

Deep Learning for Vision & Language

Natural Language Processing I: Introduction

Natural Language Processing

The study of automatic reasoning over text / language

- Fundamental goal: deep understand of broad language
 - Not just string processing or keyword matching!
- End systems that we want to build:
 - Ambitious: speech recognition, machine translation, information extraction, dialog interfaces, question answering...
 - Modest: spelling correction, text categorization...

Why is NLP Hard?

• Human Language is Ambiguous

Task: Pronoun Resolution

- Jack drank the wine on the table. *It* was red and round.
- Jack saw Sam at the party. *He* went back to the bar to get another drink.
- Jack saw Sam at the party. *He* clearly had drunk too much.

[Adapted from Wilks (1975)]

Why is NLP Hard?

• Human Language Requires World Knowledge

Task: Co-Reference Resolution

- The doctor hired a secretary because she needed help with new patients.
- The physician hired the secretary because he was highly recommended.

[From some of our group's work]

Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, Kai-Wei Chang. North American Chapter of the Association for Computational Linguistics. NAACL 2018.

Why is NLP Hard?

• Human Language is Ambiguous

Learning mother tongue (native language)

-- you might think it's easy, but...

- compare 5 year old V.S. 10 year old V.S. 20 year old
- Learning foreign languages
 even harder

Word Segmentation

- Breaking a string of characters into a sequence of words.
- In some written languages (e.g. Japanese) words are not separated by spaces.
- Even in English, characters other than white-space can be used to separate words [e.g.,;.-:()]
- Examples from English URLs:
 - jumptheshark.com \Rightarrow jump the shark .com
 - myspace.com/pluckerswingbar
 - \Rightarrow myspace .com pluckers wing bar
 - \Rightarrow myspace .com plucker swing bar

Morphological Analysis

- *Morphology* is the field of linguistics that studies the internal structure of words. (Wikipedia)
- A *morpheme* is the smallest linguistic unit that has semantic meaning (Wikipedia)
 - e.g. "carry", "pre", "ed", "ly", "s"
- Morphological analysis is the task of segmenting a word into its morphemes:
 - carried \Rightarrow carry + ed (past tense)
 - independently \implies in + (depend + ent) + ly
 - Googlers \Rightarrow (Google + er) + s (plural)
 - unlockable \Rightarrow un + (lock + able) ?

 \Rightarrow (un + lock) + able ?

• German

555 --> fünfhundertfünfundfünfzig

7254 \rightarrow Siebentausendzweihundertvierundfünfzig

Part Of Speech (POS) Tagging

- Annotate each word in a sentence with a part-of-speech.
 - I ate the spaghetti with meatballs.

John saw the saw and decided to take it to the table.

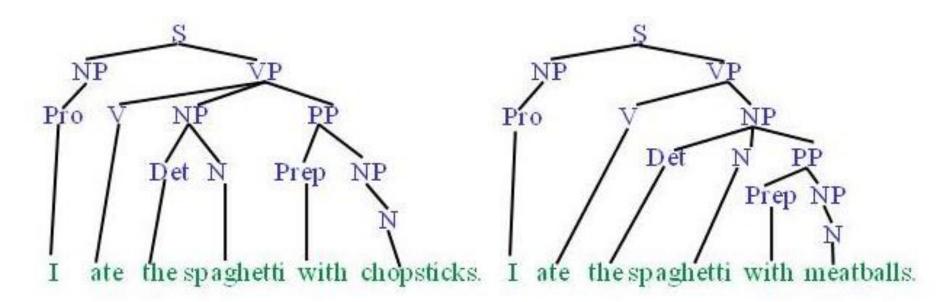
• Useful for subsequent syntactic parsing and word sense disambiguation.

Phrase Chunking

- Find all noun phrases (NPs) and verb phrases (VPs) in a sentence.
 - [NP I] [VP ate] [NP the spaghetti] [PP with] [NP meatballs].
 - [NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September]

Syntactic Parsing

• Produce the correct syntactic parse tree for a sentence.



