
Deep Learning for Vision &
Language

Natural Language Processing I: RNNs and Transformers

Second Assignment
• Due Next Monday and third and final assignment to follow soon.

• Submit your project proposal – think about the amount of work it
would take to a) Create an assignment 4, b) Solve assignment 4. Often
in research and entrepreneurship asking a good question/finding the
right problem is more important than giving a great answer/solution.

1

Recurrent Neural Networks
• These are models for handling sequences of things.

• Each input is not a vector but a sequence of input vectors.

• e.g. Each input can be a “word embedding” or any “word”
representation – we will use in our first examples one-hot encoded
tokens but in practice continuous dense word embeddings are used.

2

The Embedding Layer nn.Embedding

3

The Embedding Layer
nn.Embedding

4

nn.Embedding(n, d)

dog

cat

apple

work#

the

wizard

zealot

under

…

n

d

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

ℎ!

𝑦!

𝑦! = softmax(𝑊#%ℎ!)

Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥! =	 [0	0	1	0	0]

ℎ" = [0	0	0	0	0	0	0]

𝑦! = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ! = [0.1	 0.2	0	 − 0.3	 − 0.1]

ℎ! = [0.1	 0.2	0	 − 0.3	 − 0.1]

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

𝑦! = softmax(𝑊#%ℎ!)

Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥! =	 [0	0	1	0	0]

ℎ" = [0	0	0	0	0	0	0]

𝑦! = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ! = [0.1	 0.2	0	 − 0.3	 − 0.1]

ℎ! = [0.1	 0.2	0	 − 0.3	 − 0.1]

a b c d e

e (0.7)

c

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑦!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

𝑦! = softmax(𝑊#%ℎ!)

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

Recurrent Neural Network Cell

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ! = tanh(𝑊##ℎ" +𝑊#$𝑥!)

Pytorch RNN

(Unrolled) Recurrent Neural Network

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

𝑥&

𝑅𝑁𝑁 ℎ&

𝑥'

𝑅𝑁𝑁 ℎ'

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑥&

𝑅𝑁𝑁 ℎ&

ℎ&

𝑥'

𝑅𝑁𝑁 ℎ'

ℎ'

my car works

<<noun>> <<verb>>

𝑦! 𝑦& 𝑦'

<<possessive>>

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

my car works <<possessive>> <<noun>> <<verb>>

my dog ate the assignment <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

my mother saved the day <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

the smart kid solved the problem <<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>

Training examples don’t need to be the same length!

input output

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

L(my car works) = 3 L (<<possessive>> <<noun>> <<verb>>) = 3

L(my dog ate the assignment) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L(my mother saved the day) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L(the smart kid solved the problem) = 6 L (<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 6

Training examples don’t need to be the same length!

input output

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 1: Forget about batches, just process things one by one.

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 2: Zero padding. We can put the above vectors in T: 4 x 1000 x 6

𝑥!

𝑅𝑁𝑁ℎ" ℎ!

𝑥&

𝑅𝑁𝑁 ℎ&

𝑥'

𝑅𝑁𝑁 ℎ(

ℎ(

the cat likes

positive /
negative sentiment rating

𝑦

How can it be used? – e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems

𝑅𝑁𝑁…

<<EOS>>

𝑥(

How can it be used? – e.g. Sentiment Scoring
Many to one Mapping Problems

this restaurant has good food Positive

this restaurant is bad Negative

this restaurant is the worst Negative

this restaurant is well recommended Positive

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

DURING TRAINING

How can it be used? – e.g. Text Generation
Auto-regressive Models

<START> this restaurant has good food

<START> this restaurant is bad

<START> this restaurant is the worst

<START> this restaurant is well recommended

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

this restaurant is bad <END>

this restaurant is the worst <END>

this restaurant is well recommended <END>

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

𝑥#

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

𝑥#

ℎ#

𝑦#

ℎ#

world

DURING TESTING

How can it be used? – e.g. Text Generation
Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

𝑥'

ℎ'

𝑦'

<END>

DURING TESTING

How can it be used? – e.g. Machine Translation
Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ!

<START>

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

DURING TRAINING

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

How can it be used? – e.g. Machine Translation
Sequence to Sequence Models

<START> este restaurante tiene buena comida

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

<START> this restaurant has good food

<START> el mundo no es suficiente the world is not enough <END>

<START> the world is not enough

How can it be used? – e.g. Machine Translation
Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

DURING TRAINING – (Alternative)

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

Problems
• Long Sequences lead to vanishing

• Hidden states can not carry information in a long sequence
(Telephone Game problem)

35

Solutions Proposed
• Use another hidden state variable and experiment with more

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

36

LSTM Cell (Long Short-Term Memory)

𝑥!

