side. X is reduced if all fd’s in ¥ are reduced. The following a.lgonthm uses\our

efficient test for implication of fd’s to constt_uct a reduced cover of Z.

Algorithm 5.3 : o
Input: A set = of fd’s. o S ' ‘
Qutput: A reduced cover of Z. | - ;
REDUCE(X)
begin
A =2;
for each fd X-Y in A dﬁ
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for each atiribute A in X do
if AFX—A-Y then
remove A from X in X-¥ in A
end for
end for
retu\rn(A)

end.

Lemma 5.6 Let £ be a nonredundant set of fd’s in canonical form. Then REDUCED(Y) is a redl.jiced

nonredundant canonical cover of X.

Proof Clearly all fd’s stay in canonical form, and it is easy to see that the algorithm does not inu'oduce

any redundancy. ®

Let 3 be a set of fd’s, and let R be a relation scheme. A key of R with respect to X is an attribute
set X such that Z}X-R and for no proper subset ¥ of X we have that S|¥-R. The following algorithm

construct keys.

|
Algorithm 5.4 i
Input: A set X of fd’s and a relation scheme R. ' |
Output: A key of R with respect to 3. ‘ . 1
KEY(R,3) R
hegin - _ |
X:=R; - '
for cach attribute A in R do ;
ifZFX—-A-R then X:=X—A . 1
“end for 7 - | ‘
retorn(X)

end.
We can now describe the synthesis algorithm.

Algorithm 5.5
Input: A universal schema (U,X). . - _ |
Output: A database scheme D in 3NF that represents (U,X). . - |
3INF(U,Z)
begin . ;
A:= REDUCED(NONREDUN(CANONICAL(Z))) - 1
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X:=KEY(U,A)
D=
for each fd ¥Y~A in A do
D:=DU(YA,m,(A))
end for
D:=DU(X,D)
return(D)

end.

Informally, the algorithm starts by finding a reduced nonredundant canonical cover of . Then for e\jrery
fd in that cover a relation schema is created. Finally, a key for U is added as another relation schctmc

It is clear that the algorithm terminates in polynomial time. We DOW prove 1ts correctness.

Theorem 5.13 [U182] Let (U, E) be a universal schema. Then 3NF(U/,X) is in 3NF and it reprcsjcnts
(U.2). ;

Proof Let 3NF(U,3)=((R,,Z,), . . . ,(R,,%,)), where (R,Z,) is the last relation schema to be added, i.e.,
R, is a key of U with respect to Z and £,=(. We first show that 3NF(U,E) is a database schema, i.e.,

£
UR,=U. We know that AER,-U, so ¢l,(R,)=U. Therefore, for every attribute A €U—R,, there ﬂ1ust
i=1 ' - ‘

be some fd ¥~A in A, so A€R, for some i, 1=i<k—1. Let A be a reduced nonredundant canonical cover

of X. Let (R;,Z,) be a relation schema of 3NF(U,Z).

We now show that 3NF(U,X) is in 3NF. There are two cases: ei1.:he.r l=i=<k—1 and R; came ffom
an fd Y+A in A, or i=k and R, is a key of U with respect to 2. Consider the first case, where Rl.=:&'A.
We claim that ¥ is a key of R,. Suppose it is not. Then there is a proper subset Z. of ¥ such jl.hat
ZFZ-YA. But that means that ¥-A is not reduced in A - contradiction. Thus, the only attribute dl R,
that is possibly not prime is A. If there is a violation of 3NF in YA, thén that means that there jis a
proper subset Z of ¥ such that 3SEFZ-+A. But that means that Y-Al is not reduced in A - ob'ntradiction.
Consider now the second case. If there is a violation of 3NF in R, then that means that. there is a pr&per
subset Z of R, and an attribute B €R,— Z such that Z=Z-+A. But then ZFR,~A-U,soR; isnota key of
II with respect to X - contradiction. ' ) '

We now show that 3NF(U,Z) represents (U,Z). We first have to show that the decomposmon a;m- '
ciated with this schema is lossless, that is, for every relation I on U that satisfies =, the decomposmon of

I into 7, w,... »Tp (I) is lossless. The proof of this claim is out of the scope of this article. Thc
1 k ' .

reader is referred to [BDB79,Va84b]. It remains to show that SNF(U,Z) preserves the dependencieib. in

i
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The synthesis algorithm presented above is actnally a simplified version of the 'algorithﬁ;tt in
[BDB79] (which is an improvement of the algorithm in [Ber76]). The algorithm there has the brodcrty'

that it synthesize a database schema with a minimal number of relation schema, namely, given a univer-

‘'sal schema (U,X), the algorithm synthesizes a database schema D that is in 3NF and represents (U,X),

such that no database schema D’ that is in 3NF and represents (U,Z) has fewer relation schemas than D.

5.5 Multivalued Dependencies

5.5.1 Motivation

We have seen in the previous sections that the presence of certain functional dependencies in a database

schema can cause certain problems, called anomalies.

absence of fd’s.

Example 5.17 Consider the following relation:

|
We show now that anomalies can also occur in the

EMP CHILD SKILL

Hilbert _ Hilda Math

Hilbert Hilda Physics

Pythagoras Peter Math

Pythagoras Paul Math

Pythagoras Peter Philosophy
Pythagoras Paul Philosophy

Turing Peter Computer Science

This relation does not obey any fd besides trivial ones such as EMP-EMP.

from the anomalies:

(1) Redundancy. Several pieces of information, e.g.,

Mathematics, is repeated more than once.

Nevertheless, it still suﬁ:rs

the information that Pythégoras is skil]fujl in

{2)  Possible inconsistency. Suppose now that we are asked to delete the tuple <_Pythagoras, Pdtcf, '

Math>. Since there seems to be no connection between employees’ childrea and employbes’

skills, it is not clear whether the absence of this tuple is consistent with the rest of the tuples as -

Pythagoras is still skillful in Mathematlcs and Peter is still his son. =

~ A close look in the above example suggest that even though we have no fd’s here, there is

nevertheless some dependency among the data, since every employee determines a set of children'aﬁd a
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set of skills. Such dependency is called a multivalued dependency.

5.5.2 Multivalued Dependencies !

A multivalued dependency (ébbr. mvd) is a statement that describes a semantic constraints on ?data
[Fa77a,Za76]. Formally, an mvd is an expression of the form X-—Y, read X multi-determines ¥, whdrc X
and Y are aftribute sets. XY is over an attribute set R if XY(:R. XY is satisfied by a relation 7 611 R
if XY is over R and for all tuples u,v€I, if #[X]=v[X], then there exists a tuple we€/ such%that
wlX]=u[X]=v[X], w[¥]=x[¥], and w[R—X¥]=v[R—-XY]. (Of course, if ! satisfies X--¥, then l%here
must also exists a tuple w’'€l such that w'[X]=u[X]=v[X], w'[Y]=v[Y], and w'[R—XY]=u[R— XY])
Intuitively, the mvd X—¥ says that every “X-value” determines a set of “Y—values,” mdependently of
the entries in the attributes of R—XY. For most of this section, we deal only with relations on U, so the

term “R—XY" in the above definition can be replaced by “XY.”

Example 5.18 The relation in Example 5.17 satisfies the mvd’s EMP-~CHILD and EMP--SKILL,. It
does not satisfy the mvd CHILD-—EMP. Inptuitively, every employee has a set of children and a sét of

skills, and these two sets are independent of each other. ®

Several notions that have been defined for fd’s can be analogously defined for mvd’s. The readbr is
asked to go through the definitions of §3.2, §3.3, and §3.4, substituting “mvd’’ for “fd” in the d_eéfini‘-ﬁ

tions.

