

COMP 648: Computer Vision Seminar Contrastive Pre-training: SimCLR, CLIP, ALBEF

Ziyan Yang

Pre-training

- Computer Vision:
 - ImageNet
 - Limited number of classes
 - Expensive to get labels
 - ...
- Natural Language Processing:
 - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (<u>https://arxiv.org/abs/1810.04805</u>)
 - BERT is pretrained on BooksCorpus + English Wikipedia unlabeled text data
 - Outperform other models on 11 NLP downstream tasks

What is contrastive learning?

- Learn from both positive and negative samples:
 - For each sample $x \circ$
 - decrease its distance between positive samples $x^+ igodot$
 - increase its distance between negative samples $\mathbf{x}^ _{\bigcirc}$
 - Finally, $d(f(x), f(x^+)) < d(f(x), f(x^-))$
- It is not necessary to know exact labels for samples (e.g., the label of an image), we only need to know if samples are positive or negative

A Simple Framework for Contrastive Learning of Visual Representations Paper address: <u>https://arxiv.org/pdf/2002.05709.pdf</u>

- Task: Image Classification

- Goal: use contrastive learning to learn better image representations for classification tasks

A Simple Framework for Contrastive Learning of Visual Representations Paper address: <u>https://arxiv.org/pdf/2002.05709.pdf</u>

Model Overview _ $sim(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{ op} \boldsymbol{v} / \| \boldsymbol{u} \| \| \boldsymbol{v} \|$ Representation for downstream tasks $\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$ encoder projecto \rightarrow Maximize Agreement projecto encoder \rightarrow \rightarrow

A Simple Framework for Contrastive Learning of Visual Representations Paper address: <u>https://arxiv.org/pdf/2002.05709.pdf</u>

- Construct positive samples by data augmentation operators:

A Simple Framework for Contrastive Learning of Visual Representations Paper address: <u>https://arxiv.org/pdf/2002.05709.pdf</u>

- Findings:
 - no single transformation suffices to learn good representations

Cuto	out	32.2	25.6	33.9	40.0	26.5	25.2	22.4	29.4		- 50
o ation	lor	55.8	35.5	18.8	21.0	11.4	16.5	20.8	25.7		-40
Sorma Sor	bel	46.2	40.6	20.9	4.0	9.3	6.2	4.2	18.8		- 30
Lst trar ioN	se	38.8	25.8	7.5	7.6	9.8	9.8	9.6	15.5		-20
В	lur	35.1	25.2	16.6	5.8	9.7	2.6	6.7	14.5		
Rota	ite	30.0	22.5	20.7	4.3	9.7	6.5	2.6	13.8		-10
		Clob	Cutout	Color	sobel	Noise	Blur	Rotate	Average	_	
				2	nd trans	formatio	n				

Linear evaluation, top-1 accuracy, ImageNet

A Simple Framework for Contrastive Learning of Visual Representations Paper address: <u>https://arxiv.org/pdf/2002.05709.pdf</u>

- Findings:
 - Contrastive learning needs stronger data augmentation than supervised learning

Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR Supervised	59.6 77.0	61.0 76.7	62.6 76.5	63.2 75.7	64.5 75.4	61.1 77.1

Table1: Top-1 accuracy of unsupervised ResNet-50 using linear evaluation and supervised ResNet-50, under varied color distortion strength

A Simple Framework for Contrastive Learning of Visual Representations Paper address: <u>https://arxiv.org/pdf/2002.05709.pdf</u>

- Comparing with SOTA:

Method	Architecture	Param (M)	Top 1	Top 5
Methods using R				
Local Agg.	ResNet-50	24	60.2	-
MoCo	ResNet-50	24	60.6	-
PIRL	ResNet-50	24	63.6	-
CPC v2	ResNet-50	24	63.8	85.3
SimCLR (ours)	ResNet-50	24	69.3	89.0
Methods using of	ther architectures	:		
Rotation	RevNet-50 $(4\times)$) 86	55.4	-
BigBiGAN	RevNet-50 $(4\times)$) 86	61.3	81.9
AMDIM	Custom-ResNet	626	68.1	-
CMC	ResNet-50 $(2\times)$	188	68.4	88.2
MoCo	ResNet-50 $(4 \times)$	375	68.6	-
CPC v2	ResNet-161 (*)	305	71.5	90.1
SimCLR (ours)	ResNet-50 $(2\times)$	94	74.2	92.0
SimCLR (ours)	ResNet-50 $(4 \times)$	375	76.5	93.2