𝐿𝑆𝑇𝑀
ℎ" ℎ!

𝑐" 𝑐!

Solutions Proposed
• Use another hidden state variable and experiment with more

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

38

Bidirectional Recurrent Neural Network

𝑥!

𝐵𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑥#

B𝑅𝑁𝑁 ℎ#

ℎ#

𝑥$

𝐵𝑅𝑁𝑁 ℎ$

ℎ$

the cat wants

<<pronoun>> <<noun>> <<verb>>

𝑦! 𝑦# 𝑦$

Solutions Proposed
• Use another hidden state variable and experiment with more

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

• Stack RNNs, use an RNN that feeds its output states to another RNN
and this second RNN outputs the final output states.
• Stacked RNNs, or Deep RNNs.

40

Stacked Recurrent Neural Network

𝑥!

𝑅𝑁𝑁

+ℎ!

𝑥#

𝑅𝑁𝑁

𝑥$

𝑅𝑁𝑁

c a t

𝑦! 𝑦# 𝑦$

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑅𝑁𝑁 ℎ#

ℎ#

𝑅𝑁𝑁 ℎ$

ℎ$

+ℎ# +ℎ$

+ℎ" +ℎ! +ℎ# +ℎ$

Stacked Bidirectional Recurrent Neural Network

𝑥!

𝑅𝑁𝑁

+ℎ!

𝑥#

𝑅𝑁𝑁

𝑥$

𝑅𝑁𝑁

c a t

𝑦! 𝑦# 𝑦$

𝑅𝑁𝑁ℎ" ℎ!

ℎ!

𝑅𝑁𝑁 ℎ#

ℎ#

𝑅𝑁𝑁 ℎ$

ℎ$

+ℎ# +ℎ$

+ℎ" +ℎ! +ℎ# +ℎ$

Best Solution: Learning Attention Weights

43

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs – Sequence to score prediction

ℎ'

𝑦'

[English, German, Swiss German, Gaelic, Dutch, Afrikaans, Luxembourgish, Limburgish, other]

Classify

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNs for Text Generation (Auto-regressive)

<START>

+ Noise
vector

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs for Machine Translation Seq-to-Seq

ℎ'

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs for Machine Translation Seq-to-Seq

ℎ" ℎ# ℎ$ ℎ% ℎ& ℎ'

ℎ

)ℎ =
1
𝑛
.ℎ!

Perhaps a better idea is to
compute the average h vector across all steps
and pass this to the decoder

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs for Machine Translation Seq-to-Seq

ℎ" ℎ# ℎ$ ℎ% ℎ& ℎ'

ℎ

)ℎ =
1
𝑛
.ℎ!

Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder!

RNNℎ!

𝑥"

ℎ"

𝑦"

ℎ"

The

RNN

The

𝑥#

ℎ#

𝑦#

ℎ#

world

RNN

world

𝑥$

ℎ$

𝑦$

ℎ$

is

RNN

is

𝑥%

ℎ%

𝑦%

ℎ%

not

RNN

not

𝑥&

ℎ&

𝑦&

ℎ&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs for Machine Translation Seq-to-Seq

ℎ" ℎ# ℎ$ ℎ% ℎ& ℎ'

ℎ

Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights!!

)ℎ =.𝑎!ℎ!

RNN𝑣!

𝑥"

ℎ"

𝑦"

𝑣"

The

RNN

The

𝑥#

ℎ#

𝑦#

𝑣#

world

RNN

world

𝑥$

ℎ$

𝑦$

𝑣$

is

RNN

is

𝑥%

ℎ%

𝑦%

𝑣%

not

RNN

not

𝑥&

ℎ&

𝑦&

𝑣&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

RNNs for Machine Translation Seq-to-Seq

ℎ" ℎ# ℎ$ ℎ% ℎ& ℎ'

ℎ

Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights, and the weights are specific
for each time step!!!

0ℎ" =.𝑎",!ℎ!

Only showing the third time step encoder-decoder connection

such that:

𝑎",! =
exp(ℎ"𝑣"$%)
∑ exp(ℎ!𝑣!$%)

Let’s take a look at one of
the first papers introducing
this idea.

Let’s look at the Attention weights

52

Transformers: Attention is All You Need

53

Attention is All you Need (no RNNs)

Vaswani et al. Attention is
all you need
https://arxiv.org/abs/1706.0
3762

Fixed number of input tokens
[but hey! we can always define a large enough length and add mask tokens]

Encoder

Decoder

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Attention is All you Need (no RNNs)

Vaswani et al. Attention is
all you need
https://arxiv.org/abs/1706.0
3762

Fixed number of input tokens
[but hey! we can always define a large enough length and add mask tokens]

Encoder

Decoder

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Attention is All you Need (no RNNs)

Vaswani et al. Attention is
all you need
https://arxiv.org/abs/1706.0
3762

Fixed number of input tokens
[but hey! we can always define a large enough length and add mask tokens]

Encoder

Decoder

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

We can also draw this as in the paper:

Vaswani et al. Attention is
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Regular Attention: + Scaling factor

Vaswani et al. Attention is
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

RNN𝑣!