Mvd’s, like fd’s, can be expressed in first-order logic. For example, suppose that U =ABCD and
that the attributes A, B, C, and D label the first, second, third, and fourth columns, corrcspondmgly

Then the mvd AB-—C can be expressed by the first-order sentence

(¥ abc c,d d,){((Rabc,d, ARabe,d,) D Rabcldz)). j
This makes the discussion of §3.3 rclevant to mvd’s. In particular, (finite) implication of mvd’s is rcf:du-
cible to (finite) unsatisfiability of the BS class. Thus, we get:

Theorem 5.14 For mvd’s, implication and finite implication coincide, and the corresponding decxslonr

. problems (which also coincide) are decidable. m

As with id’s, this does not give us a practical algorithm for testing implication. In the next secﬂjion,

we study formal systems for mvd’s in order to get such an algorithm.

5.5.3 Formal System for Multivalued Dependencies
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A formal system for mvd’'s was studied in [BFHTI] and proven to-be sound and complete. Several 8ys-
tems have been 1nvest1gated in [Bis78, Bis80, Fa76, Men79]. The system MVD that we present hctc is
somewhat different from the systems studied in those articles. MVD cons1sts of one axiom scheme and

two inference rules:

MVDO0 (complementation axiom): FX--X.

MVD1 (augmentation): X —¥+XZYZ.

MVD2 (difference): XY ,S-—THX-Y—T, if SNY=0.

'Example 5.19 Let U=ABCD, and let T consists of the mvd’s A-—BC and D-»—-B; and let T be AB-~BD.
We show that Skr. By MVD2, we have A—BC,D-BFA-C. By MVDO, we have FA-—BCD. By
MVD2, we have A-+BCD ,A~~CiA—BD. By MVD1, we have A-~BDI-AB-—BD. R '

Before proving soundness and completeness we need two lemmas.

Lemma 5.7
(1) FX--U.
(2) FX—X.

(3) X-—YFX-Y,
(4) XY, 5THX-YNT,if YNS=0.
(5) XY X-—-ZFX-—YNZ.
(6) FX—A,if A€X,
Proof
(1) By MVDO, we have -@-—U. By MVD1, we have J—-UFX-U.

(2) By MVDO, we have H@—U. By MVD2, we have &-—U J-UrHJ-—&. By MVDI1, we have
BB —X. |

(3) By MVDO, FX—X. By MVD2, X—X X—Y-X-—X~Y. By MVD1, X—X-Y+X~Y.
(4) By (3), S~—TrS~—T. By MVD2, XY ,S-»THX~—¥—T. ButY-T=¥YNT.

(5) By MVDO, FX—X. By (4), XX X—YFX--XNY. By {4), X--'XﬂY,X--Z}—X—--XﬂYnZ By
MVD1, X-—XNYNZFX—YNZ.

(6) By MVDO, FX-X. By MVD1, X—-Xr-X~XA. By (2), FX~X. By (5), XX X—XAFX~—A. B

Lemma 5.8 Let W be an attribute set, and let I be a two tuple relation {u,v} such that x and v agree}pre-‘
cisely on W, i.¢, u[W]=v[W] and u[A]#v[A] for all A€W. Then I satisfies the mvd S-—T if and only if
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eltheranaﬁE WCT,or WNT=J.

Proof Suppose first that SNW#@. Then u[S]#v[$], and 7 satisfies §-~T vacuously. Suppose now! that
SNW=0. Then u[S]=v[§], so there should be a tuple w €I such that w[S]= u[S]—v[S]-,_w[T]—u[T],; and
w[ﬁ]=v[§]. If WCT, then take w to be u, and if WNT={Z, then take w to be v. Conversely, suppose
* that I satisfies S—T. Then, either u[$]#v[S], in which case SNW #J, or there is a tuple wél such;that
w[S]=u[S]=v[S], w[T]=u[T], and w[ﬁ]= V[E]'. But w must be either u, in which case WCT, or it 1:nust
be v, in which case WNT=. = |

We can now prove soundness and completeness.
Theorem 5.15 The system MVD is sound and complete.

Proof Soundness: We show that the axiom and the inference rules are sound. Let I be a relation on U,

and let #,v€I. Suppose that #[X]=v[X]. To show that MVDO is sound, we need a tuple w&l such that
wlX]=u[X]=v[X], w[X] u[X], and w[@]=v[&] (since XX @). Clearly, u is the desired tuple.

Suppose now that I satisfies XY and that u[XZ]=v[XZ]. Then u[X]=v[X], so there is a tuple%w €l
such that w[X]=u[X]=v[X], w[f]=u[¥], and w[XY]=v[XY]. Since w[XZ]=v[XZ], it follows that
w[XZ]=u[XZ]=v[XZ] and w[¥Z]=u[YZ]. Now X¥YZCXY, so w[X¥Z]=v[XYZ]. Thus, MVD1 is sound.

Finally, suppose that I satisfies X-¥ and §~-T, and that 2[X]=v[X]. Then there is a tuple w isuch
that w[X]=u[X]=vIX], w[¥]=2[¥], and w[Z]=v[Z], where Z=XY. Thus, w[XZ]=v[XZ]. Since
YNS=@, we have that SCXZ, so w[S]=v[S]. Therefore, there is a fuple p €I such %that

" pls1=v[S]l=w[S], pIT)=v[T], and p[§]=w[§]. Since u[x]=v[X]=w[X], clearly p[X]=v[x]=w[X].
_Since SNY=@, we have that ¥~TCST, so p[¥—Tl=w[f—T]=«[¥—T]. Finally, X(¥T—T)=ZU(T+X),
so p[X(¥—T)]=v[X (Y —T)], since p[T]=v[T] and p[Z]=v[Z]. Thus, MVD2 is sound. |

" Completeness: We have to show that if Zf o, then Z-o. We prove the contrapositive: if I, ?then
3. | ‘

Let & be X--Y. Suppose that ZFX--¥Y—X. Then, by MVD2, ZtX-Y. Thus, we can as#umc

without loss of generality that X and Y are disjoint. Consider the collection of sets that are pro#ably

multidetermined by X:
rhsy(X)={Z : Z-X--Z}.
By Lemma 5.7, rhs5(X) is a Boolean algebra, since it contains a maximal element and is closed under

complement and intersection. An atom in a Boolean algebra is a minimal nonzero clement. Since

' rhsE(X). is a field of finite sets, it is clear that every nonempty sct in rhsy(X) includes an atom. That is,
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rhsy(X) is an atomic Boolean algebra. In an atomic Boolean algebra cvery clement is the union of the
atoms that it contains. The collection of these atoms is called the dependency basis of X with respect to
X, denoted depy(X). Thus, |

dep (X)={Z : Z#@ Z+-X~Z, and if S-X-—R,RCZ, and R+J, then R=2Z}.

Note that the sets in dep 5(X) form a partition of U/, by Lemma 5.7.