	Label fraction			
Architecture	1%	10%		
	To	p 5		
ResNet-50	48.4	80.4		
l-propagation:				
ResNet-50	51.6	82.4		
ResNet-50	47.0	83.4		
ResNet-50	-	88.5		
ResNet-50	-	89.1		
ResNet-50 (4 \times)	-	91.2		
tion learning only:				
ResNet-50	39.2	77.4		
RevNet-50 ($4 \times$)	55.2	78.8		
ResNet-50	57.2	83.8		
ResNet-161(*)	77.9	91.2		
ResNet-50	75.5	87.8		
ResNet-50 $(2 \times)$	83.0	91.2		
ResNet-50 $(4\times)$	85.8	92.6		
	Architecture ResNet-50 l-propagation: ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 (4×) ttion learning only: ResNet-50 RevNet-50 (4×) ResNet-50 ResNet-50 ResNet-50 ResNet-50 (2×) ResNet-50 (4×)	ArchitectureLabel 1% ToResNet-5048.4 <i>l-propagation:</i> ResNet-5051.6ResNet-5047.0ResNet-50-ResNet-50-ResNet-50-ResNet-5042.0ResNet-50-ResNet-50-ResNet-5052.2ResNet-5057.2ResNet-5057.2ResNet-5057.2ResNet-5075.5ResNet-5075.5ResNet-502×.0ResNet-504×.0ResNet-504×.0		

Self-supervised

Semi-supervised

A Simple Framework for Contrastive Learning of Visual Representations Paper address: <u>https://arxiv.org/pdf/2002.05709.pdf</u>

- Comparing with SOTA:

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation SimCLR (ours) Supervised	on: 76.9 75.2	95.3 95.7	80.2 81.2	48.4 56.4	65.9 64.9	60.0 68.8	61.2 63.8	84.2 83.8	78.9 78.7	89.2 92.3	93.9 94.1	95.0 94.2
<i>Fine-tuned:</i> SimCLR (ours) Supervised Random init	89.4 88.7 88.3	98.6 98.3 96.0	89.0 88.7 81.9	78.2 77.8 77.0	68.1 67.0 53.7	92.1 91.4 91.3	87.0 88.0 84.8	86.6 86.5 69.4	77.8 78.8 64.1	92.1 93.2 82.7	94.1 94.2 72.5	97.6 98.0 92.5

Transfer Learning

def info_nce_loss(self, features):

<pre>labels = torch.cat([torch.arange(self.args.bate labels = (labels.unsqueeze(0) == labels.unsquee labels = labels.to(self.args.device)</pre>	, dim=0) features:[batch*2,batch*2]	
<pre>features = F.normalize(features, dim=1)</pre>	features: [batch*2, feature_dimension]	
<pre>similarity_matrix = torch.matmul(features, feat</pre>	tures.T)	
assert similarity_matrix.shape == (
<pre># self.args.n_views * self.args.batch_size,</pre>	<pre>self.args.n_views * self.args.batch_size)</pre>	
<pre># assert similarity_matrix.shape == labels.shap</pre>	pe	
# discard the main diagonal from both: labels a	and similarities matrix	
<pre>mask = torch.eye(labels.shape[0], dtype=torch.</pre>	<pre>bool).to(self.args.device)</pre>	
<pre>labels = labels[~mask].view(labels.shape[0], -:</pre>	L)	
<pre>similarity_matrix = similarity_matrix[~mask].vi</pre>	iew(similarity_matrix.shape[0], -1)	similarity matrix [hatch*2 hatch*2 - 1]
<pre># assert similarity_matrix.shape == labels.shap</pre>	be	

select and combine multiple positives

```
positives = similarity_matrix[labels.bool()].view(labels.shape[0], -1)
# select only the negatives the negatives
negatives = similarity_matrix[~labels.bool()].view(similarity_matrix.shape[0], -1)
logits = torch.cat([positives, negatives], dim=1)
labels = torch.zeros(logits.shape[0], dtype=torch.long).to(self.args.device)
logits = logits / self.args.temperature
return logits, labels
```

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

- Task: Image Classification
 - However, previous works still need some labeled data, and can only predict results for pre-defined categories.

