# Deep Learning for Vision \& Language 

Natural Language Processing I: RNNs and Transformers
谷 RICE UNIVERSITY

## Second Assignment

- Due Next Monday and third and final assignment to follow soon.
- Submit your project proposal - think about the amount of work it would take to a) Create an assignment 4, b) Solve assignment 4. Often in research and entrepreneurship asking a good question/finding the right problem is more important than giving a great answer/solution.


## Recurrent Neural Networks

- These are models for handling sequences of things.
- Each input is not a vector but a sequence of input vectors.
- e.g. Each input can be a "word embedding" or any "word" representation - we will use in our first examples one-hot encoded tokens but in practice continuous dense word embeddings are used.


## The Embedding Layer nn.Embedding

## EMBEDDING

CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, device=None, dtype=None) [SOURCE]

A simple lookup table that stores embeddings of a fixed dictionary and size.

This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings.

## Parameters:

- num_embeddings (int) - size of the dictionary of embeddings
- embedding_dim (int) - the size of each embedding vector
- padding_idx (int, optional) - If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed "pad". For a newly constructed Embedding, the embedding vector at padding_idx will default to all zeros, but can be updated to another value to be used as the padding vector.



# The Embedding Layer nn.Embedding 

nn.Embedding(n, d)

## Recurrent Neural Network Cell

$$
\rightarrow \text { RNN } \longrightarrow \text { (h) }
$$

## Recurrent Neural Network Cell

$$
h_{1}=\tanh \left(W_{h h} h_{0}+W_{h x} x_{1}\right)
$$



## Recurrent Neural Network Cell



$$
\begin{aligned}
& h_{1}=\tanh \left(W_{h h} h_{0}+W_{h x} x_{1}\right) \\
& y_{1}=\operatorname{softmax}\left(W_{h y} h_{1}\right)
\end{aligned}
$$

## Recurrent Neural Network Cell

$$
\begin{aligned}
& y_{1}=[0.1,0.05,0.05,0.1,0.7] \\
& h_{1}=\left[\begin{array}{llll}
0.1 & 0.2 & 0-0.3-0.1
\end{array}\right] \\
& h_{0}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \longrightarrow \quad R N N \quad \longrightarrow \quad h_{1}=\left[\begin{array}{lllll}
0.1 & 0.2 & 0 & -0.3 & -0.1
\end{array}\right] \\
& h_{1}=\tanh \left(W_{h h} h_{0}+W_{h x} x_{1}\right) \quad x_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right] \\
& y_{1}=\operatorname{softmax}\left(W_{h y} h_{1}\right)
\end{aligned}
$$

## Recurrent Neural Network Cell

$$
\begin{aligned}
& y_{1}=[0.1,0.05,0.05,0.1,0.7] \longrightarrow e(0.7) \\
& h_{1}=\left[\begin{array}{lllll}
0.1 & 0.2 & 0 & -0.3 & -0.1
\end{array}\right] \\
& \left.h_{0}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad 0\right] \quad \rightarrow \quad R N N \quad h_{1}=\left[\begin{array}{lllll}
0.1 & 0.2 & 0 & -0.3 & -0.1
\end{array}\right] \\
& x_{1}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow
\end{array}\right] \\
& \text { abcde }
\end{aligned}
$$

## Recurrent Neural Network Cell



$$
\begin{aligned}
& h_{1}=\tanh \left(W_{h h} h_{0}+W_{h x} x_{1}\right) \\
& y_{1}=\operatorname{softmax}\left(W_{h y} h_{1}\right)
\end{aligned}
$$

## Recurrent Neural Network Cell


$h_{1}=\tanh \left(W_{h h} h_{0}+W_{h x} x_{1}\right)$
$x_{1}$

## Recurrent Neural Network Cell


$h_{1}=\tanh \left(W_{h h} h_{0}+W_{h x} x_{1}\right)$
$x_{1}$

RNN

CLASS torch.nn.RNN(self, input_size, hidden_size, num_layers=1, nonlinearity='tanh', bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None, 1 dtype=None) [SOURCE]