Since Z¥X--Y, it follows that ¥ is not in rhsy(X). Thus, ¥ is not a union of sets in depy(X). Con-
sequently, there is a set W in dep (X), such that W intersects Y nontrivially, i.e., WZY and WnY%Q.
Since W €rhsy(X), we have ZHX-+W. We claim that WNX=. Suppose not, and let A€WNX. By
Lemma 5.7, A €dep (X}, so we must have that W=A. But then W cannot intersect ¥ nontrivially. |

We construct a relation I as follows. I consists of two tuples » and v, such that » and v agree pre-
cisely on W. For example, u[A]=0 for each attribute A, v[A]=0 for each attribute A €W, and v[A]=1 for
cach attribute AEW. |

By Lemma 5.8, I satisfies an mvd S-—7 if and only if either SNW+&, or WCT, or WnT%G.
Since X is disjoint from W and W intersects ¥ nontrivially, it follows that I does not satisfy X-+-Y. ‘

We now claim that 7 satisfies 3. Let §—T be an mvd in 2. If [ does not satisfy §—T, then
SﬂW B, WET, and WNT+J, by Lemma 5.8. But then, by MVD2, X W ,§—T-HX-—WNT, so WNT
should be in dep (X). But WNTCW, so we cannot have both W and WNT in dep3(X). It follows that I
satisfies §—T.

Thus, I satisfies = and it does not satisfy ¢, so Zj4r. B

As with id’s, the completeness proof is also a direct proof that for mvd’s implication and finite impiica-

tion coincide, since the counterexample relation that we have constructed is finite.

5.5.4 Testing Implication of Multivalued Dependencies

As with fd’s, the most important fact about implication of mvd’s is buried in the proof of the compﬂete-
ness of the system MVD. We recall the definition of the dependency basis, where now, by the comp]lete-

" ness of MVD we can replace F by E:

dep5(X)={Z :Z%Z,EFX-—-Z, and if 2 X-R,RCZ, and R+, then R=Z}.

The following properties of the dependency basis follow from the proof of Theorem 5.15.

.Lemma 5.9 [BFH77] .
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ep (X ) 1s a partition of U,

1)  depg(X)i ition of

(2) for each A¢X, we have A€dep(X), and

(3) ZEX-~Yifandonlyif¥isa union of sets in deps(X). m

It follows from Lemma 5.9 that if we can efficiently construct dependency bases, then we can jhffi-
ciently test implication of mvd’s. Beeri [Bee80] was the first to describe a polynor:_nial time algorithmi for
the construction of the dependency basis. We describe here a better algorithm, Hagihara et al.
[HITK79]. |

Algorithm 5.6
Input: The set U of all attribute, an aﬁribute set X, and a set = of mvd’s.
t)utput: The dependency basis of X with respeet to X.
DEP(U,X,Z)
begin _
DEP={X}
for each atfribute_A in X do DEP:=DEPU{A}
end for
while there is some W in DEP and some S—~T in X such that
SNW=12 and TNW+#J andWZT do
DEP:=DEPU{WNT ,W—-T}—{W}
end while
return(DEP)

end.

We have to show that DEP(U/,X,Z) terminates and indeed returns the dependency basis of X *vith

respect to . . ‘ -
Lemma 5.10 DEP(U X, E) terminates and returns dep 5 (X).

Proof The algorithm starts by constructmg a partltlon of U/ and then goes on to refine that pamﬂwn

Thus, it must termmate We now show that the algonthm returns the dependency basis of X.

We first show that if at any stage of the algonthm W is a set in DEP, then ZEX—W. Beforé the
main loop of the algorithm, DEP gets the value {A:A exIU{x}. By Lemma 5.7, for cach W in this par-
tition we have TFX--W. In the main loop of the algorithm we replace a set W in DEP by WNT and
w- T, provided there is an mvd S—T in = such that § is disjoint from W and W intersects T nontnwally
But in that case, by MVD2 and Lemma 5. 7, SEX—W-T and ZEX—WNT. : !
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Suppose now that DEP(U,X,X) is not the dependency basis of X. Then there is a set Y in
DEP(U,X,=) and a set W in dep(X) such that W is a proper subset of Y. We claim that YNX=¢J. Sup-
pose not, and assume A€¥NX. But since A is in DEP(U,X,X), it must be the case that ¥=A. But 1j:hen

W cannot be a proper subset of Y.

We construct a relation [ as follows. I consists of two tuples u and v, such that # and v agrec bre-
cisely on Y. By Lemma 5.8, I satisfies an mvad §-—T if and only if either SNY# @, or YCT, or YNT=.

Since X is disjoint from ¥ and W intersects ¥ nonfrivially, it follows that I does not satisfy X-—W. |

" We now claim that I satisfies £. Let §-+T be an mvd in Z. . If I does not satisiy ST, 1iihen
SNY=@, YZT, and YNT#&, by Lemma 5.8. But then ¥ should be replaced in DEP by ¥NT and-Yﬂ?—T
It follows that 7 satisfies S—7. Thus, I satisfies = and it does not satisfy X—W. But we have shewn
that | X-W - a contradiction. It follows that DEP(U,X,X) must be dep ;(X). ® i

The alert reader may have noticed the similarity in the proofs of Theorem 5.15 and Lemma 5.10.
Indeed, one can view an execution of the algorithm as an organized derivation in the formal sysftem

MVD.

Example 5.20 Let U=ABCD, and let Z consists of the mvd's A-—BC and D-—~B. Let us calclﬂate
dep<(AB). Initially DEP is assigned the partition {A,B,CD}. We then apply the mvd A—BC and replace
CD by C and D. So dep(AB)={A,B.C D} ]

It is not hard to implement DEP to run in polynomial time. Galil [Ga82] has shown how to imple-

ment it to run in almost linear time.

Theorem 5.16 [Ga82] The implication problem for mvd’s can be solved in time O(nlogn), where n 1s the
length of the input. m 1

5.5.5 Multivalued Dependencies and Propositional Logic :

Looking agaiﬁ in the proofs of Theorem 5.15 and Lemma 5.10, we see that the counterexample relaﬁen

constructed there is a two-tuple relation.

Theorem 5.17 Let = be a set of mvd's, and o be an mvd. Then E|=cr if and only if 2 o if and only if
ZfF,o.m '

As in §3.5, this suggests a correspondence between mvd’s and propositional logic. With fd’sithe
eorresponrlence shed some light on fd’s. Here, surprisingly, the correspondenee sheds some light on li:uro- ‘
positional logic. In order to define propositional implication for mvd’s, we have to extend relaﬁd)nal
truth assignments to assign truth values to mvd’s: ass1gns the value 1 to XY if and only if whenever

Y(X)=1, then $(¥)=1 or $(X¥)=1. _ |
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Theorem 5.18 [SDPF81] Let £ be a set of mvd's, and o be an mvd. Thcﬁ 2} o if and only if EI=P ur.f

Proof By Theorem 5.17, it suffices to show that 2|, o iff 2} o. The basis for this equivalence is a
simple correspondence between relational truth assignments and two-tuple relations. j

Let ¢ be a relational truth assignment. Then I, ={u, v} is a two-tuple relatlon such that u[A] v[A]
iff W(A)=1. Let I={,v] be a two-tuple relation. Thcn ¥, is a telational truth assignment such \that
w(A)=1iff x[A]=v[A]. Let be an mvd X-Y. We claim that ¥(7)=1iff I, satisfies T7,and I satlsfies T
iff ¥ (v)=1. ‘

Suppose first that y(r)=1. Let R={4 :y(4)=1}. If ¢-(X) 0, then XZR, so u[X]+#v[X] anp I
satisfies 7. Suppose now that y(X)=1. Then XCR, so u[X]=v[X]. For I to satisfy 7 there should be a
tuple w €/, such that w[X]=u[X]=v[X], w[¥]=u[¥], and w[XY] v[XY] If $(¥)=1, then YCR, S0 we
can take w to be v, If tl:(XY) 1, then XYCR, so we can take w to be x. So I, satisfies 7.