- Goal: learn directly from natural language using contrastive learning and enable zero-shot transfer of the model to downstream tasks

_

-

_

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

Model Overview Training: Transformer Data: WebImageText Pepper the 400 million (image, text) pairs Text aussie pup Encoder ••• T_1 T_2 T₃ T_N ... $I_1 \cdot T_2 \mid I_1 \cdot T_3$ $I_1 \cdot T_1$ $I_1 \cdot T_N$ I_1 ... $I_2 \cdot T_2$ I_2 $I_2 \cdot T_1$ $I_2 \cdot T_3$ $I_2 \cdot T_N$... Image $I_3 \cdot T_1$ $I_3 \cdot T_2 \quad I_3 \cdot T_3$ $I_3 \cdot T_N$ I_3 ... Encoder ٠. ÷ ÷ ÷ ÷ ÷ : ResNet $I_N \cdot T_2 \mid I_N \cdot T_3$ I_{N} $I_N \cdot T_1$ $I_N \cdot T_N$... Vision Transformer

(1) Contrastive pre-training

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

- Model Overview
 - Testing:

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

- Results: across 27 datasets

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

- Results: Robustness to Natural Distribution Shift

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

- Limitations
 - Possible solution:
 - Editing a Classifier by Rewriting Its Prediction Rules <u>https://proceedings.neurips.cc/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf</u>

85.61% 0.42%

> 0% 0% 0% 0.1% 0%

0.56%

Granny Smith
iPod
library
pizza
rifle
toaster
dough
assault rifle
patio

LABELED "IPOD"

A STATE AND A STATE OF	Granny Smith	0.13%
	iPod	99.68%
	library	0%
D.	pizza	0%
iPad De	rifle	0%
100	toaster	0%
1 month -	dough	0%
	assault rifle	0%
1 3 1 1 A	patio	0%

Learning Transferable Visual Models From Natural Language Supervision Paper address: <u>http://proceedings.mlr.press/v139/radford21a/radford21a.pdf</u>

- Limitations
 - Possible solution:
 - Learning to Prompt for Vision-Language Models <u>https://arxiv.org/pdf/2109.01134.pdf</u>

Caltech101	Prompt	Accuracy
	a [CLASS].	82.68
1	a photo of [CLASS].	80.81
	a photo of a [CLASS].	86.29

[] model, preprocess = clip.load("ViT-B/32")
model.cuda().eval()
input_resolution = model.visual.input_resolution
context_length = model.context_length
vocab_size = model.vocab_size

print("Model parameters:", f"{np.sum([int(np.prod(p.shape)) for p in model.parameters()]):,}")
print("Input resolution:", input_resolution)
print("Context length:", context_length)
print("Vocab size:", vocab_size)

100%|

Model parameters: 151,277,313 Input resolution: 224 Context length: 77 Vocab size: 49408 338M/338M [00:05<00:00, 63.0MiB/s]

Region-based segmentation

= np.zeros like(coi

at us first determine markers of the coins and the markground. These markers are pixels that we can label monbiguously as either object or background. Here, he markers are found at the two extreme parts of the istogram of grey values:


```
image_input = torch.tensor(np.stack(images)).cuda()
with torch.no_grad():
    image features = model.encode image(image input).float()
```

from torchvision.datasets import CIFAR100

cifar100 = CIFAR100(os.path.expanduser("~/.cache"), transform=preprocess, download=True)

Downloading https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz to /root/.cache/cifar-100-python.tar.gz 169001984/? [00:06<00:00, 25734958.25it/s]

Extracting /root/.cache/cifar-100-python.tar.gz to /root/.cache

```
text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]
text_tokens = clip.tokenize(text_descriptions).cuda()
```

```
with torch.no_grad():
    text_features = model.encode_text(text_tokens).float()
    text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
top_probs, top_labels = text_probs.cpu().topk(5, dim=-1)
```


Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Task: Image-Text Retrieval, Visual Entailment, VQA, NLVR ...

- Goal: use contrastive loss to align image and text tokens and get better multimodal representations for downstream vision-language tasks

-

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Model Overview

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Code for contrastive loss <u>https://github.com/salesforce/ALBEF</u>:

Model definition

self.visual_encoder = VisionTransformer(

img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))

if init_deit:

checkpoint = torch.hub.load_state_dict_from_url(
 url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
 map_location="cpu", check_hash=True)
state_dict = checkpoint["model"]
pos_embed_reshaped = interpolate_pos_embed(state_dict['pos_embed'], self.visual_encoder)
state_dict['pos_embed'] = pos_embed_reshaped
msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
print(msg)

vision_width = config['vision_width']
bert_config = BertConfig.from_json_file(config['bert_config'])

self.text_encoder = BertForMaskedLM.from_pretrained(text_encoder, config=bert_config)

text_width = self.text_encoder.config.hidden_size

self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)

self.temp = nn.Parameter(torch.ones([]) * config['temp'])
self.queue_size = config['queue_size']
self.momentum = config['momentum']
self.itm head = nn.Linear(text width, 2)

create momentum models

self.visual_encoder_m = VisionTransformer(
 img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
 mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
self.text_encoder_m = BertForMaskedLM.from_pretrained(text_encoder, config=bert_config)
self.text_proj_m = nn.Linear(text_width, embed_dim)

