

COMP 648: Computer Vision Seminar Visual grounding: Learning to localize objects

Atanu Dahari

Object Detection and Localization

- One of the most important and challenging tasks in Computer Vision.
- Recent surge of interest in object detection.
 - Self driving cars
 - Robot vision
 - Video surveillance

Background: A Road Map of Object Detection

Traditional era – back in 2001

1. Viola Jones Detectors:

Paper: https://arxiv.org/pdf/1905.05055.pdf

Goal – Detection of human faces in real time using sliding windows.

Haar like features

• Haar wavelet is used as the feature representation of an image

2. HOG (Histogram of Oriented Gradients)

- Mainly designed for human detection
- Based on the idea that the object's shape can be defined by the length and density of gradient vectors.
- One of the first object detection algorithms to use normalization to avoid feature invariance.

3. DPM

• Goal – To detect small parts of an object ensemble them to detect the whole object

Deep learning era - 2014

• Problem with traditional algorithms – Huge number of features to calculate making them computationally difficult.

1. RCNN – Region based Convolutional Neural Networks

• Uses greedy algorithm to recursively combine similar regions to extract 2000 regions known as region proposals.

2. Spatial Pyramid Pooling (SPP – Net)

- We feed the input image to the CNN and use the selective search algorithm to generate Region of Interest (Rols).
- Wrap the Rols into spatial pyramid pooling (SPP) layers.
- Enables a CNN to generate a fixed-length representation regardless of the size of image/region of interest.

• No need to do convolution each time. Instead convolution is done only once.

3. Fast RCNN

• Instead of generating a pyramid of layers, Fast R-CNN warps ROIs into one single layer using the RoI pooling.

• SPP-net cannot update parameters below SPP layer during training while all parameters of Fast CNN can be trained together.

4. Faster RCNN

Idea: Eliminate selective search and Integrate the Bounding Box Proposals as part of the CNN predictions

Single Shot Detectors

1. You Only Look Once (YOLO):

- No two step region proposals + Classification
- a single CNN simultaneously predicts multiple bounding boxes and class probabilities for those boxes

2. Single Shot MultiBox Detector (SSD):

- YOLO Increase in detection speed but suffers in localization accuracy.
- Multiresolution detection techniques Denser grid map + multiscale grid map

- 3. Retina Net: Uses a ResNet + FPN (Feature Pyramid Network)
- Introduced focal loss to address class imbalance problem.
- Penalizes hard negative examples more than easy examples.
- Achieves state-of-the-art performance

All the object detection models discussed so far can predict a fixed set of predetermined object categories.

Can object detection models can have zero shot capabilities?

Grounded Language-Image Pre-training (GLIP)

Paper address: <u>https://openaccess.thecvf.com/content/CVPR2022/papers/Li_Grounded_Language-</u> Image_Pre-Training_CVPR_2022_paper.pdf

 Phrase grounding: Identifying the fine-grained correspondence between phrases in a sentence and objects (or regions) in an image

Prompt : person. bicycle. car. motorcycle...

Prompt : pistol

Prompt : there are some holes on the road

GLIP – Model Architecture

- A grounding model replaces the object classification logits with the word alignment scores.
- Dot product of the region (or box) visual features and the token (or phrase) language features.
- Aligns each region/box to phrases in text prompts.

Object detection as Phrase grounding

- Instead of classifying each region/box into c classes.
- Align each region to c phrases in a text prompt
- How to design a text prompt for a detection task?
- Given object classes [person, bicycle, car, ..., toothbrush], one simple way is

Prompt = "Detect: person, bicycle, car, ..., toothbrush",

Prompt : aerosol can... lollipop... pendulum...

Language-Aware Deep Fusion

Deep Fusion

To boost the performance of phrase grounding a deep fusion is done to fuse the image and text information before computing the alignment scores at the end

Scalability of training with grounding models

- Grounding data can learn a much larger vocabulary of visual concepts than existing detection data
- Scaling up detection vocabulary Still no more than 2000 categories
- Grounding models can expand the vocabulary to cover any concepts that appear in the grounded captions
- Due to language supervision, GLIP can learn very rare categories.