Suppose now that / satisfies r. Let R={A : u[A] viAl}. I u[X]#v[X], then XZR, so ll!I(X)i 0,
and ¥ (X-—¥)=1. If u[X]=v[X], then there should be a tuple w€&fl such that w[X]=u[X]—1{[X],
w[¥]=u[¥], and w[ﬁ]=v[ﬁ]. If wis u, then u[X?];=v[X_Y_], so XYCR and tl:,(fY—)=1. Ifwisv, then
u[¥]=v[Y], so YCR and ¥, (R)=1. At any case ¢,(X~—¥)=1.

A similar corrcspondence between Y and I, and between 7 and ¥, holds for sets of fd’s. Supbosc

now that 2, . We want to show that 2, ¢. Let ¢ be 2 relational truth assignment such that
“W(=)=1. Then I, satisfies =, and since 2|5, o, it must be the case that I, satisfies o But then ¢(c)— 1.
We have shown that Y(2)=1 entails &({c)=1 for any relational truth assignment o, so =k , O An a::}ialo-

gous argument shows that if 2k, o, then also Zf,oc.m

A,

Theorem 5.18 enables us to view mvd’s as formulas in propositional logic. Let X=A, - -:
|

Y=B,- - B, and XY=C1....Cm. Then the mvd XY can be viewed. as the formula
A AMOD(BA - - ABIV(CA - - - ACY).

For example, if U=ABC, then the mvd A—B can be viewed as the fo’rmulaA:)B'\'/C' This formula i&, not
equivalent to a set of Horn formulas. Thus, the results of §5.4 together with the correspondencc
between mvd’s and propositional logic yield a polynomlal time algorithm for a subclass of propoautqonal

logic. _ - i

5.5.6 Functional and Multivaloed Dependencles

So far we have considered functlonal and multivalued depcndencles separately Since both types of
dependencics cxpress natural semantic constraints, their 1nteract10n is also of importance. As for\ fd’s
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alone and mvd’s alone, the (finite) implication problem for fd’s and mvd’s is reducible to the (finite)
unsatisfiability problem for the BS class. Thus, the problems coincide and they are dccidable.§ As

before, we resort to forma] systems in order to gain a better understandmg

The interaction of fd’s and mvd’s was first studied in [BFH77]. We present here a formal sy$tem
FD—MVD that is somewhat different from the system in [BFH77]. The system consists of the system
" MVD, an axiom and an inference rules for fd’s, and two rules that describe the interaction bctweenifd’s

and mvd’s.

FD3 (reflexivity): FX-A, if A€X..

FD4 (union): X-Y X-Z+FX-YZ.

FDS5 (decomposition): X-¥FX-A, if A€Y.

¥D—MVDO (translation): X-¥Y+X-7.

FD—MVDI1 (intersection): X ¥ ,S-THFX~-YNT, if SNY=(.
MYVYDO (complementetion axiom): X —X.

MYD1 (augmentation): X —Y+HXZ-—¥Z.

MVD2 (difference): X--Y S—»—»TI—X-—-Y T,if SNY=0.

Example 5.21 Let U=ABCD. We show that A~B,B-CFA~C. (This derivation is done by one step usmg
FD1 in the system FD, but this rule does not belong to the system FD—MVD.) By FD-— MVDO,
A~BrA-B. By Lemma 5.3, A—BlFA-——CD (since the system MVD is a subset of the 'sy§tem
FD—MVD). By FD—MVDI1, A—CD,B-CFA-C. B ‘ ' |

Theorem 5.19 The system FD—MVD is sound and complete.

Proof l ' o
. - |

Soundness: We leave it to the reader to prove that the rules FD3 and FD4 are sound. Consider the/rule
FD—MVDO. Let 7 be a relation that satisfies X~¥. Let u,v€I such that u[X]=v[X]. Then there s'.]jjould
be a tuple w €I such that w[X]=u[X]=v[X], w[¥]=v[Y], and w[ff]=v[1—(7]., But u[¥]=v[¥], since I sat'is-
fies X~Y, so take w to be v. Consider now the rule FD—MVD1. Let I be a relation that satisfies X-—rY
and $-T, where SNY=@. Let u,v€l such that #[X]=v[X]. There is a tuple wérs such | that
wlX]=u[X]=v[X], w¥]=v[¥], and w[X¥]=v[XY]. Since SNY=@, w[S]=v[S], so w[T}=v[T]. Since
l w[¥]=u[¥], we have that u[YNT]=»[¥NT], as desired. :
Completeness: Again we prove that if ZFo, then E|¢o- Consider first the case that o is an mvd X --Y

As in the proof of Theorem 5.15, we define the dependency basis of X with rcspcct to = (wlnchfnow



04/04/2011 14:40 IFAX canon730i@rice.edu » Arnetta Jones 1036/054

36

contains both fd’s and mvd’s).

dep ((X)={Z : Z#@,3-X~Z, and if Z-X~R,RCZ, and R#J, then R=Z}

As in the proof of Theorem 5.15, since T¥X Y, there is a set W in dep;(X), such that W intcr:r;,ects-
Y nontrivially, SFX~W, and WNX=. We construct a relation [ with two tuples u and v, such that =

and v agree precisely on W.

By Lemma 5.8, I satisfies an mvd S--T if and only if either SNW#J, WCT, ot WNT=0. C&nse-
quently I does pot satisfy X-~¥ and [ satisfies all mvd's.in in Z. It remain to show that I satisfies'a.lli fd’s
in 3. ‘ :

Let S-T be-an fd in =. If u[S]=v[S], then SNW=G. I TNW =, then u[T]=v[T], so assumei that
TNW+E. Let A€TNW. By FDS5, S-THS-A; by FD—MVD1, X#W,S»AI-X'»A;V and by FD—M‘}?’DO,
X-AFX-—A. Thus, A€depy(X). Butsince A€W, it follows that W=A, contradicting the fact that W Lmn-

trivially intersects ¥. Thus, 7 satisfies 2 and it does not satisfy o, so SHo.

We now consider the case that o is an fd X-¥. If Z¥X-Y, then there is some attribute B€Y such
that 2{fX-B (by FD4 and FD35). Again let X+={A :B+X-A}. Since ZW¥X-B, we have that B€X+.} Let
W be the set in depg(X) such that A €W (since, as we observed in the proof of Theorem 5.15, depz(j}() is

a partition of U/). As before, we construct a relation 7 with two tuples x and v that agree precisely onW.

We claim that XNW=(J. Supposc not, and let A¢XNW. By Lemma 5.7, A €dep(X), 50 we must
have W=A. But then A=B, and -X-B by FD3. It follows that u[X]=v[X] and u[B)#v[B],so does not
satisfy o.. It remain to show that I satisfy . This is done as in the case that o is an mvd. Thus, / satis-

fies £ and it does not satisfy ¢, so Zjo. B

As with fd’s alone and mvd’s alone, the ideas in the completeness proof can be used to deviéc an
efficient algorithm for testing implication of fd’s and mvd’s.
: -
Theorem 5.20 [Ga82] The implication problem for fd’s and mvd’s can be solved in time O(nlogn), where
n is the length of the input. m :

5.5.7 Database Schema Design and Embedded Mvd’s

In §5.1 we saw that multivaled dependencies cause certain anomalies. Again, decomposition scems to be

the solution.

Example 5.22 The solution to the problems describe in Example 5.17 is to decompose the relatiod into -

the following relations:

EMP CHILD
Hilbert Hilda
Pythagoras Peter
Pythagoras Paul
Turing Peter -
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EMP SKILL
Hiibert Math
Hilbert Physics

Pythagoras Math
Pythagoras Philosophy
Turing Computer Science

Intnitively, this-decomposition seems to be lossless. B

Our intuition in decomposing a relation that has multivalued dependencies is justified by the follow-

ing theorem.