Word Sense Disambiguation (WSD)

- Words in natural language usually have a fair number of different possible meanings.
 - Ellen has a strong interest in computational linguistics.
 - Ellen pays a large amount of interest on her credit card.
- For many tasks (question answering, translation), the proper sense of each ambiguous word in a sentence must be determined.

Other tasks more "advanced" tasks:

- Text classification
 - Simple: Is this text English or Spanish?
 - Harder: Is this text about Toys or Weapons?
 - Even harder: Is this text written by Shakespeare or not?
- Text Generation
 - Free form: Generate arbitrary human-like produced text
 - Conditional: Generate text that has certain style
- Entailment, can text statement A be deduced from text statement B?
- Question Answering (QA), Given a question text, give a text answer.
- Dialog same as VQA but continuous back and forth

How to represent a word?

one-hot encodings

dog	1	[1	0	0	0	0	0	0	0	0	0]
cat	2	[0	1	0	0	0	0	0	0	0	0]
person	3	[0	0	1	0	0	0	0	0	0	0]
holding	4	[0	0	0	1	0	0	0	0	0	0]
tree	5	[0	0	0	0	1	0	0	0	0	0]
computer	6	[0	0	0	0	0	1	0	0	0	0]
using	7	[0	0	0	0	0	0	1	0	0	0]

How to represent a word?

How to represent a phrase/sentence?

bag-of-words representation

person holding dog {1, 3, 4}		[1	0	1	1	0	0	0	0	0	0]
person holding cat	{2, 3, 4}	[0]	1	1	1	0	0	0	0	0	0]
person using computer	{3, 7, 6}	[0]	0	1	0	0	1	1	0	0	0]
		dog	cat	person	holding	tree	computer	using			
person using computer person holding cat	{3, 3, 7, 6, 2}	[0	1	2	1	0	1	1	0	0	0]

What if vocabulary is very large?

Sparse Representation

bag-of-words representation

person holding dog	{1, 3, 4}	indices = [1, 3, 4]	values = [1, 1, 1]
person holding cat	{2, 3, 4}	indices = [2, 3, 4]	values = [1, 1, 1]
person using computer	{3, 7, 6}	indices = [3, 7, 6]	values = [1, 1, 1]

person using computer person holding cat {3, 3, 7, 6, 2} indices = [3, 7, 6, 2] values = [2, 1, 1, 1]

• Bag-of-words encodings for text (e.g. sentences, paragraphs, captions, etc)

You can take a set of sentences/documents and classify them, cluster them, or compute distances between them using this representation.

Problem with this bag-of-words representation

my friend makes a nice meal

These would be the same using bag-of-words

my nice friend makes a meal

Bag of Bi-grams

values = [1, 1, 1, 1, 1] {my friend, friend makes, makes a, a nice, nice meal} indices = [10232, 43133, 21342, 43233, 54233] values = [1, 1, 1, 1, 1] {my nice, nice friend, friend makes, makes a, a meal}

indices = [10132, 21342, 43233, 53123, 64233]

A dense vector-representation would be very inefficient Think about tri-grams and n-grams

my friend makes a nice meal

my nice friend makes a meal

Recommended reading: n-gram language models

Yejin Choi's course on Natural Language Processing http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

Modern way of representing Phrases/Text

Pre-trained Neural Network

Continuous Bag of Words (CBOW) – Word embeddings Sequence-based representations (RNNs, LSTMs) **Transformer-based representations (e.g. BERT, GPT-2, T5, etc)**

my friend makes a nice meal

Back to how to represent a word?

Problem: distance between words using one-hot encodings always the same

dog	1	[1	0	0	0	0	0	0	0	0	0]
cat	2	[0	1	0	0	0	0	0	0	0	0]
person	3	[0	0	1	0	0	0	0	0	0	0]

Idea: Instead of one-hot-encoding use a histogram of commonly co-occurring words.

