
Deep Learning for Vision & 
Language

Natural Language Processing I: RNNs and Transformers



Second Assignment
• Due Next Monday and third and final assignment to follow soon.

• Submit your project proposal – think about the amount of work it 
would take to a) Create an assignment 4, b) Solve assignment 4. Often 
in research and entrepreneurship asking a good question/finding the 
right problem is more important than giving a great answer/solution.
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Recurrent Neural Networks
• These are models for handling sequences of things.

•  Each input is not a vector but a sequence of input vectors.

•  e.g. Each input can be a “word embedding” or any “word” 
representation – we will use in our first examples one-hot encoded 
tokens but in practice continuous dense word embeddings are used.
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The Embedding Layer nn.Embedding
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The Embedding Layer 
nn.Embedding
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Recurrent Neural Network Cell
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Recurrent Neural Network Cell

𝑅𝑁𝑁
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Recurrent Neural Network Cell
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Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)



Pytorch RNN





(Unrolled) Recurrent Neural Network
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How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems
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How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

my car works <<possessive>> <<noun>> <<verb>>

my dog ate the assignment <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

my mother saved the day <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

the smart kid solved the problem <<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>

Training examples don’t need to be the same length!

input output



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

L(my car works) = 3 L (<<possessive>> <<noun>> <<verb>>) = 3

L( my dog ate the assignment ) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L( my mother saved the day ) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L( the smart kid solved the problem ) = 6 L (<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 6

Training examples don’t need to be the same length!

input output



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 1:  Forget about batches, just process things one by one.



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 2:  Zero padding. We can put the above vectors in T: 4 x 1000 x 6
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How can it be used? – e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems
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How can it be used? – e.g. Sentiment Scoring
Many to one Mapping Problems

this restaurant has good food Positive

this restaurant is bad Negative

this restaurant is the worst Negative

this restaurant is well recommended Positive

Input training examples don’t need to be the same length!
In this case outputs can be.

input output



How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test
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How can it be used? – e.g. Text Generation
Auto-regressive Models

<START> this restaurant has good food

<START> this restaurant is bad

<START> this restaurant is the worst

<START> this restaurant is well recommended

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

this restaurant is bad <END>

this restaurant is the worst <END>

this restaurant is well recommended <END>



How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!
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How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test
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How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test
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How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test
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How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test
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How can it be used? – e.g. Machine Translation
Sequence to Sequence – Encoding – Decoding – Many to Many mapping
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How can it be used? – e.g. Machine Translation
Sequence to Sequence Models

<START> este restaurante tiene buena comida 

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

<START> this restaurant has good food

<START> el mundo no es suficiente the world is not enough <END>

<START> the world is not enough



How can it be used? – e.g. Machine Translation
Sequence to Sequence – Encoding – Decoding – Many to Many mapping
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Problems 
• Long Sequences lead to vanishing

• Hidden states can not carry information in a long sequence 
(Telephone Game problem)
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Solutions Proposed
• Use another hidden state variable and experiment with more 

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc
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LSTM Cell (Long Short-Term Memory)
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Solutions Proposed
• Use another hidden state variable and experiment with more 

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using 
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs
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Bidirectional Recurrent Neural Network
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Solutions Proposed
• Use another hidden state variable and experiment with more 

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using 
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

• Stack RNNs, use an RNN that feeds its output states to another RNN 
and this second RNN outputs the final output states.
• Stacked RNNs, or Deep RNNs.
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Stacked Recurrent Neural Network

𝑥!

𝑅𝑁𝑁

+ℎ!

𝑥#

𝑅𝑁𝑁

𝑥$

𝑅𝑁𝑁

c a t

𝑦! 𝑦# 𝑦$

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑅𝑁𝑁 ℎ#

ℎ#

𝑅𝑁𝑁 ℎ$

ℎ$

+ℎ# +ℎ$

+ℎ" +ℎ! +ℎ# +ℎ$



Stacked Bidirectional Recurrent Neural Network
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Best Solution: Learning Attention Weights

43



RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs – Sequence to score prediction

ℎ'

𝑦'

[English, German, Swiss German, Gaelic, Dutch, Afrikaans, Luxembourgish, Limburgish, other]

Classify



RNNℎ!
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RNNℎ!
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RNNℎ!
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Perhaps a better idea is to
compute the average h vector across all steps
and pass this to the decoder
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder!
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights!!
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RNN𝑣!
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RNNs for Machine Translation Seq-to-Seq
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights, and the weights are specific
for each time step!!!
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Only showing the third time step encoder-decoder connection

such that:
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∑ exp(ℎ!𝑣!$%)



Let’s take a look at one of 
the first papers introducing 
this idea.