Theorem 5.21 [Fa77] Let f be a relation on R, let XY be an mvd, and let Z=R—-XY. If I satigfies

XY, then the decomposition of I into 7, (I} and wy,(I) is lossless.

Proaf Let J=-rrn(l)*'rrxz(l). We know that ICJ, so we have to show that JCI. Let wéJ. 'ihen
w[XY]€myy(I) and w[XZ]€w,,(). Thus, there are tuples u,v€l such that w[XY]=u[XY] iand
w[XZ]=v[XZ]. In particular, u[X]=v[X]. But then there is a tuple w’¢[ such that w’[X]=u[X]=ﬁ[X], '
w'[Y]=u[¥], and w'[Z]=v[Z]. Consequently, w’/[XYZ]=w[XYZ], so w=w'. ® |

Based on the above ideas a schema design theory was developed for mvd’s (e.g., [De78, Fih'i”!,
Li81, ZM81]). This theory, however, suffers from a basic difficulty that did not arise with fd’s. TI‘his
difficulty stems from an essential difference between fd’s and mvd’s. An fd X-Y is ‘“context indejpen-
dent,” that is, its satisfaction in a relation depends only on the entries for the attributes in X¥. Morc}for—
mally: |
Theorem 5,22 Let I be a relation on R, and let X~Y be an fd such that XY¥CR. Then I satisfies X—-Y if
and only if wy,(7) satisfies X-Y. m o

Mvd’s, in contrast are “‘context dependent,” since satisfaction of an mvd X-—¥ in a relation on R dep%nds
also on the entries for the attributes in R—XY. (In fact the relation on XY always satisfies X+Y.) Tlhus,
while with fd’s we could mix together fd’s that come from different relation schcnias, we cannot do the
same with mvd’s, since these mvd’s may have different “contexts.’”” The solution to this difficulty is to
change the notation for mvd’s, so as to make them ‘‘context independent.” Such mvd’s are called emired—
ded mvd’s [Fa77], since their “context” can be properly embedded in the global “context” (we shalli see

_in a minute what these contexts are).

i

A embedded mvd (abbr. emvd) is an expression of the form . X--Y|Z, where X, ¥, and Z are ajttri-
bute sets. X—Y|Z is over an attribute set R if Xi’Z(_:R. X--Y|Z is satisfied by a relation I on R if X--aj»YlZ
is over R and for all tuples u,ve€l, if u[X]¥ v[X], then there exists a tuple wel such that
w[X]=2[X]=v[X], w[Y]=u[Y], and w[Z]=v[Z]. Intuitively, the mvd X~Y|Z says that every “X-valuc”
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determines a set of “Y-values” and a set of ““Z-values” and these two sets are independent of each other.
Here the “global context” is the relation scheme R, and the “context” of X+-+Y|Z is X¥Z. Since XYZ can

be a proper subset of R, X+—Y|Z is said to be embedded.

Example 5.23 Consider the following relation:

EMP CHILD -BIRTHDATE SKILL

Hilbert Hilda June 1, 1899 Math

Hilbert Hilda June 1, 1899 Physics
Pythagoras Peter July 4, 320BC Math

Pythagoras Paul July 4, 322BC Math

Pythagoras Peter July 4, 320BC Philosophy
Pythagoras Paul July 4, 322BC Philosophy
Turing Peter Feb 28, 1937 Computer Science

This relation does not satisfies the mvd EMP--CHILD. It does, bowever, satisfy the e&nvd
EMP-—CHILDISKILL. (It also satisfies the mvd EMP-—SKILL.) m :

The following theorem formalizes the ““context independence” of emvd’s.

Theorem 5.23 Let / be a relation on R, and let X—Y|Z be an emvd over R. Then 7 satisfies X-—Y|Z if

and only if w,,,(I) satisfies X-—Y|Z. m

At this point the reader probably expects us to present a sound and complete formal systenij for
emvd’s, to get an efficient algorithm for testing implication, and to develop schema design thdory.
Unfortunately,'none of this has been done. The (finite) implication prdblem for emvd’s has stayed open

since emvd’s were defined in 1977. This is one of the major open problems in dependency theory.-

To see why emvd’s differ from mvd’s in such a radical way, consider the way emvd’s are cxpre&sed
in first-order logic. For cxample, suppose that U=ABCD and that the attributes A, B, C, and D label the
first, second, third, and fourth columns, correspondingly. Then the mvd A-—B|C can be exprcsseﬂ by

the first-order sentence

(Y abe c,d d,)(Fe){(Rab c,d ARab,c,d,)DRab c,e ))

"The difference between this sentence and the sentences that express fd’s and mvd’s is that this sentence
has an existential quantificr that follows the universal quantifiers. This existential quantifier makes 2 big
difference. In particular, the sentence oA+ - Ao A-~c, where the o’s are emvd’s, is not in the BS class

any morc.

While several inference rules for emvd’s have been investigated (e.g;, [ITK83]), no complete %for-

mal system is known. The following theorem says that for emvd’s solving the implication problem fand
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_finding a complete formal system are equivalent.

Theorem 5.24 [BV84] The implication problem for emvd’s is solvable if and only if there is a sound and

- complete formal system for emvd’s.

.. Proof :
. |

Only if: Suppose that the implication problem for emvd’s is solvable, and consider the formal system

consisting of one inference rule:

g . ,o-}cl-o, if{o), ...,o}F0.

.-

Clearly, this formal system is sound and complete for emvd’s.

If:- Suppose that EMVD is a sound and complete formal system for emvd’s. Let = be a set of emvd’s,
and let o be an emvd. To decide whether ) o we list every possible sequence (without repetitionsj) of
emvd’s over the attributes that occur in X and o and check whether the sequence is a derivation of o
from £ by EMVD. Since there is a finite number of such sequences, this process must termil:ilate.

Hence, the implication probleni for emvd’s is solvable. m

In Theorem 5.24 we implicitly assume that a formal system has to be effective, that is, it calfl be

. effectively checked whether a given sequence of dependencies is a derivation in the system. The fm;‘mal
systems FD, MVD, and FD—MVD are, of course, effective. In [PP80,SW82) another way in whichgfor-
mal systems can be resiricted is considered. A formal system is said to be k-ary if all inference rules in

,o o, where n=k. For example, the formal systems FD, MVD,%and

the system are of the form o

MVD are all 2-ary.

r---

Theorem 5.25 [PP80,SW82] For all k>0, there is no sound and complete k-ary formal system (p0s51bly

noneffective) for implication and finite implication of emvd’s. m
5.6 More Data Dependencies

5.6.1 Motivation

So far we hﬁyc-intro_duced fd’s, mvd’s, and emvd’s. Do we need any more? Indeed we do, for several

reasons.

The first reason is that life is not simple. There are semantic constraints that cannot be dcscribcd

by any of the dependencies introduced so far. We mention two examples.

Example 5.24
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(1) Consider a database with two relations: the relation ES(Employee, Saiar,y) and the reldtion
DM (Department, Manager). ‘Each manager, however, is also an employee. So we would like to
express the constraint that every manager entry in the DM relation appears as an employee entry

in the ES relation. Such a constraint is called an inclusion dependency ([Fa81]), and is written

DM[M)CES[E].
m N
(2) LetI be a relation on X, and let X, --.,X, be attribute sets such that X=X ;- We have
=t |
observed in §2.2 that the decomposition of I to @, (I), ..., my (I) could be lossy. We'can
1 m

impose on I the constraint that the above decomposition be lossless. Such a constraint is called a

join dependency ([ABU79,Ri78]), and is written *X,...,X 1. m

Another reason to introduce more dependencies is in the hope of solving the (finite) implication
problem for cmvd’s. It is conceivable that for a larger class of dependencies a decision procedure wéuld
be apparent, while the specialization of the algorithm for emvd’s is too murky to be visible. Alsb, a
larger class of dependencies may have an elegant formal system that the narrower class of emvd’s lajk:ks.
Even if one only cares about fd’s, there is a technical reason to introduce more general dependenci:ies,
since fd’s do not have enough expressive power when dealing with projections of relations. We now

make the latter comment more precise.