Apply a multi-layer Elman RNN with tanh or ReLU non-linearity to an input sequence. For each element in the input sequence, each layer computes the following function:

$$
h_{t}=\tanh \left(x_{t} W_{i h}^{T}+b_{i h}+h_{t-1} W_{h h}^{T}+b_{h h}\right)
$$

where $h_{t}$ is the hidden state at time $t, x_{t}$ is the input at time $t$, and $h_{(t-1)}$ is the hidden state of the previous layer at time $t-1$ or the initial hidden state at time o. If nonlinearity is 'relu' , then ReLU is used instead of tanh.

## Parameters

- input_size - The number of expected features in the input $x$
- hidden_size - The number of features in the hidden state $h$
- num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
- nonlinearity - The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
- bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True
- batch_first - If True , then the input and output tensors are provided as (batch, seq, feature) instead of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details. Default: False
- dropout - If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0
- bidirectional - If True , becomes a bidirectional RNN. Default: False
- input: tensor of shape $\left(L, H_{i n}\right)$ for unbatched input, $\left(L, N, H_{i n}\right)$ when batch_first=False or $\left(N, L, H_{\text {in }}\right)$ when batch_first=True containing the features of the input sequence. The input can also be a packed variable length sequence. See torch.nn.utils.rnn.pack_padded_sequence() or torch.nn.utils.rnn.pack_sequence() for details.
- h_0: tensor of shape $\left(D *\right.$ num_layers, $\left.H_{\text {out }}\right)$ for unbatched input or $(D *$ num_layers, $N, H_{\text {out }}$ ) containing the initial hidden state for the input sequence batch. Defaults to zeros if not provided.
where:

$$
\begin{aligned}
N & =\text { batch size } \\
L & =\text { sequence length } \\
D & =2 \text { if bidirectional=True otherwise } 1 \\
H_{\text {in }} & =\text { input_size } \\
H_{\text {out }} & =\text { hidden_size }
\end{aligned}
$$

Outputs: output, h_n

- output: tensor of shape $\left(L, D * H_{\text {out }}\right)$ for unbatched input, $\left(L, N, D * H_{\text {out }}\right)$ when batch_first=False or $\left(N, L, D * H_{\text {out }}\right)$ when batch_first=True containing the output features ( $h \_t$ ) from the last layer of the RNN, for each $t$. If a torch.nn.utils.rnn. PackedSequence has been given as the input, the output will also be a packed sequence.
- h_n: tensor of shape $\left(D *\right.$ num_layers, $\left.H_{o u t}\right)$ for unbatched input or $(D *$ num_layers, $N, H_{\text {out }}$ ) containing the final hidden state for each element in the batch.


## (Unrolled) Recurrent Neural Network




How can it be used? - e.g. Tagging a Text Sequence One-to-one Sequence Mapping Problems

Training examples don't need to be the same length!

## input

my car works
my dog ate the assignment
my mother saved the day
the smart kid solved the problem

## output

<<possessive>> <<noun>> <<verb>>
<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>
<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>
<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>

Training examples don't need to be the same length!

## input

L(my car works) = $\mathbf{3}$
$L($ my dog ate the assignment $)=5$
$\mathbf{L}($ my mother saved the day $)=5$
output
L (<<possessive>> <<noun>> <<verb>>) = 3

L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5
L( the smart kid solved the problem ) = 6 L(<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 6

Training examples don't need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags
input
T: $1000 \times 3$

T: $1000 \times 5$

T: $1000 \times 5$

T: $1000 \times 6$
output

T: $20 \times 3$

T: $20 \times 5$

T: $20 \times 5$

T: $20 \times 6$

Training examples don't need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags
input
T: $1000 \times 3$

T: $1000 \times 5$

T: $1000 \times 5$

T: $1000 \times 6$
output

T: $20 \times 3$

T: $20 \times 5$

T: $20 \times 5$

T: $20 \times 6$

How do we create batches if inputs and outputs have different shapes?

