" o A I . e s S ATD S B e i SN
DY e G B . e el S A i
B e — . B e A e Pdipes A -

~

\ N Ml Bl A I A Bl M . W WP N e -
\ el T ol Sl NSttt B i, N gl
Tt T BT i i, e S . M @
Rl Y A s . i S, W, . B e i

. " I . - * 4 . il IR, N . Wy et 4w

Deep Learning for Vision &
Language

Natural Language Processing I: RNNs and Transformers




Second Assignment

* Due Next Monday and third and final assignment to follow soon.

e Submit your project proposal — think about the amount of work it
would take to a) Create an assignment 4, b) Solve assignment 4. Often
in research and entrepreneurship asking a good question/finding the
right problem is more important than giving a great answer/solution.



Recurrent Neural Networks

* These are models for handling sequences of things.
* Each input is not a vector but a sequence of input vectors.

e e.g. Each input can be a “word embedding” or any “word”
representation — we will use in our first examples one-hot encoded
tokens but in practice continuous dense word embeddings are used.



The Embedding Layer nn.Embedding

EMBEDDING

CLASS torch.nn.Embedding (num_embeddings, embedding_dim, padding_idx=None,
max_noxrm=None, noxrm_type=2.0, scale_grad_by_ freq=False, sparse=False,
_weight=None, device=None, dtype=None) [SOURCE]

A simple lookup table that stores embeddings of a fixed dictionary and size.

This module is often used to store word embeddings and retrieve them using indices. The input to
the module is a list of indices, and the output is the corresponding word embeddings.

Parameters:

e num_embeddings (int) - size of the dictionary of embeddings

e embedding_dim (int) - the size of each embedding vector

e padding_idx (int, optional) - If specified, the entries at padding_idx do not contribute
to the gradient; therefore, the embedding vector at padding_idx is not updated during
training, i.e. it remains as a fixed “pad”. For a newly constructed Embedding, the
embedding vector at padding_idx will default to all zeros, but can be updated to

another value to be used as the padding vector.
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Recurrent Neural Network Cell
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Recurrent Neural Network Cell

hl = tanh(Whth + thxl)
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Recurrent Neural Network Cell
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hl = tanh(Whth + thxl)
y1 = softmax(Wpyh,) @



Recurrent Neural Network Cell

y; = [0.1,0.05,0.05, 0.1,0.7]

1

hy =[0.1 020 —0.3 —0.1]

1

ho=10000000] — —  h;=[01 020 —03 —0.1]

hy = tanh(Wppho + Whyx1) x; = [00100]
y1 = softmax(Wpyh,)



Recurrent Neural Network Cell
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Recurrent Neural Network Cell
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hl = tanh(Whth + thxl)
y1 = softmax(Wpyh,) @



Recurrent Neural Network Cell
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Recurrent Neural Network Cell
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RNN

CLASS torch.nn.RNN (self, input_size, hidden_size, num_layers=1, nonlinearity="'tanh’,

bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None, &
dtype=None) [SOURCE]

Apply a multi-layer ElIman RNN with tanh or ReLU non-linearity to an input sequence. For each element in the
input sequence, each layer computes the following function:

ht = tanh(:z:tW'£ + bih + ht_lW,z;, + bhh)

where h; is the hidden state at time t, Z; is the input at time t, and h(t—l) is the hidden state of the previous layer at

time t-1 or the initial hidden state at time o. If nonlinearity is 'relu',then ReLU is used instead of tanh.

Parameters

input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs
together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and
computing the final results. Default: 1

nonlinearity - The non-linearity to use. Can be either 'tanh' or 'relu'.Default: 'tanh’

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first - If True, then the input and output tensors are provided as (batch, seq, feature) instead
of (segq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs
sections below for details. Default: False

dropout - If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last
layer, with dropout probability equal to dropout. Default: 0

bidirectional - If True, becomes a bidirectional RNN. Default: False



(AR TR

Inputs: input, h_0 o
e input: tensor of shape (L, H;;,) for unbatched input, (L, N, H;, ) when batch_first=False or
(N, L, H;;,) when batch_first=True containing the features of the input sequence. The input can
also be a packed variable length sequence. See torch.nn.utils.znn.pack_padded_sequence() or
torch.nn.utils.znn.pack_sequence() for details.
e h_0: tensor of shape (D * num_layers, H,;) for unbatched input or (D
num_layers, N, H,,;) containing the initial hidden state for the input sequence batch. Defaults to

zeros if not provided.

where:

N = batch size

L = sequence length

D = 2 if bidirectional=True otherwise 1
H;, = input_size
H,,; = hidden_size

Outputs: output, h_n

e output: tensor of shape (L, D % H,,;) for unbatched input, (L, N, D % H,;) when
batch_first=False or (N, L, D % H,,;) when batch_first=True containing the output features
(h_t) from the last layer of the RNN, for each t. If a torch.nn.utils.rnn.PackedSequence has been
given as the input, the output will also be a packed sequence.

e h_n: tensor of shape (D * num_layers, H,,;) for unbatched input or (D *
num_layers, N, H,y;) containing the final hidden state for each element in the batch.