We have mentioned that we view the language of dependencies as a semantic 'specificaijtion :
langvage. From this point of view, dependencies are means to specify classes of “‘semantically meaniing-
ful” relations. Given a sct Z of dependencies over an attribute set R ,.'lct SATo(Z) be the class of all ﬁela-
tions on R that satisfy £. Thus, SAT,(Z) is the class of all “‘semantically meaningful”’ relations on R W1th
respect to . A set ¥ of relations on R is an fd-class if there is a sct T of fd’s such that ?=SATRkE).

. 'The definition of an mvd-class is analogous. Given a set ¥ of relations on R, and an attribute set SCR,
let 7 ("¥) be the projection on § of the relations in ¥, i.c., Trs(‘lf)={1rs(l) :I€¥}. Such a class of njela-

tions is called a projective class.

Projective classes arise very naturally in the context of user views. Very often certain users areinot
allowed to see the whole database but only a portion of it, a por.tion that may be defined by projectiou.
For example, very often most users would not be allowed to see the salarj data in a personﬁ'el databjase.-
If the class of “meaningful” relations in the database is SAT(Z), the class of “meaﬁingfnl”.relationé§ for
these users might be w(SAT (Z)), for an appropriate attribute set S. One would like our specificajtion
language to be able to specify also projective classes, i.e., one would like the projection of an fd-claslfs to

be an fd-class and the projection of an mvd-class to be an mvd-class. Unfortunhtcly, this is not the case.
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Theorem 5.26 [Fa82,GZ82] There is a projection of an fd-class that is not an fd-class.

Proof Let X be a set of fd’s over R, let = ‘—{cr El= o}, let W=SAT,(Z), and let Q== (¥). We cia1m
that {2 is an fd-class if and only if Q=SAT(n (2 )) Clearly the latter is a sufficient condition, so we

prove that it is also necessary.

Suppose that 2=SAT (A) for some sct A of fd’s over §. Let/ be a relation on §. 1If I satisfies A,
then 7€}, so I=m () for some J€¥. But then J satisfies Z+, so I satisfies = S(E—+). Conscqucﬁtly,
A|=frrs(2+). Suppose that 11-5(2‘,+)|¢A. That is, there is an fd X-¥ in A such that ws(E+)|;ﬁX—»Yl If
ZEX-Y, then X—-Y€1r5(2+), since XYCS - a contradiction. Thus, Z|#A, which means that there is a rela-
tion 7 that satisfies = but not A. But then w (/)€Q and 7 () does not satisfy A - contradiction. There-

+ .
fore, 1=SAT(A)=SAT(n (T )).

Let R=ABCDE, let S=ABCD, and let = consists of the fd’s A-E, B—-E and CE-D. It can be veri-
fied that A=mw (2 ) {AC-D ,BC-D}. We claim that SAT(A)+ w (SATL(Z)).

Consider the relation ] on §:

®
=N =
oW
S\ oA |y

D
7
8
8

“Clearly, I satisfies A. Nevertheless, I is not in 7w (SAT,(%)). Suppose it is, that is I ¥wS(J), where J
satisfies =. Then there are tuples v,,v,,v,€J such that u [S]=v,[S], u,[S]=v,[S], and »,[S]=v,[5]. Since
J satisfies A~E, and v [A]=u [A]=u[A]=v,{A], we must have v,[E]=v,[E]. Similarly,-since J s,gti%fies
B-E, and v,[B]=u,[B}=u,[B]=v,[B], we must have v,[E]=v,[E]. Also v,[C]=u,[C]=u,[C]}=v,[C]. But
then v,[CE]=v,[CE], and, since J satisfies CE-D, we must have v [D]=v,[D]. But then "1[D] uz[D] -

which is not the case. B

In the next section, we define a class of dependencies that generalizes the classes that we have seen

so far.

5.6.2 Dependencies

Studying the dependencies that we have defined so far (fd’s, mvd’s, emvd’s, and, informally, incluéion '
dcpcndenmes) we sec that they all have a common structure: they say ““if you see a certain pattern of
tuples in the database, then you must also sece this.”” In the case of fd’s, “this’’ refers to the c-.:quaht]yr of
certain entries, while for the other dependencies, *‘this” is anothc: tuple that must also be .in th:ldiat.a-

base. For example, if U=ABC, then the fd A-B says that if you sec two tuples that agree on A, then
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they must zlso agree on B. The mvd A-—B says that if you see two tuples that agree on A, then there
should be a tuple that agree with these tuples on A, agree with the first tuple on B, and agree witﬂ the
second tuple on C. Thus, fd’s can be called equality-generating dependencies, while mvd’s can be called

tuple-generating dependencies.

We_now generalize these ideas and define a general class of semantic constraints, which we simply
call dependencies. We choose to describe dependencies as first-order sentences as in [BVBI;FaSZ], raj,ther, '
then use the equivalent formalisms of [BV84] and [YP82]. To use first-order logic, we assume thajt the
attribute are ordered, so we do not have to refer to them explicitly. We start by allowing databases jrwith
many relations. The atomic formulas arc those that are either of the form Px, - - - x, where P is the
name of a d-ary relation and the x;’s are individual variables, or of the form x=y, where x and y are
individual variables. Formulas of the former type are called relational formulas (because they say that a
certain tuple exists in the relation), and formulas of the latter type are called equalities. A dep enden}:y is

a first-order sentence
(Vy, - 3)@x, - x)AA--- A DBA---AB)

where the A’s and B;’s are atomic formulas. To capture our intuition about what this sentences sh?ould
say, we put more syntactic restrictions. First, we want the dependency to say ““if you see a certain %pay- .
tern of tuple then ... ,”” so we require all the As to be relational formulas in the variables y,, . . , yk,,
that all the yj’s occur in the A,’s, and that p=1 and k=1. We want the B/'s to talk about cxistendé of. .
tuples or about equalities among entries of tuples, so we require that g=1. We do not require that 12 1;

if /=0, then there are no existential variables.
‘Example 5.25 The dependency
(Vyy7,757,) @ xx 3 ) (Ryy 3, ARYY,Y . ORXX X, AX = Y AX, =Y, AX, =3 AV =V,),

says that if there are two tuples that agree on the first argument, then there should be a tuple that agrees
with these tuples on the first argument, agrees with the first tuple on the second argument, and ag&eés

with the second tuple on the third argument. Note that this dependency can also be written as
(V 77,7537 JRYY 7, ARYY 3  ORYY ¥,AY (= ¥,)-
]

Example 5.26 The dependency

(Vyy,)3x)(Py,y,ORy,x,)
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says that if a value occurs as an entry in the second argument of a tuple in the P relation, then that value
occurs also as the first argument of a tuple in the R relation. We have termed such dependencies as

inclusion dependencies. ®

We now consider classification of dependencies to several subclasécs. If the dependency talks ajbout
more than one relation, e.g., the dependency in Example 5.26 talks about the relation P and the rel#tion
R, then it is an interrelational dependency. If it talks only about one relation, e.g., the dependenéy in
Example 5.25 talks only about the relation R, then it is an infrarelational or unirelational dependency.