Let’s look at the Attention weights
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Transformers: Attention is All You Need
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Attention is All you Need  (no RNNs)

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

Fixed number of input tokens 
[but hey! we can always define a large enough length and add mask tokens]

Encoder

Decoder

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
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Attention is All you Need  (no RNNs)

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

Fixed number of input tokens 
[but hey! we can always define a large enough length and add mask tokens]

Encoder

Decoder
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We can also draw this as in the paper:

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Regular Attention: + Scaling factor

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


RNN𝑣!
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ℎ%

𝑦%

𝑣%

not

RNN

not

𝑥&

ℎ&

𝑦&

𝑣&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!
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This is not unlike what we already used before

ℎ" ℎ# ℎ$ ℎ% ℎ& ℎ'

ℎ

0ℎ" =.𝑎",!ℎ!

Only showing the third time step encoder-decoder connection

such that:

𝑎",! =
exp(ℎ"𝑣"$%)
∑ exp(ℎ!𝑣!$%)

V: those are h’s here
Q: those are h’s here
K: those are v’s here



Multi-head Attention: Do not settle for just one set of attention weights.

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


We can lose track of position since we are aggregating across all locations

Vaswani et al. Attention is 
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Multi-headed
attention 
weights are 
harder to 
interpret 
obviously
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The BERT Encoder Model
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Devlin et al. BERT: Pre-training of Deep 
Bidirectional Transformers for Language 
Understanding .  https://arxiv.org/abs/1810.04805

• No decoder

• Train the model to fill-in-the-blank by 
masking some of the input tokens and 
trying to recover the full sentence.

• The input is not one sentence but two 
sentences separated by a [SEP] token.

• Also try to predict whether these two 
input sentences are consecutive or not.

Important things to know

https://arxiv.org/abs/1810.04805


The BERT Encoder Model

64

Devlin et al. BERT: Pre-training of Deep 
Bidirectional Transformers for Language 
Understanding .  https://arxiv.org/abs/1810.04805

https://arxiv.org/abs/1810.04805


The BERT Encoder-only Model

65

Devlin et al. BERT: Pre-training of Deep 
Bidirectional Transformers for Language 
Understanding .  https://arxiv.org/abs/1810.04805

https://arxiv.org/abs/1810.04805


The T5 Encoder-Decoder Model

Encoder

Decoder



The GPT-2, GPT-3 Decoder-only Model

Decoder



Vision Transformers

68

https://arxiv.org/abs/2010.11929
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua 
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, 
Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby

https://arxiv.org/search/cs?searchtype=author&query=Dosovitskiy%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Beyer%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Kolesnikov%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Weissenborn%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Zhai%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Zhai%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Unterthiner%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Dehghani%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Minderer%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Heigold%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Gelly%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Houlsby%2C+N


The CLIP Model

69

Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, 
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, 
Gretchen Krueger, Ilya Sutskever

https://arxiv.org/abs/2103.00020

𝐿 =@
8

ℓ 𝐼8𝑇8

ℓ 𝐼&𝑇& = − log
exp(𝑠𝑖𝑚 𝐼& , 𝑇& )

∑'(%)* 1 𝑘 ≠ 𝑖 exp(𝑠𝑖𝑚 𝐼& , 𝑇' )

https://arxiv.org/search/cs?searchtype=author&query=Radford%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Kim%2C+J+W
https://arxiv.org/search/cs?searchtype=author&query=Hallacy%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Ramesh%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Goh%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Agarwal%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sastry%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Askell%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Mishkin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Clark%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Krueger%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Sutskever%2C+I


The CLIP Model
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Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, 
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, 
Gretchen Krueger, Ilya Sutskever

https://arxiv.org/abs/2103.00020

𝐿 =@
8

ℓ! 𝐼8𝑇8 + ℓ&(𝐼8𝑇8)

ℓ% 𝐼&𝑇& = − log
exp(𝑠𝑖𝑚 𝐼& , 𝑇& )

∑'(%)* 1 𝑘 ≠ 𝑖 exp(𝑠𝑖𝑚 𝐼& , 𝑇' )

ℓ) 𝐼&𝑇& = − log
exp(𝑠𝑖𝑚 𝐼& , 𝑇& )

∑'(%)* 1 𝑘 ≠ 𝑖 exp(𝑠𝑖𝑚 𝐼' , 𝑇& )

https://arxiv.org/search/cs?searchtype=author&query=Radford%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Kim%2C+J+W
https://arxiv.org/search/cs?searchtype=author&query=Hallacy%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Ramesh%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Goh%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Agarwal%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sastry%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Askell%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Mishkin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Clark%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Krueger%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Sutskever%2C+I
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Questions?