Training examples don't need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags
input
T: $1000 \times 3$

T: $1000 \times 5$

T: $1000 \times 5$

T: $1000 \times 6$
output

T: $20 \times 3$

T: $20 \times 5$

T: $20 \times 5$

T: $20 \times 6$

How do we create batches if inputs and outputs have different shapes?

Solution 1: Forget about batches, just process things one by one.

Training examples don't need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags
input
output
T: $1000 \times 3$
T: $20 \times 3$

T: $1000 \times 5$
T: $20 \times 5$

T: $1000 \times 5$
T: $20 \times 5$

T: $1000 \times 6$
T: $20 \times 6$

How do we create batches if inputs and outputs have different shapes?

Solution 2: Zero padding.
We can put the above vectors in T: $4 \times 1000 \times 6$

How can it be used? - e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems


Many to one Mapping Problems

Input training examples don't need to be the same length!
In this case outputs can be.

## input

this restaurant has good food
this restaurant is bad
this restaurant is the worst
this restaurant is well recommended
output

Positive

Negative

Negative

Positive

How can it be used? - e.g. Text Generation
Auto-regressive model - Sequence to Sequence during Training, Auto-regressive during test

## DURING TRAINING



How can it be used? - e.g. Text Generation
Auto-regressive Models

Input training examples don't need to be the same length!
In this case outputs can be.
input
<START> this restaurant has good food
<START> this restaurant is bad
<START> this restaurant is the worst
<START> this restaurant is well recommended
output
this restaurant has good food <END>
this restaurant is bad <END>
this restaurant is the worst <END>
this restaurant is well recommended <END>

How can it be used? - e.g. Text Generation
Auto-regressive model - Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

<START>

How can it be used? - e.g. Text Generation
Auto-regressive model - Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING
The

<START>

How can it be used? - e.g. Text Generation
Auto-regressive model - Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING
The

<START>

How can it be used? - e.g. Text Generation
Auto-regressive model - Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

<START>

How can it be used? - e.g. Text Generation
Auto-regressive model - Sequence to Sequence during Training, Auto-regressive during test

## DURING TESTING


<START>

How can it be used? - e.g. Machine Translation

## Sequence to Sequence - Encoding - Decoding - Many to Many mapping

## DURING TRAINING



Input training examples don't need to be the same length!
In this case outputs can be.
input
<START> este restaurante tiene buena comida
<START> this restaurant has good food
<START> el mundo no es suficiente
<START> the world is not enough
output
this restaurant has good food <END>
the world is not enough <END>

How can it be used? - e.g. Machine Translation

## Sequence to Sequence - Encoding - Decoding - Many to Many mapping

DURING TRAINING - (Alternative)


## Problems

- Long Sequences lead to vanishing
- Hidden states can not carry information in a long sequence (Telephone Game problem)


## Solutions Proposed

- Use another hidden state variable and experiment with more complex transition functions than $h=\tanh \left(W_{1} h+W_{2} x\right)$.
- Read about LSTMs, GRUs, etc


## LSTM Cell (Long Short-Term Memory)

$$
\begin{align*}
i_{t} & =\sigma\left(W_{x i} x_{t}+W_{h i} h_{t-1}+W_{c i} c_{t-1}+b_{i}\right)  \tag{7}\\
f_{t} & =\sigma\left(W_{x f} x_{t}+W_{h f} h_{t-1}+W_{c f} c_{t-1}+b_{f}\right)  \tag{8}\\
c_{t} & =f_{t} c_{t-1}+i_{t} \tanh \left(W_{x c} x_{t}+W_{h c} h_{t-1}+b_{c}\right)  \tag{9}\\
o_{t} & =\sigma\left(W_{x o} x_{t}+W_{h o} h_{t-1}+W_{c o} c_{t}+b_{o}\right)  \tag{10}\\
h_{t} & =o_{t} \tanh \left(c_{t}\right)
\end{align*}
$$(11)