𝑥"

ℎ"

𝑦"

𝑣"

The

RNN

The

𝑥#

ℎ#

𝑦#

𝑣#

world

RNN

world

𝑥$

ℎ$

𝑦$

𝑣$

is

RNN

is

𝑥%

ℎ%

𝑦%

𝑣%

not

RNN

not

𝑥&

ℎ&

𝑦&

𝑣&

enough

RNN

enough

𝑥'

ℎ'

𝑦'

<END>

RNNℎ!

<START>

𝑥"

ℎ" RNN

El

𝑥#

ℎ# RNN

mundo

𝑥$

ℎ$ RNN

no

𝑥%

ℎ% RNN

es

𝑥&

ℎ& RNN

suficiente

𝑥'

This is not unlike what we already used before

ℎ" ℎ# ℎ$ ℎ% ℎ& ℎ'

ℎ

0ℎ" =.𝑎",!ℎ!

Only showing the third time step encoder-decoder connection

such that:

𝑎",! =
exp(ℎ"𝑣"$%)
∑ exp(ℎ!𝑣!$%)

V: those are h’s here
Q: those are h’s here
K: those are v’s here

Multi-head Attention: Do not settle for just one set of attention weights.

Vaswani et al. Attention is
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

We can lose track of position since we are aggregating across all locations

Vaswani et al. Attention is
all you need
https://arxiv.org/abs/1706.0
3762

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Multi-headed
attention
weights are
harder to
interpret
obviously

62

The BERT Encoder Model

63

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805

• No decoder

• Train the model to fill-in-the-blank by
masking some of the input tokens and
trying to recover the full sentence.

• The input is not one sentence but two
sentences separated by a [SEP] token.

• Also try to predict whether these two
input sentences are consecutive or not.

Important things to know

https://arxiv.org/abs/1810.04805

The BERT Encoder Model

64

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805

https://arxiv.org/abs/1810.04805

The BERT Encoder-only Model

65

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805

https://arxiv.org/abs/1810.04805

The T5 Encoder-Decoder Model

Encoder

Decoder

The GPT-2, GPT-3 Decoder-only Model

Decoder

Vision Transformers

68

https://arxiv.org/abs/2010.11929
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby

https://arxiv.org/search/cs?searchtype=author&query=Dosovitskiy%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Beyer%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Kolesnikov%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Weissenborn%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Zhai%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Zhai%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Unterthiner%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Dehghani%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Minderer%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Heigold%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Gelly%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Houlsby%2C+N

The CLIP Model

69

Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, Ilya Sutskever

https://arxiv.org/abs/2103.00020

𝐿 =@
8

ℓ 𝐼8𝑇8

ℓ 𝐼&𝑇& = − log
exp(𝑠𝑖𝑚 𝐼& , 𝑇&)

∑'(%)* 1 𝑘 ≠ 𝑖 exp(𝑠𝑖𝑚 𝐼& , 𝑇')

https://arxiv.org/search/cs?searchtype=author&query=Radford%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Kim%2C+J+W
https://arxiv.org/search/cs?searchtype=author&query=Hallacy%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Ramesh%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Goh%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Agarwal%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sastry%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Askell%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Mishkin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Clark%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Krueger%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Sutskever%2C+I

The CLIP Model

70

Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, Ilya Sutskever

https://arxiv.org/abs/2103.00020

𝐿 =@
8

ℓ! 𝐼8𝑇8 + ℓ&(𝐼8𝑇8)

ℓ% 𝐼&𝑇& = − log
exp(𝑠𝑖𝑚 𝐼& , 𝑇&)

∑'(%)* 1 𝑘 ≠ 𝑖 exp(𝑠𝑖𝑚 𝐼& , 𝑇')

ℓ) 𝐼&𝑇& = − log
exp(𝑠𝑖𝑚 𝐼& , 𝑇&)

∑'(%)* 1 𝑘 ≠ 𝑖 exp(𝑠𝑖𝑚 𝐼' , 𝑇&)

https://arxiv.org/search/cs?searchtype=author&query=Radford%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Kim%2C+J+W
https://arxiv.org/search/cs?searchtype=author&query=Hallacy%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Ramesh%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Goh%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Agarwal%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sastry%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Askell%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Mishkin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Clark%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Krueger%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Sutskever%2C+I

71

Questions?