Forward

image_embeds = self.visual_encoder(image) image atts = torch.ones(image embeds.size()[:-1],dtype=torch.long).to(image.device) image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) text_output = self.text_encoder.bert(text.input_ids, attention_mask = text.attention_mask, return_dict = True, mode = 'text') text_embeds = text_output.last_hidden_state text_feat = F.normalize(self.text_proj(text_embeds[:,0,:]),dim=-1) image feat shape: batch, num vision tokens, 256 # get momentum features text feat shape: batch, num text tokens, 256 with torch.no_grad(): self._momentum_update() image embeds m = self.visual encoder m(image) image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1) image_feat_all = torch.cat([image_feat_m.t(),self.image_gueue.clone().detach()],dim=1) text_output_m = self.text_encoder_m.bert(text.input_ids, attention_mask = text.attention_mask, return_dict = True, mode = 'text') text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1) sim_i2t_m = image_feat_m @ text_feat_all / self.temp sim_t2i_m = text_feat_m @ image_feat_all / self.temp sim targets = torch.zeros(sim i2t m.size()).to(image.device) get soft labels sim_targets.fill_diagonal_(1) sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets sim_i2t = image_feat @ text_feat_all / self.temp calculate similarity sim_t2i = text_feat @ image_feat_all / self.temp

loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean() loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()

calculate contrastive loss

loss_ita = (loss_i2t+loss_t2i)/2

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Pretraining:
 - Data:
 - Conceptual Captions
 - SBU Captions
 - COCO
 - noisier Conceptual dataset
 - Total number of images: 14.1M

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Finetuning:
 - Retrieval: use ITM score
 - VQA:

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Results
 - Retrieval: use ITM score
 - Finetuned on Flickr30K and COCO

Mathad	# Pre-train	Flickr30K (1K test set)					MSCOCO (5K test set)						
Method	Images	TR			IR			TR			IR		
		R@1	R@5	R@10	R@ 1	R@5	R@10	R@1	R@5	R@10	R@ 1	R@5	R@10
UNITER	4M	87.3	98.0	99.2	75.6	94.1	96.8	65.7	88.6	93.8	52.9	79.9	88.0
VILLA	4M	87.9	97.5	98.8	76.3	94.2	96.8	-	-	-	-	-	-
OSCAR	4M	-	-	-	-	-	-	70.0	91.1	95.5	54.0	80.8	88.5
ALIGN	1.2B	95.3	99.8	100.0	84.9	97.4	98.6	77.0	93.5	96.9	59.9	83.3	89.8
ALBEF	4M	94.3	99.4	99.8	82.8	96.7	98.4	73.1	91.4	96.0	56.8	81.5	89.2
ALBEF	14M	95.9	99.8	100.0	85.6	97.5	98.9	77.6	94.3	97.2	60.7	84.3	90.5

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Results
 - Retrieval: use ITM score
 - Zero-shot

Mathod	# Pre-train	Flickr30K (1K test set)								
wieniou	Images		TR		IR					
		R@1	R@5	R@10	R@1	R@5	R@10			
UNITER [2]	4M	83.6	95.7	97.7	68.7	89.2	93.9			
CLIP [6]	400M	88.0	98.7	99.4	68.7	90.6	95.2			
ALIGN [7]	1.2B	88.6	98.7	99.7	75.7	93.8	96.8			
ALBEF	4M	90.5	98.8	99.7	76.8	93.7	96.7			
ALBEF	14M	94.1	99.5	99.7	82.8	96.3	98.1			

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation Paper address: <u>https://arxiv.org/pdf/2107.07651.pdf</u>

- Results

- Other tasks:

Method	VQA		NLVR ²		SNLI-VE	
	test-dev	test-std	dev	test-P	val	test
VisualBERT [13]	70.80	71.00	67.40	67.00	-	-
VL-BERT [10]	71.16	-	-	-	-	-
LXMERT [1]	72.42	72.54	74.90	74.50	-	-
12-in-1 [12]	73.15	-	-	78.87	-	76.95
UNITER [2]	72.70	72.91	77.18	77.85	78.59	78.28
VL-BART/T5 [54]	-	71.3	-	73.6	-	-
ViLT [21]	70.94	-	75.24	76.21	-	-
OSCAR [3]	73.16	73.44	78.07	78.36	-	-
VILLA [8]	73.59	73.67	78.39	79.30	79.47	79.03
ALBEF (4M)	74.54	74.70	80.24	80.50	80.14	80.30
ALBEF (14M)	75.84	76.04	82.55	83.14	80.80	80.91

Questions?