(Unrolled) Recurrent Neural Network



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

<<possessive>> <<nhoun>> <<verb>>

?
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How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!

input output
my car works <<possessive>> <<noun>> <<verb>>
my dog ate the assignment <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>
my mother saved the day <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

the smart kid solved the problem <<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!

input output
L(my car works) =3 L (<<possessive>> <<noun>> <<verb>>) =3
L{ my dog ate the assighnment) =5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) =5
L{ my mother saved the day ) =5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) =5

|_( the smart kid solved the problem ) = 6 L (<<pronoun>><<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) =6



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x 3
T: 1000 x5 T:20x5
T: 1000 x5 T:20x5

T: 1000 x 6 T:20x 6



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x 3
T: 1000 x5 T:20x5
T: 1000 x5 T:20x5
T: 1000 x 6 T:20x6

How do we create batches if inputs and outputs have different shapes?



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x 3
T: 1000 x5 T:20x5
T: 1000 x5 T:20x5
T: 1000 x 6 T:20x6

How do we create batches if inputs and outputs have different shapes?

Solution 1: Forget about batches, just process things one by one.



How can it be used? —e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x 3
T: 1000 x5 T:20x5
T: 1000 x5 T:20x5
T: 1000 x 6 T:20x6

How do we create batches if inputs and outputs have different shapes?

Solution 2: Zero padding. We can put the above vectorsin T:4 x 1000 x 6



the

How can it be used? —e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems

positive /
negative sentiment rating

cat likes <<EOS>>



How can it be used? — e.g. Sentiment Scoring
Many to one Mapping Problems

Input training examples don’t need to be the same length!
In this case outputs can be.

input output
this restaurant has good food Positive
this restaurant is bad Negative
this restaurant is the worst Negative

this restaurant is well recommended Positive



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TRAINING

The world is not enough <END>
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How can it be used? — e.g. Text Generation
Auto-regressive Models

Input training examples don’t need to be the same length!
In this case outputs can be.

input output
<START> this restaurant has good food this restaurant has good food <END>
<START> this restaurant is bad this restaurant is bad <END>
<START?> this restaurant is the worst this restaurant is the worst <END>

<START> this restaurant is well recommended this restaurant is well recommended <END>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

(hg) — () —
I
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<START>
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How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

= ()

<START>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

<START>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

<START>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING
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How can it be used? — e.g. Machine Translation
Sequence to Sequence — Encoding — Decoding — Many to Many mapping

DURING TRAINING
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How can it be used? — e.g. Machine Translation
Sequence to Sequence Models

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

<START> este restaurante tiene buena comida this restaurant has good food <END>

<START> this restaurant has good food

<START> el mundo no es suficiente the world is not enough <END>

<START> the world is not enough



How can it be used? — e.g. Machine Translation
Sequence to Sequence — Encoding — Decoding — Many to Many mapping

DURING TRAINING - (Alternative)
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Problems

* Long Sequences lead to vanishing

* Hidden states can not carry information in a long sequence
(Telephone Game problem)

35



Solutions Proposed

* Use another hidden state variable and experiment with more
complex transition functions than h = tanh(Wh + W,x).

 Read about LSTMs, GRUs, etc

36



LSTM Cell (Long Short-Term Memory)

it = 0 (Waits + Whihs—1 + Weicp 1 + b;) (7)
ft =0 Wypxe + Whhe1 + Weper—1 + by) (8)
ct = frer—1 + iy tanh (Weexy + Whchi—1 + be) 9)
0t = 0 (Weott + Whohi—1 + Weocr + bo) (10)
ht = o tanh(cy) (11)



Solutions Proposed

* Use another hidden state variable and experiment with more
complex transition functions than h = tanh(Wh + W,x).

 Read about LSTMs, GRUs, etc

* Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.

e Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

38



Bidirectional Recurrent Neural Network



Solutions Proposed

* Use another hidden state variable and experiment with more
complex transition functions than h = tanh(Wh + W,x).