For simplicity we deal from now on only with unirelational dependencies.

The second classification has to do with the pattern of occurrence of variables in the dcpcndcn&ies.
Suppose that the dependency talks about the relation R. If no variable occurs in two different argufncnt
positiéns of R and we have an equality ¥;=Y, only if y, and y, occur in the same argument position qf R,
then the dependency is #yped, otherwise it is unfyped. The intunition behind this classification is that in a
typed relation the domains that underly distinct columns are disjoint and constitute distinct zypes. Thus,

a typed dependency does not require any interaction between values in different columns.

Example 5.27 The dependency
(Y yy,,757, ) (Ryy, »,ARyy,y, ORyy y,),
is typed. The dependency

(Vy»)(@x )Ry y,ORy,x,)

is untyped. Thus, fd’s, mvd’s, emvd’s, and join dependencies are all typed dependencies, while incltision
dependencics are untyped dependencics. ®

The following classification has to do with the structure of the dependencies. If I=0, i.c., therc%* are

no existential quantifiers, then the dependency is full, otherwise it is embedded (the term “cmbcddc&l” is

not quite appropriate here, but it is borrowed from emvd’s). If all the B,’s are equalities, lthcnj the

dependency is an equality-generating dependency (cgd). If all the Bs are relational formula, thelij the

- dependency is a tuple-generating dependency (1gd). For example, an fd is a full egd, an emvd is aitgd,

~ and an mvd is a full tgd.
The above forms can be viewed as certain syntactical normal forms.
Theorem 5.27

(1) A (typed) dependency is logically equivalent to a set of (typed) egd's and tgd’s.
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(2) A (typed) full dependency is logically equivalent to a set of (typed) full egd’s and tgd’s. =
Thus, from now on, we use the term “dependencies” to refer to egd’s and tgd’s.

We conclude this section by observing that egd’s have the expressive power that fd’s lack. ‘We
define egd-class analogously to fd-class. That is, a class ¥ of relations is an egd-class if there is a set 2

of egd’s such that ¥ =SAT(2).
Theorem 5.28 [Fa82] The projection of an egd-class is an egd-class. m

Note that since every fd-class is an egd-class, it follows from the theorem that the projection of an fd-

class is an egd-class.

5.6.3 The Implication Problem

We can now recast the discussion of §3.3 in more general terms: for full dependencies the (finite) impli-

cation problem reduces to the (finite) unsatisfiability problem of the BS class.

Theorem 5.29 For full dependencies, implication and finite implication coincide, and the corrcsponﬂing

decision problems are decidable. m

Following our standard course, we should now come up with a formal system for full dependenéics,
and then with an efficient implication testing algorithm. A formal system was indeed dechopeﬂ in
[BV84], but unlike the case with fd’s and mvd’s, that formal system does not lead to an efficient decision
procedure. The best decision procedure for testing itﬁplication of full dependencies runs in cxponejj:ltial

‘time. Surprisingly, this bound is the best possible. :
Theorem 5.30 [CLM&81} The implication problem for typed full dependencies is EXPTIME-complete.i "

A problem is EXPTIME-complete if it can be solved in exponential time and it is also as hard asiany
‘problem that can be solved in exponential time. Since it is known that there are problems that calijl be
solved in exponéntial time and do require exponential time, it follows that EXPTIME-complete problEms
require exponential time. Thus, an EXPTIME-completeness is a proof that the problem is intractﬂble.
.In contrast, NP-completeness is a strong suggestion rather than a proof that the problem is intractable,
since it pro#es intractability only under the assumption that there are problems that can be solved in ﬁon-
determiniétic _ﬁolynomial time but not in deterministic polynomial time.

The reduction of (finite) implication to (finite) unsatisfiability of the BS class depends_t_:ruciall} on
the fact that full dependehcies are universal sentences, and -thérefbrc, the reduction does not holdi for

embedded dependencies.
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Theorem 5.31 [BV§1] For embedded dependencies, implication and finite implication differ.

Proof Let R be a binary relation name. Let %, consists of the dependency o :
Yy », xR y;yzj Ry,x)
and o,:
Y y,y,7;(Ry,7,ARY,y,ORyy,).

o, says that R is serial, i.e., every node has an outgoing edge. o, says that R is a transitive relation. ' Let

o be the dependency

¥y, y,Ax(Ry,y,ORxx).

o says that if R is nonempty, then it must be reflexive on some node.

We claim that Zlo but 2=, a. We first show that THo. Let R be interpreted by the binary 3tela-
tion 1={(i,j) : i=j}. It is easy to check that I satisfics = but not o. Suppose, however, that R is mter-
preted by a finite nonempty binary relation / and that I that satisfies =. Because of o, the relatlon 1
must contam a cycle, i.e., a sequence of nodes a, . . . ,a, such that (a,a;,,)€l, for 1=i=n— 1 and also

(an,al)EI But because of o, we must have (a,,a,)€I,s0 [ satisfies o. ®

Theorem 5.31 suggests that the (finite) implication problem for dependencies might be undec1dable
which is indeed the case. (Note, however, that there are classes of dependencies for which mehcatlon
and finite implication differ, but both the implication problem and the finite implication problemj are
decidable [KCV83].) ‘

Theorem 5.32 [BV81,CLM81] The implication and the finite implication problems for depcndcncicé are
undecidable.. ®
Well, so much for our hope to prove decidability for emvd’s by extending the class of depeﬂden-
cies. But all may not be lost yet. It is still conceivable that we can find a decidable class of dependencles
that that contains the class of emvd’s. Let us look more closely at the first-order syntax of emvd’s (see
§5.7). Emvd’s have the following four properties:
(1) they are typed, _ - 1
(2) they- are tpd’s, ‘ |

(3) they have a single relational formula on the right-hand side of the implication, ;and

(4) they have at most two formulas on the left-hand side of the implication.
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Dependencies that satisfy properties (1)-(3) are called femplate dependencies [SU82]. The class of tem-
plate dependencies seems to be quite a natural class; in fact, it is the smallest class of dependencies that
contains the class of emvd’s and .is known to have a sound and complete formal system [BV84,Sd82].

Thus, one might hope that this class is decidable. Unfortunately, this is not the case.

Theorem 5.33 {GL82,Va84a] The implication and finitc implication problems for template dependeﬂcies

are undecidable. ™

In fact, Vardi [Va84a] proved undecidability for even a smaller class of dependencies, the class of ﬁ:ro-

jected join dependencies. Nevertheless, the implication problem for emvd’s remains tantalizingly open.

5.6.4 Global Decision Problems

So far we have concentrated ah:i:nést exclusively on the implication problem. Qur interest in the impb.ica-
tion problem v;'as originally, however, rather secondary. Our primary interest was in properties of sets
of dependencies, such as equivalence and redundancy, which happcﬁ to reduce to implication. Now;’that
we know that the implication problem is undecidable, we have to reconsider equivalence and rehun-
dancy. For simplicity we consider here only finite relations. Recall that two sets A and 3 of depeuﬂen-
cies are equivalent if they are satisfied by the same relations, and a set 2 of dependencies is redunda#nt if
there is a proper subet A of Z such that A and X are equivalent. The redundancy problem is to dcten?nine
whether a given finite set of dependencies is redundant (we concentrate on redundancy, since undcéida-

bility of equivalence follows easily from undecidability of implication).