$x_{1}$

## Solutions Proposed

- Use another hidden state variable and experiment with more complex transition functions than $h=\tanh \left(W_{1} h+W_{2} x\right)$.
- Read about LSTMs, GRUs, etc
- Encode the sentences both from left-to-right and right-to-left using two RNNs and combine the final hidden states from each direction.
- Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs


## Bidirectional Recurrent Neural Network

<<pronoun>>


## Solutions Proposed

- Use another hidden state variable and experiment with more complex transition functions than $h=\tanh \left(W_{1} h+W_{2} x\right)$.
- Read about LSTMs, GRUs, etc
- Encode the sentences both from left-to-right and right-to-left using two RNNs and combine the final hidden states from each direction.
- Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs
- Stack RNNs, use an RNN that feeds its output states to another RNN and this second RNN outputs the final output states.
- Stacked RNNs, or Deep RNNs.

Stacked Recurrent Neural Network


## Stacked Bidirectional Recurrent Neural Network



## Best Solution: Learning Attention Weights

## RNNs - Sequence to score prediction

## Classify

[English, German, Swiss German, Gaelic, Dutch, Afrikaans, Luxembourgish, Limburgish, other]


## RNNs for Text Generation (Auto-regressive)



## RNNs for Machine Translation Seq-to-Seq



## RNNs for Machine Translation Seq-to-Seq

Perhaps a better idea is to compute the average $h$ vector across all steps and pass this to the decoder



## RNNs for Machine Translation Seq-to-Seq

Perhaps an even better idea is to compute the average $h$ vector across all steps and pass this to the decoder at each time step in the decoder!

$$
\bar{h}=\frac{1}{n} \sum h_{i}
$$



## RNNs for Machine Translation Seq-to-Seq

Perhaps an even better idea is to compute the average $h$ vector across all steps and pass this to the decoder at each time step in the decoder but using a weighted average with learned weights!!


## RNNs for Machine Translation Seq-to-Seq

Only showing the third time step encoder-decoder connection

Perhaps an even better idea is to compute the average $h$ vector across all steps and pass this to the decoder at each time step in the decoder but using a weighted average with learned weights, and the weights are specific for each time step!!!


## Neural Machine Translation <br> by Jointly Learning to Align and Translate

## Dzmitry Bahdanau

Jacobs University Bremen, Germany

## KyungHyun Cho Yoshua Bengio*

Université de Montréal

Let's take a look at one of the first papers introducing this idea.


Figure 1: The graphical illustration of the proposed model trying to generate the $t$-th target word $y_{t}$ given a source sentence $\left(x_{1}, x_{2}, \ldots, x_{T}\right)$.

$$
\begin{gathered}
c_{i}=\sum_{j=1}^{T_{x}} \alpha_{i j} h_{j} . \\
\alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{k=1}^{T_{x}} \exp \left(e_{i k}\right)}, \\
e_{i j}=a\left(s_{i-1}, h_{j}\right)
\end{gathered}
$$

## Let's look at the Attention weights



## Transformers: Attention is All You Need

## Attention Is All You Need

Ashish Vaswani*<br>Google Brain<br>avaswani@google.com

Noam Shazeer*<br>Google Brain<br>noam@google.com

Niki Parmar*
Google Research
Jakob Uszkoreit*
Google Research
nikip@google.com
usz@google.com

Llion Jones*<br>Google Research<br>llion@google.com

Aidan N. Gomez* $\dagger$
University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser<br>Google Brain<br>lukaszkaiser@google.com

## Illia Polosukhin* ${ }^{\ddagger}$

illia.polosukhin@gmail.com

## Attention is All you Need (no RNNs)

Vaswani et al. Attention is all you need https://arxiv.org/abs/1706.0 3762


Fixed number of input tokens
[but hey! we can always define a large enough length and add mask tokens]

## Attention is All you Need (no RNNs)

Vaswani et al. Attention is all you need https://arxiv.org/abs/1706.0 3762


## Attention is All you Need (no RNNs)

Vaswani et al. Attention is all you need
https://arxiv.org/abs/1706.0 3762


Fixed number of input tokens
[but hey! we can always define a large enough length and add mask tokens]