Two syringes and a small vial of vaccine.

playa esmeralda in holguin, cuba. the view from the top of the beach. beautiful caribbean sea turquoise

Training

- Trained in somewhat a self supervised training way.
- Pre-train a teacher GLIP on 3M human-annotated detection and grounding data.
- Use this teacher model to predict boxes and phrases for 24M web-collected image-text data.
- Train a student model on the total of 27M data.

Zero Shot Evaluations

Model	Backbone	Pre-Train Data	Zero-Shot 2017val	Fine-Tune 2017val / test-dev
Faster RCNN	RN50-FPN	-	-	40.2 / -
Faster RCNN	RN101-FPN	-	-	42.0/-
DyHead-T [9]	Swin-T	-	-	49.7 / -
DyHead-L [9]	Swin-L	-	-	58.4 / 58.7
DyHead-L [9]	Swin-L	O365,ImageNet21K	-	60.3 / 60.6
SoftTeacher [58]	Swin-L	O365,SS-COCO	-	60.7 / 61.3
DyHead-T	Swin-T	O365	43.6	53.3 / -
GLIP-T (A)	Swin-T	O365	42.9	52.9/-
GLIP-T (B)	Swin-T	O365	44.9	53.8/-
GLIP-T (C)	Swin-T	O365,GoldG	46.7	55.1/-
GLIP-T	Swin-T	O365,GoldG,Cap4M	46.3	54.9/-
GLIP-T	Swin-T	O365,GoldG,CC3M,SBU	46.6	55.2 / -
GLIP-L	Swin-L	FourODs,GoldG,Cap24M	49.8	60.8 / 61.0
GLIP-L	Swin-L	FourODs,GoldG+,COCO	-	- / 61.5

Zero-shot domain transfer and fine-tuning on **COCO**. **Note**: GLIP even outperforms prior supervised models (e.g. GLIP-T under Zero-Shot v.s. Faster RCNN under Fine-Tune)

Model	Backbone		MiniV	/al [19]		Val v1.0				
WIOdel		APr	APc	APf	AP	APr	APc	APf	AP	
MDETR [19]	RN101	20.9	24.9	24.3	24.2	-	-	-	-	
MaskRCNN [19]	RN101	26.3	34.0	33.9	33.3	-	-	-	-	
Supervised-RFS [13]	RN50	-	-	-	-	12.3	24.3	32.4	25.4	
GLIP-T (A)	Swin-T	14.2	13.9	23.4	18.5	6.0	8.0	19.4	12.3	
GLIP-T (B)	Swin-T	13.5	12.8	22.2	17.8	4.2	7.6	18.6	11.3	
GLIP-T (C)	Swin-T	17.7	19.5	31.0	24.9	7.5	11.6	26.1	16.5	
GLIP-T	Swin-T	20.8	21.4	31.0	26.0	10.1	12.5	25.5	17.2	
GLIP-L	Swin-L	28.2	34.3	41.5	37.3	17.1	23.3	35.4	26.9	

Zero-shot domain transfer on **LVIS Note:** GLIP outperforms strong supervised baselines (shown in gray).

Phrase grounding Evaluations

Dow	Model	Data	Val			Test		
ROW	Model	Data	R@1	R@5	R@10	R@1	R@5	R@10
1	MDETR-RN101	GoldG+	82.5	92.9	94.9	83.4	93.5	95.3
2	MDETR-ENB5	GoldG+	83.6	93.4	95.1	84.3	93.9	95.8
3		GoldG	84.0	95.1	96.8	84.4	95.3	97.0
4	GLIP-T	O365,GoldG	84.8	94.9	96.3	85.5	95.4	96.6
5		O365,GoldG,Cap4M	85.7	95.4	96.9	85.7	95.8	97.2
6	GLIP-L	FourODs,GoldG,Cap24M	86.7	96.4	97.9	87.1	96.9	98.1