More generally, we would hke to be able to check other properties of sets of dcpcndenmes This
gives rise to decision problems that we call global, to contrast it with the implication problem, w]:uc]h we
view as a local decision problem. (This terminology is borrowed from the theory of finitely prcscmed
groups [Bo68]. The problem whether two words in a finitely presented group are equal is a local ﬂrob~
lem, while the problem whether a finitely presented group is, say, simple is global.}) Our interest in% glo-
bal decision problem comes from the fact that we view a set of dependencies as a semantic spccificétion

for a database. The ability to recogﬁize properties of such specifications seems to be essential to the task
of verifying their consis;tency and corre’ctriéss. 'We now describe several global properties of inte;rest.
We assume that the language containé a relation name R of some unspecified arity, and that R will be

interpreted by a relation 1.

A relation I is trivial if I={(a,a, . . . ,a)} for some element a, that is, I consists of a single tuple
with the same entries in all columns. It is easy to verify that a trivial relation satisfies all dependenjcies.
A set X is inconsistent if a relation J satisfies 3 only if I is trivial. If ¥ is inconsistent, then it is proﬂably

not a meaningful semantic specification. (In general, inconsistency means having no model. But, since
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cvery set of dependencies is satisfiable by the trivial relation, we define inconsistency as having no jlon-

trivial models.)

+ l
Let 2 ={c:ZF f cl, i.e., Z+ is the set of dependencies implied by . X is complete if ZU{g} is
+ ; i
inconsistent for all c¢Z . If ¥ is complete, then there is no point in trying to extend it, since every

dependency o is either a consequence of 2, or yields an inconsistent specification if added to =.

‘For any relation I, let DEP(I) - be the set of all dependencies satisfied by I, i.é.',
DEP(I)={o : I satisfies a}. I is an Armsirong relation for a set = of dependencies, if DEP (I)‘=E+. > is
Armstrong if 'it has an Armstrong relation. '(This terminology, [Fa82,Mak81], is suggested byithe
approach in [Arm74].) The motivation for this property is as follows. Suppose that I satisfies E In
general, I satisfics not only E+, but also other dependencies as well. These dependencies are satisfied
“accidentally.” If, on the othcr‘ hand, I is an Armstrong relation for X, then it does not satisfy 1any
“accidental” dependencies. Thus, I can be viewed as a representative instance for the collection of Qata-
bases speéiﬁed* by =, namely SAT(Z). Such representative instances seems to be useful in the proccﬂs of

database design [SM81,MR85].

The last property that we consider is decidabiliry. Undecidability of the implication problem méans
that the set {(Z,0) : ZF P o} is not recursive. It is possible, however, that for a particular set X of deﬁ)en-
dencies, the set E+ is recursive. This medns that for this particular ¥ the implication problem is decid-
able, i.e., we can check whether = ;T for any given o. In this case we say that Z is decidable, cleajrly,
a desirable property.

A propcrty P implies a property Q, if P is a subset of (0, i.e., if a set T of dependencies is P, 1j:hen
it is also @. The relationship between the above definéd properties is as follows. |
Theorem 5.34 Inconsistency implies completeness, which implies . Armstrongness, which implies decida-

bility.

Proof

(1) Suppose that = is inconsistent. Then it has oﬁly trivial models. But the trivial relation satisifies
+ - - . |
all dependencies, so X is the set of all dependencies. Thus, the condition of completeness is

satisfied vacuously.

(2) Suppose that = is complete. We have to consider two cases. First, £ might be inconsistent. In
+ ) . .

that case, & is the set of all dependencies, so any irivial relation is an Armstrong relation fo‘r .

If X is not inconsistent, then it has a nontrivial model, i.e., there is a nontrivial relation J siuch‘

that I satisfies . We claim that I is an Afmstro'ng relation for . Indeed, suppose thjat I
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+ !
satisfies o, but o is not in £ . Since I is nonirivial and it satisfies ZU{c}, it follows that ZU{c}

is consistent, which contradicts the completeness of Z.

Py
(3) Suppose that = is Armstrong. Then there is a relation 7 such that DEP(I)= s". Thus, o is in T
) + :
if and only if I satisfies . Since it is decidable whether 7 satisfies o, it follows that Z is recur-

sive. B

In general, a property P is a set of finite sets of dependencies. We usunally say that a set Z is P
instead of saying that it is in P. For example, the property of completeness is the set of all complete 'fin-
ite sets of dependencies. Of course, we would like our properties to be decidable, i.c., recursive. ?Wc
are going to statc a gencral negative result about decidability of properties, but we need first some ddfin-
itions. |

A property P is trivial if either all finite sets of dependencies are P or none is. Clearly, only rjlon-
trivial properties are of interest. The following definition is inspired by Theorem 5.34. We say thﬁb.t a
property P is well-behaved if it contains the property of inconsistency, i.e., if cvéry inconsistent set 1s P.
For example, decidability, Armstrongness, completeness, and, of course, inconsistency are all “;ell-

behaved properties.

To define the next notion we nced to redefine the operation of projection in accordance with our

. |
current convention of ordered columns. Let [ be an n-ary relation, and let i, . . . ,i, be a sequence such
that 1=<i < - - - <i{,=a. The projection of I on the arguments i, ... ,i is

ﬂéil‘ . _,J.E>(I)={(al.1, ce 'ai:;) : (al,v. . .,a )€}

Let 2 be a set of dependencies on an n-ary relation R, and let A be a set of dependencies on a k-ary rela-
tion P. We say that A is a projection of £ if there is a sequence 15:‘5 -+ - <i{=n such j:hat
SAT(A)==_, ; »SAT(Z). In other words, A is a projection of T if it is the specification of the projec-
PR , |
tions of the relations specificd by . We say that a property P is hereditary if it is inherited by projec-

tions, that is, if 2 is P and A is a projection of =, then A is also P.
We can now state the general result.

Theorem 5.35 [Va81] Let P be a nontrivial, well-behaved, and hereditary property. Then P is undcbid- '

able. In particular, inconsistency, completeness, Armstrongness, and decidability are uﬁde-cidablc.‘ u

Looking back at the properties studied here, we see that redundancy is different from, say, com-
pleteness. Completeness is a semantic ﬁroperty; that is, if ¥ is complete and A is equivalent o0 2, _theh A

is also complete. This is not the case with redundancy, which is a syntactic plropérty. In particdlar,
. |
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redundancy is not an hereditary property, so it is not covered by Theorem 5.35. Nevertheless,% the

reader should not get too hopeful.

Theorem 5.36 [Va81] Redundancy is undecidable. ®

5.7 Conclnding Remarks

‘We have gone through a whole span of dependency theory, from the “meek” _functiunarl dependbnéics,
for which most decision problems are efficiently solvable, to the general “mean’ family of dependen&ies,
for which almost nothing of interest seems to be solvable. QOur voyage have been motivated by% the

desire to automate the process of database design. So what is the moral?

Perhaps it would be instructive to draw an analogy with another discipline. Twenty years aéo it
was widely believed that a powerful and efficient proof procedure that can create logicai. demonstrations
would be a major step in getting a machine to behave intelligently. Yéars passed, the desired proof bro-
cedure continued to elude researchers, and this approach was rendered naive and simplistic. Cm&ent

research in artificial intelligence is detailed and nitty-gritty rather than vague and general.

We believe that the hope of fully automating the process of database design is similarly naive}and
simplistic. Modelling the real world is an immensely complicated task for which perhaps no elegant algo-
rithm exists. One should view the theoretical foundations that have been laid as a basis on which to

develop beuristics and practical methodologies.

Acknowledgements 1 am grateful to Ron Fagin and Pierre Wolper for many valuable comments on bre-

vious drafts of this article. ;
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