Distributional Semantics

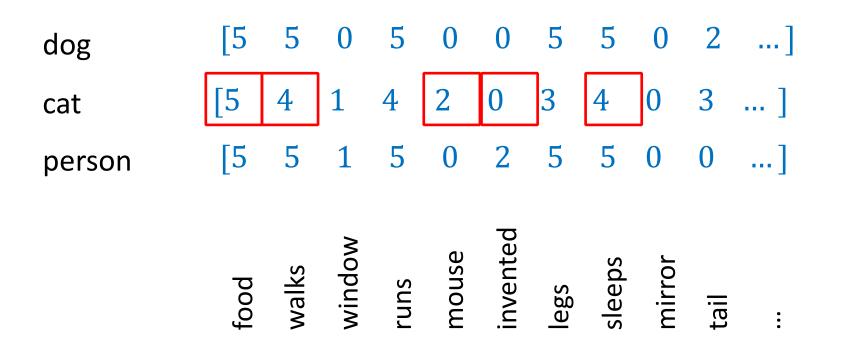
Dogs are man's best friend. I saw a dog on a leash walking in the park. His dog is his best companion. He walks his dog in the late afternoon

Ø

dog

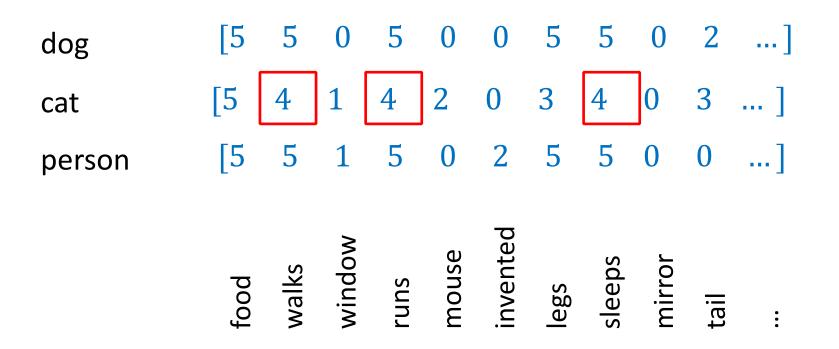
...