Note: Phrase grounding performance on Flickr30K

Analysis on Scalability of grounding data

Row	Pre-Training Data	COCO 2017val	AP_r	LVIS AP _c	MiniV AP _f	al AP
1	VG w/o COCO	26.9	4.9	10.4	23.2	16.1
2	+ GoldG	29.2	7.8	14.0	24.5	18.5
3	OpenImages	29.9	12.8	12.1	17.8	14.9
4	+ GoldG	33.6	15.2	16.9	24.5	20.4
5	O365	44.9	13.5	12.8	22.2	17.8
6	+GoldG	46.7	17.7	19.5	31.0	24.9
7	O365,GoldG,Cap4M	46.3	20.8	21.4	31.0	26.0
8	FourODs	46.3	15.0	22.5	32.8	26.8

• Adding grounding data brings consistent improvement with different detection data (Row 1-6). **Note**: The model trained with 2.66M detection data with 1500 categories (Row8) does not match performance with 0.66M detection data and 0.8M grounding data (Row6).

Visual Transformers (ViT) – From Jefferson's Talk

The paper <u>AN IMAGE IS WORTH 16X16 WORDS</u> introduces the main way to tokenize images for transformers, just split then into patches of 16 by 16 pixels and pass then through a linear layer

Simple Open-Vocabulary Object Detection with Vision Transformers (OWL- ViT)

Paper address: <u>https://arxiv.org/pdf/2205.06230.pdf</u>

The image and text encoder are pretrained contrastively using image-text pairs, similar to CLIP

Transfer to object detection

Transfer to open-vocabulary detection

- Image Encoder Replace token pooling and projection layer and instead linearly project each output token and box coordinates.
- Text Encoder We pass queries which are class names or other textual object descriptions ٠
- Output For each object the model predicts a bounding box and a probability with which each ٠ query applies to the object.

One-Shot Image conditioned transfer.

- The model does not require query embeddings to be of textual origin.
- We can supply image- instead of text-derived embeddings as queries to the classification head without modifying the model.
- This is called image-conditioned one-shot object detection one-shot object detection because the query image is essentially a single training example.

Example of one-shot image-conditioned detection. Images in the middle are used as queries; the respective detections on the target image are shown on the left and right. text-based querying detects the correct species only for the top example ("swallowtail butterfly") but not for the bottom ("luna moth").

Training and model design

- Image encoder ViT B/32 ViT Base with patch size 32
- Text encoder Transformer architecture similar to the image model

Contrastive Pre-Training

- The image and text encoder are pretrained contrastively using 3.6 billion image –text pairs.
- Image representation Multihead attention pooling (MAP) to aggregate token representation
- Text representation The final end-of sequence (EOS) token of the text encoder

Training the detector

- The pre-trained model is fine tuned for object detection
- Token pooling is removed and detection heads are added.
- Since not all object categories are found in every image, the queries provide both positive (present) and negative (known to be absent) annotations for each image.
- Publicly available detection datasets were used for object-level fine tuning, with a total of around 2 million images (OpenImages V4, Objects 365 (O365), and and/or Visual Genome (VG))

Open vocabulary detection performance

	Method	Backbone	Image-level	Object-level	Res.	$\mathbf{AP}^{\mathbf{LVIS}}$	AP _{rare} ^{LVIS}
L	VIS base training	g:					
1	ViLD-ens [12]	ResNet50	CLIP	LVIS base	1024	25.5	16.6
2	ViLD-ens [12]	EffNet-b7	ALIGN	LVIS base	1024	29.3	26.3
3	Reg. CLIP [45]	R50-C4	CC3M	LVIS base	?	28.2	17.1
4	Reg. CLIP [45]	R50x4-C4	CC3M	LVIS base	?	32.3	22.0
5	OWL-ViT (ours)	ViT-H/14	LiT	LVIS base	840	35.3	23.3
6	OWL-ViT (ours)	ViT-L/14	CLIP	LVIS base	840	34.7	25.6
U	nrestricted open-	vocabulary	training:				
7	GLIP [26]	Swin-T	Cap4M	O365, GoldG,	?	17.2	10.1
8	GLIP [26]	Swin-L	CC12M, SBU	OI, O365, VG, \ldots	?	26.9	17.1
9	OWL-ViT (ours)	ViT-B/32	LiT	O365, VG	768	23.3	19.7
11	OWL-ViT (ours)	R26+B/32	LiT	O365, VG	768	25.7	21.6
10	OWL-ViT (ours)	ViT-B/16	LiT	O365, VG	768	26.7	23.6
12	OWL-ViT (ours)	ViT-L/16	LiT	O365, VG	768	30.9	28.8
13	OWL-ViT (ours)	ViT-H/14	LiT	O365, VG	840	33.6	30.6
14	OWL-ViT (ours)	ViT-B/32	CLIP	O365, VG	768	22.1	18.9
15	OWL-ViT (ours)	ViT-B/16	CLIP	O365, VG	768	27.2	20.6
10	OWL VIT (ours)	V:T 1 /14	CUID	0265 VC	840	24.6	21.9