## We can also draw this as in the paper:

Vaswani et al. Attention is all you need
https://arxiv.org/abs/1706.0 3762


## Regular Attention: + Scaling factor

Vaswani et al. Attention is all you need
https://arxiv.org/abs/1706.0 3762

$\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$

Scaled Dot-Product Attention


## This is not unlike what we already used before

Only showing the third time step encoder-decoder connection


## Multi-head Attention: Do not settle for just one set of attention weights.

Vaswani et al. Attention is all you need https://arxiv.org/abs/1706.0 3762

$$
\begin{aligned}
\operatorname{MultiHead}(Q, K, V) & =\operatorname{Concat}\left(\operatorname{head}_{1}, \ldots, \operatorname{head}_{\mathrm{h}}\right) W^{O} \\
\text { where head } & =\operatorname{Attention}\left(Q W_{i}^{Q}, K W_{i}^{K}, V W_{i}^{V}\right)
\end{aligned}
$$

Where the projections are parameter matrices $W_{i}^{Q} \in \mathbb{R}^{d_{\text {mode }} \times d_{k}}, W_{i}^{K} \in \mathbb{R}^{d_{\text {mode }} \times d_{k}}, W_{i}^{V} \in \mathbb{R}^{d_{\text {mode }} \times d_{v}}$ and $W^{O} \in \mathbb{R}^{h d_{v} \times d_{\text {model }}}$.


## We can lose track of position since we are aggregating across all locations

Vaswani et al. Attention is all you need
https://arxiv.org/abs/1706.0
3762


## Multi-headed attention weights are harder to interpret obviously

## The BERT Encoder Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805

## Important things to know

- No decoder
- Train the model to fill-in-the-blank by masking some of the input tokens and trying to recover the full sentence.
- The input is not one sentence but two sentences separated by a [SEP] token.
- Also try to predict whether these two input sentences are consecutive or not.


Pre-training

## The BERT Encoder Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805


Pre-training
Fine-Tuning

## The BERT Encoder-only Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805


Pre-training
Fine-Tuning

## The T5 Encoder-Decoder Model



## The GPT-2, GPT-3 Decoder-only Model



## Vision Transformers



Transformer Encoder

https://arxiv.org/abs/2010.11929
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby

## The CLIP Model



$$
\begin{gathered}
L=\sum_{k} \ell\left(I_{k} T_{k}\right) \\
\ell\left(I_{k} T_{k}\right)=-\log \left(\frac{\exp \left(\operatorname{sim}\left(I_{k}, T_{k}\right)\right)}{\sum_{t=1}^{2 N} 1[k \neq i] \exp \left(\operatorname{sim}\left(I_{k}, T_{t}\right)\right)}\right)
\end{gathered}
$$

## https://arxiv.org/abs/2103.00020

Learning Transferable Visual Models From Natural Language Supervision Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever

## The CLIP Model



$$
\begin{gathered}
L=\sum_{k} \ell_{1}\left(I_{k} T_{k}\right)+\ell_{2}\left(I_{k} T_{k}\right) \\
\ell_{1}\left(I_{k} T_{k}\right)=-\log \left(\frac{\exp \left(\operatorname{sim}\left(I_{k}, T_{k}\right)\right)}{\sum_{t=1}^{2 N} 1[k \neq i] \exp \left(\operatorname{sim}\left(I_{k}, T_{t}\right)\right)}\right) \\
\ell_{2}\left(I_{k} T_{k}\right)=-\log \left(\frac{\exp \left(\operatorname{sim}\left(I_{k}, T_{k}\right)\right)}{\sum_{t=1}^{2 N} 1[k \neq i] \exp \left(\operatorname{sim}\left(I_{t}, T_{k}\right)\right)}\right)
\end{gathered}
$$

https://arxiv.org/abs/2103.00020
Learning Transferable Visual Models From Natural Language Supervision Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever

## Questions?