Distributional Semantics



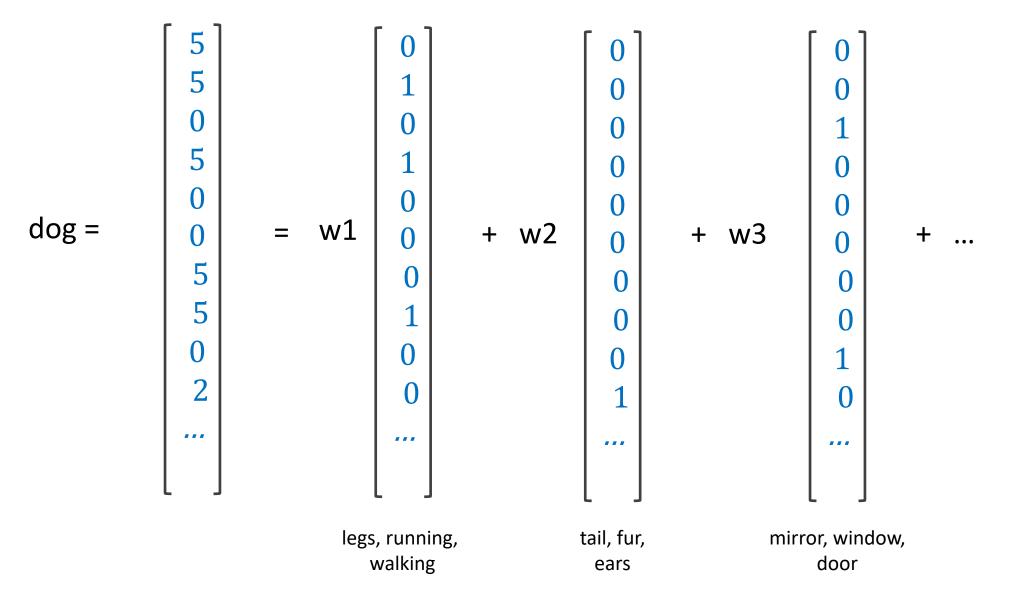
This vocabulary can be extremely large

Toward more Compact Representations



This vocabulary can be extremely large

Toward more Compact Representations



Toward more Compact Representations

dog = _____ w1 ____ w2 ____ w3 ___

The basis vectors can be found using Principal Component Analysis (PCA)

This is known as Latent Semantic Analysis sometimes in NLP, maybe not anymore?

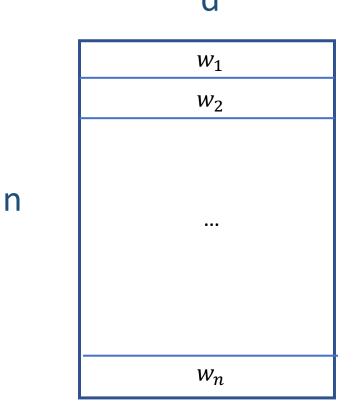
Toward more Compact Representations: Word Embeddings

The weights w1, ..., wn are found using a neural network

Word2Vec: https://arxiv.org/abs/1301.3781

Word2Vec – CBOW Version

 First, create a huge matrix of word embeddings initialized with random values – where each row is a vector for a different word in the vocabulary.



Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov Google Inc., Mountain View, CA tmikolov@google.com

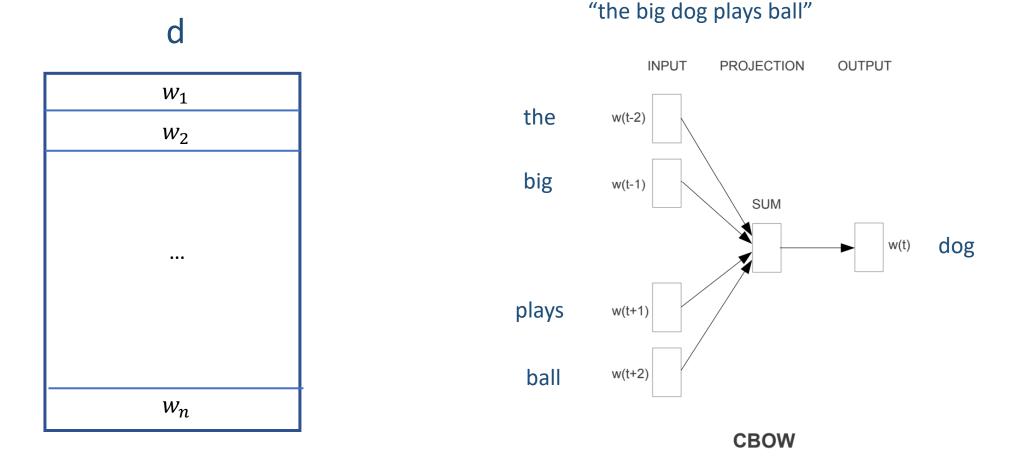
Greg Corrado Google Inc., Mountain View, CA gcorrado@google.com Kai Chen Google Inc., Mountain View, CA kaichen@google.com