Open-vocabulary and zero-shot performance on LVIS v1.0 val.

Method	Backbone	Image-level	Object-level	Res.	AP^{COCO}	AP50 ^{COCO}	AP^{O365}	AP50 ^{O365}
ViLD [12]	ResNet50	CLIP	LVIS base	1024	36.6	55.6	11.8	18.2
Reg. CLIP [45]	R50-C4	CC3M	COCO base	?	-	50.4	-	-
Reg. CLIP [45]	R50x4-C4	CC3M	COCO base	?	-	55.7	-	-
GLIP [26]	Swin-T	Cap4M	O365, GoldG,	?	46.7	-	-	-
GLIP [26]	Swin-L	CC12M, SBU	OI, O365, VG,	?	49.8	-	-	-
Detic [46]	R50-C4	CLIP, COCO-Cap	COCO base	1333	-	45.0	-	-
Detic [46]	Swin-B	CLIP, I21K	LVIS base	869	-	-	21.5	-
OWL-ViT (ours)	ViT-B/32	CLIP	OI, VG	768	28.1	44.7	-	-
OWL-ViT (ours)	ViT-B/16	CLIP	OI, VG	768	31.7	49.2	-	-
OWL-ViT (ours)	ViT-L/14	CLIP	O365, VG	840	43.5	64.7	-	-
OWL-ViT (ours)	ViT-B/32	LiT	OI, VG	768	28.0	44.4	9.4	15.2
OWL-ViT (ours)	ViT-B/16	${ m LiT}$	OI, VG	768	30.3	47.4	10.7	17.0
OWL-ViT (ours)	R26 + B/32	${ m LiT}$	OI, VG	768	30.7	47.2	11.1	17.4
OWL-ViT (ours)	ViT-L/16	LiT	OI, VG	672	34.7	53.9	13.7	21.6
OWL-ViT (ours)	ViT-H/14	LiT	OI, VG	840	36.0	55.3	15.5	24.0
OWL-ViT (ours)	ViT-H/14	LiT	O365, VG	840	42.2	64.5	-	-

Open-vocabulary and zero-shot performance on COCO and O365 datasets.

Image-Conditioned Detection performance

	Method	Split 1	Split 2	Split 3	Split 4	Mean
	SiamMask [30]	38.9	37.1	37.8	36.6	37.6
г	CoAE [16]	42.2	40.2	39.9	41.3	40.9
eer	AIT [7]	50.1	47.2	45.8	46.9	47.5
-	OWL-ViT (ours)	49.9	49.1	49.2	48.2	49.1
	OWL-ViT ($k = 10$; ours)	54.1	55.3	56.2	54.9	55.1
	SiamMask [30]	15.3	17.6	17.4	17.0	16.8
en	CoAE [16]	23.4	23.6	20.5	20.4	22.0
Unsee	AIT [7]	26.0	26.4	22.3	22.6	24.3
	OWL-ViT (ours)	43.6	41.3	40.2	41.9	41.8
	OWL-ViT ($k = 10$; ours)	49.3	51.1	42.4	44.5	46.8

One- and few-shot image-conditioned detection performance on COCO AP50. **Note:** Note the improvements as the number of conditioning queries is increased to k = 10.

Summary

Similarities

- Both the models are based on visual grounding
- Both the models are highly capable of scaling up detection vocabulary.

Differences

- GLIP uses region proposal method to extract region features of the objects while OWL- ViT divides the image into image embeddings.
- GLIP is only one level of pretraining (image level) while OWL- ViT has two levels of pretraining (image level and detection level).

Thank you!