 Read about LSTMs, GRUs, etc

* Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.

* Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs
e Stack RNNs, use an RNN that feeds its output states to another RNN

and this second RNN outputs the final output states.
e Stacked RNNs, or Deep RNNs.

40



Stacked Recurrent Neural Network
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Stacked Bidirectional Recurrent Neural Network
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Best Solution: Learning Attention Weights



RNNs — Sequence to score prediction

Classify

[English, German, Swiss German, Gaelic, Dutch, Afrikaans, Luxembourgish, Limburgish, other]
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RNNs for Text Generation (Auto-regressive)
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RNNs for Machine Translation Seqg-to-Seq
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RNNs for Machine Translation Seqg-to-Seq
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RNNs for Machine Translation Seqg-to-Seq
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RNNs for Machine Translation Seqg-to-Seq
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RNNs for Machine Translation Seqg-to-Seq

Only showing the third time step encoder-decoder connection
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Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION

BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal

Let’s take a look at one of
the first papers introducing
this idea.

X X X X,

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (1, Z2,...,ZT).




Let’s look at the Attention weights
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Transformers: Attention is All You Need

Attention Is All You Need

Ashish Vaswani® Noam Shazeer* Niki Parmar* Jakob Uszkoreit"
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* ' Lukasz Kaiser"
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com
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Attention is All you Need (no RNNs)

Vaswani et al. Attention is
all you need O O O O
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(TokN-q fTokN] f[END]}

Fixed number of input tokens
[but hey! we can always define a large enough length and add mask tokens]


https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Attention is All you Need (no RNNs)

Vaswani et al. Attention is

all you need
https://arxiv.org/abs/1706.0
3762
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Attention is All you Need (no RNNs)

Vaswani et al. Attention is
all you need O O

https://arxiv.org/abs/1706.0

37(?2 & 8/abs/ Decoder

d Self Attention Module

(Transfoimer)

Encoder B (IEY

-

&) ()

Multi-head Self Attention Module
(Transformer)

Ejstarm E1 . En-1 En E’enp)

——> O——

(TokN-q fTokN] ([END]}

Fixed number of input tokens

[but hey! we can always define a large enough length and add mask tokens]



https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

We can also draw this as in the paper:

Output
Probabilities

Vaswani et al. Attention is
all you need Et@
https://arxiv.org/abs/1706.0
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Regular Attention: + Scaling factor

Vaswani et al. Attention is
all you need

T
https://arxiv.org/abs/1706.0 Attention(Q, K, V') = softmax( QK )\
3762 \/d_k

Scaled Dot-Product Attention

MatMul



https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

This is not unlike what we already used before

Only showing the third time step encoder-decoder connection
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Multi-head Attention: Do not settle for just one set of attention weights.

Vaswani et al. Attention is MultiHead(Q, K, V) = Concat(head;, ..., heady, ) W©°
all you need where head; = Attention(QWS, KWK VW)
https://arxiv.org/abs/1706.0

3762

Where the projections are parameter matrices W° € RmoaXdi K ¢ Rimaaxdi [V g Rdmodt X o
and WO € RhdvXdmoaer,

Multi-Head Attention
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We can lose track of position since we are aggregating across all locations

Output
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The BERT Encoder Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805

Important things to know

* No decoder

* Train the model to fill-in-the-blank by
masking some of the input tokens and
trying to recover the full sentence.

* The input is not one sentence but two
sentences separated by a [SEP] token.

e Also try to predict whether these two
input sentences are consecutive or not.
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The BERT Encoder Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805

ﬁsp Mask LM Ma‘% LM \ NLI /%D StartEnd Sph
i = .

2909
- ) Rt P
A [
] ! »
BERT T .......’ BERT
Eeis) E, Ey E[sep] E/ Ev B E, Ey E[SEP] E, Ev
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The BERT Encoder-only Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805
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The T5 Encoder-Decoder Model
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The GPT-2, GPT-3 Decoder-only Model
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Vision Transformers Iransformer Encoder

MLP
Head

Transformer Encoder

* Extra learnable
[class] embedding

Linear Projection of Flattened Patches
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https://arxiv.org/abs/2010.11929

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 68
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The CLIP Model
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https://arxiv.org/abs/2103.00020

Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, llya Sutskever

L= z 'g(lka)
k

(I Ty,) = —log

exp(sim(Iy, Ty))

YN 1k # ilexp(sim(Ix, Ty))
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Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
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Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, llya Sutskever
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Questions?
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