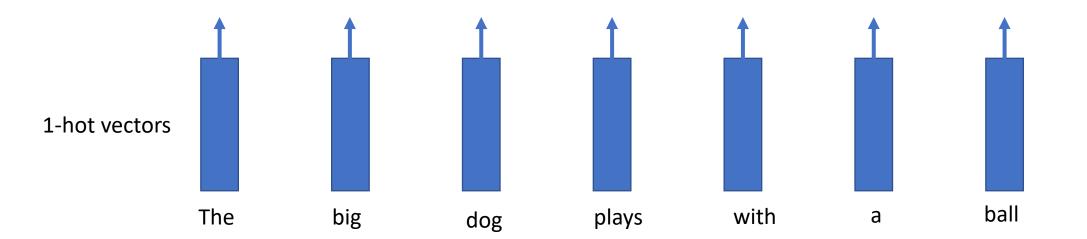
Jeffrey Dean Google Inc., Mountain View, CA jeff@google.com

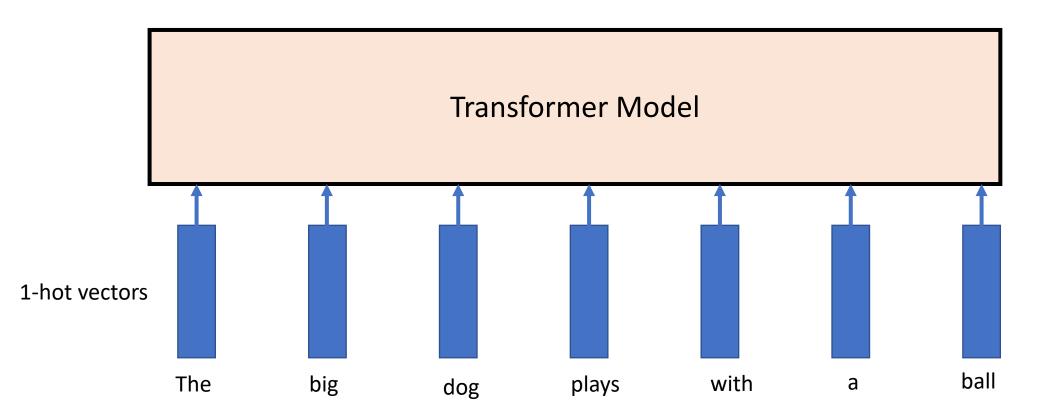
Word2Vec – CBOW Version

n

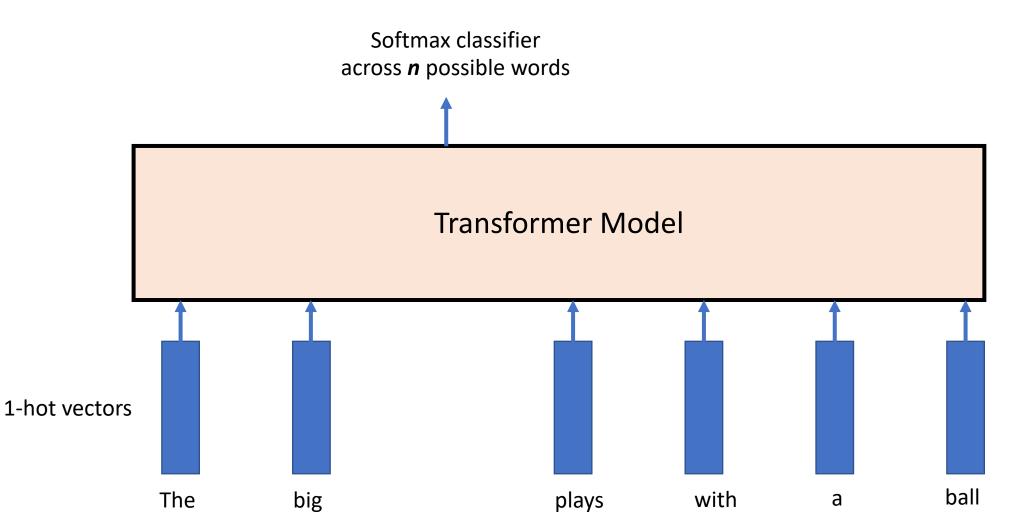
• Then, collect a lot of text, and solve the following regression problem for a large corpus of text:

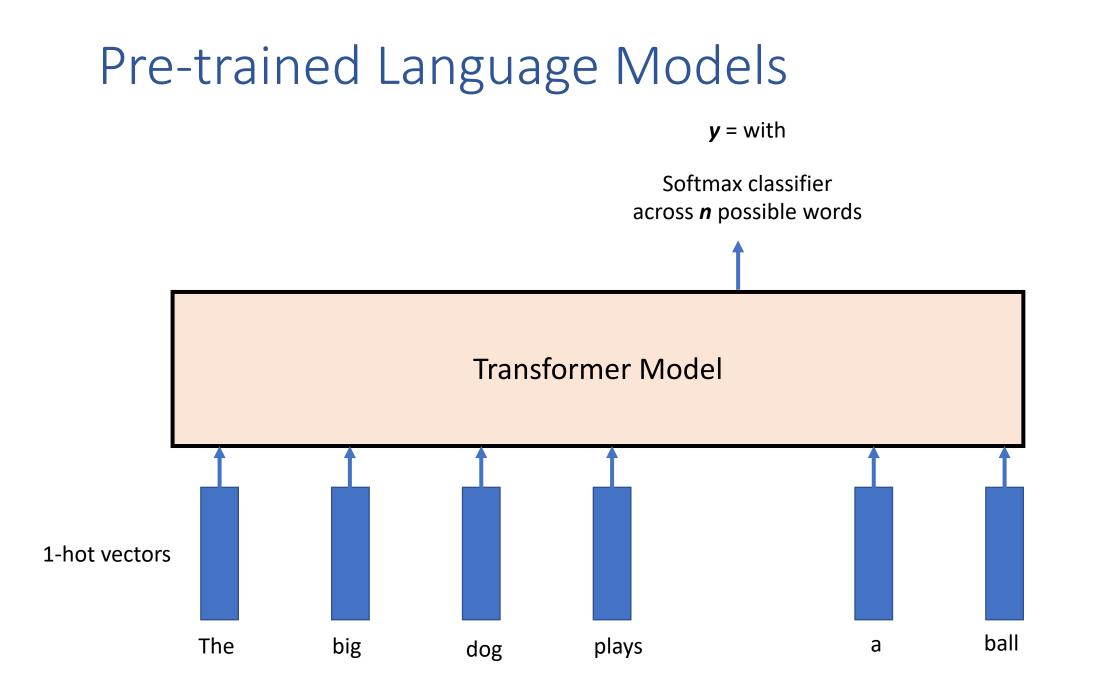






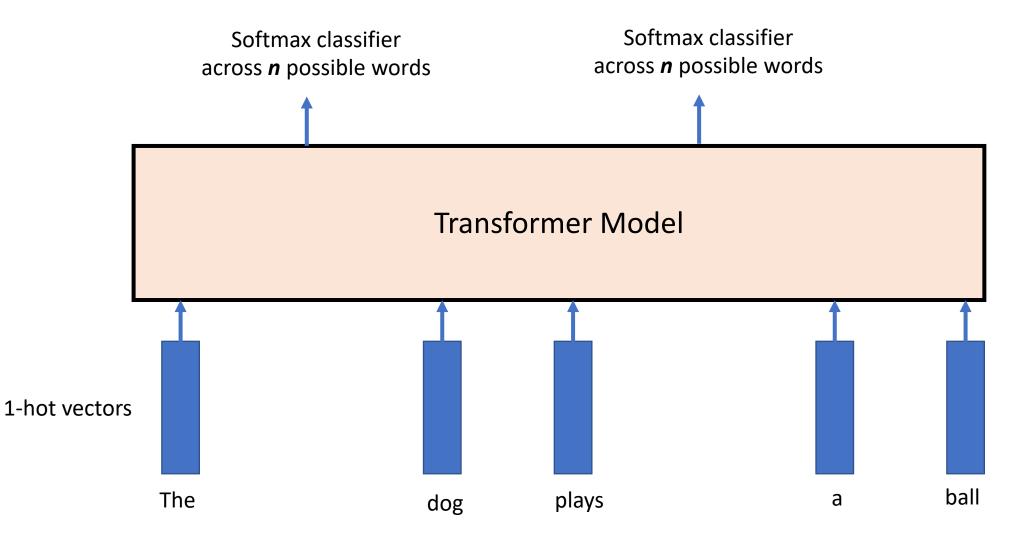
y = dog

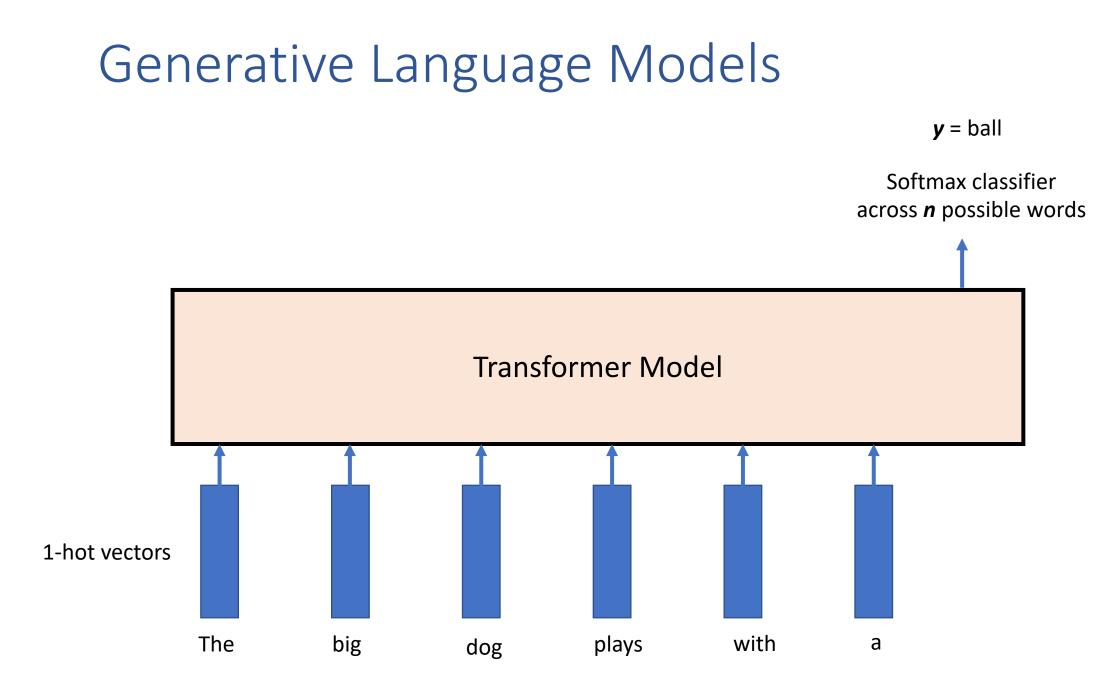




y₁ = big

y₂ = with





Practical Issues - Tokenization

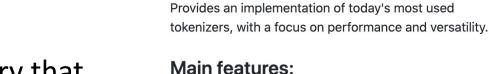
- For each text representation we usually need to separate a sentence into tokens – we have assumed words in this lecture (or pairs of words) – but tokens could also be characters and anything inbetween.
- Word segmentation can be used as tokenization.
 - In the assignment I was lazy I just did "my sentence".split(" ") and called it a day.
 - However, even English is more difficult than that because of punctuation, double spaces, quotes, etc. For English I would recommend you too look up the great word tokenization tools in libraries such as Python's NLTK and Spacy before you try to come up with your own word tokenizer.

Issues with Word based Tokenization

- We already mentioned that tokenization can be hard even when word-based for other languages that don't use spaces in-between words.
- Word tokenization can also be bad for languages where the words can be "glued" together like German or Turkish.
 - Remember fünfhundertfünfundfünfzig? It wouldn't be feasible to have a word embedding for every number in the German language.
- It is problematic to handle words that are not in the vocabulary e.g. a common practice is to use a special <OOV> (out of vocabulary) token for those words that don't show up in the vocabulary.

Solution: Sub-word Tokenization

- Byte-pair Encoding Tokenization (BPE)
 - Start from small strings and based on substring counts iteratively use larger sequences until you define a vocabulary that maximizes informative subtokens. That way most will correspond to words at the end.
- Byte-level BPE Tokenizer
 - Do the same but at the byte representation level not at the substring representation level.



-

• Train new vocabularies and tokenize, using today's most used tokenizers.

Rust passing license Apache-2.0 downloads/week 169k

Tokenizers

- Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU.
- Easy to use, but also extremely versatile.
- Designed for research and production.
- Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token.
- Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

BPE Tokenization Overview

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch School of Informatics, University of Edinburgh {rico.sennrich,a.birch}@ed.ac.uk,bhaddow@inf.ed.ac.uk

- Learn BPE operations (python code on the right) from the paper.
- Use said operations to construct your subword vocabulary.
- Treat each sub-word token as a "word" in any models we will discuss.

Algorithm 1 Learn BPE operations

import re, collections **def** get stats(vocab): pairs = collections.defaultdict(int) for word, freq in vocab.items(): symbols = word.split() for i in range(len(symbols)-1): pairs[symbols[i],symbols[i+1]] += freq **return** pairs def merge vocab(pair, v in): $v out = \{\}$ bigram = re.escape(' '.join(pair)) $p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')$ for word in v in: w out = p.sub(''.join(pair), word) v out[w out] = v in[word] return v out vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2, 'newest </w>':6, 'widest </w>':3} num merges = 10for i in range(num merges): pairs = get stats(vocab) best = max(pairs, key=pairs.get) vocab = merge vocab(best, vocab) print(best)

https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbB P-6MkE_BMck6gm?usp=sharing

Tokenization used in GPT-3

https://platform.openai.com/tokenizer

The cat is in the house

Tokens	Characters
6	23

The cat is in the house

 $[\,464,\ 3797,\ 318,\ 287,\ 262,\ 2156\,]$

The geologist made an effort to rationalize the explanation

TokensCharacters1159The geologist made an effort to rationalize the explanation[464, 4903, 7451, 925, 281, 3626, 284, 9377, 1096, 262, 7468]

fünfhundertfünfundfünfzig

TokensCharacters2129

fü<mark>nf</mark>hundertfün<mark>fundfün</mark>fzig

[69, 9116, 77, 69, 3907, 71, 4625, 83, 3907, 69, 9116, 77, 69, 3907, 917, 3907, 69, 9116, 77, 69, 38262]

La ardilla va a la universidad

Tokens Characters 8 30

La ard<mark>illa va</mark> a la univers<mark>idad</mark>

[14772, 33848, 5049, 46935, 257, 8591, 5820, 32482]

Tokenization used in GPT-3

https://platform.openai.com/tokenizer

深層学	<u>4</u>
Tokens 8	Characters 3
0000<mark>0</mark>0000	
[162, 1	15, 109, 161, 109, 97, 27764, 99]

কেমন আছেন?

Tokens	Characters
20	10

00000000 0000000000000?

[48071, 243, 156, 100, 229, 48071, 106, 48071, 101, 220, 48071, 228, 48071, 249, 156, 100, 229, 48071, 101, 30]

வணக்கம்

Tokens	Characters
21	7

[156, 106, 113, 156, 106, 96, 156, 106, 243, 156, 107, 235, 156, 106, 243, 156, 106, 106, 156, 107, 235]

Questions?