Deep Learning for Vision &
Language

Feature-space Optimization: Adversarial Examples, GANs, Style Transfer




What we have been doing: Optimize weights in
the network to predict bus (correct class).

I y=fU;w) L(y, bus)




New Idea: Create Adversarial Inputs by optimizing
the input image to predict ostrich (wrong class).

I y=f(;w) L(y, ostrich)
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Work on Adversarial examples by Goodfellow et al. , Szegedy et. al., etc.



Convnets (optimize input to predict ostrich)

Work on Adversarial examples by Goodfellow et
al. , Szegedy et. al., etc.
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Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images

mw@m Anh Nguyen, Jason Yosinski, Jeff Clune, 2014
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photocopier screen soccer ball stopwatch Windsor tie

Figure 13. Images found by maximizing the softmax output for
classes via gradient ascent [ 1 1, 26]. Optimization begins at the Im-
ageNet mean (plus small Gaussian noise to break symmetry) and
continues until the DNN confidence for the target class reaches
99.99%. Images are shown with the mean subtracted. Adding reg-
ularization makes images more recognizable but results in slightly
lower confidence scores (see supplementary material).



New Idea: Create Adversarial Inputs by optimizing
the input image to predict ostrich (wrong class).

I y=f(;w) L(y,parking meter)
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Work on Adversarial examples by Goodfellow et al. , Szegedy et. al., etc.
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Total Variation Regularization

A second richer regulariser is total variation (TV)
Ry s (x), encouraging images to consist of piece-wise con-
stant patches. For continuous functions (or distributions)
f:REXW 5 Q 3 R, the TV norm is given by:

B

(%(u,v))2+ (g—i(u,v)>2 2 du dv

where 3 = 1. Here images are discrete (x € R”*W) and
the TV norm is replaced by the finite-difference approxima-

tion: Figure 1. What is encoded by a CNN? The figure shows five
possible reconstructions of the reference image obtained from the

Rvﬂ(f)zf

Q

B
2 2\ 2 1,000-dimensional code extracted at the penultimate layer of a ref-
VB (X) - (xz,]+1 — Ty ) + (xz+1,g — Ty ) . erence CNN[ 13] (before the softmax is applied) trained on the Im-
i,j ageNet data. From the viewpoint of the model, all these images are

practically equivalent. This image is best viewed in color/screen.

Mahendran and Vedaldi, Understanding Deep Image Representations by Inverting Them, 2014



Taking the idea to the extreme: Google’s
DeepDream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
Generate your own in Pytorch: https://github.com/XavierLinNow/deepdream_pytorch



Generative Adversarial Networks (GAN)
|Goodfellow et al 2014]

Generator Fake image

https://deeplearning4j.org/generative-adversarial-network



Generative Network (closer look)

Radford et. al. Unsupervised Representation

Learning with Deep Convolutional Generative
Adversarial Networks. ICLR 2016



Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Geherator —%- Fake image

https://deeplearning4j.org/generative-adversarial-network



Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Training set

Generator

https://deeplearning4j.org/generative-adversarial-network

Fake image

Discriminator
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {:1:(1), e m(m)} from data generating distribution
Ddata (CB)

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3" oD () +10g (1 - D (¢ (+%)))].

end for

e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. NeurlPS 2014
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
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for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {.’1:(1), ey m(m)} from data generating distribution
Ddata (w)

e Update the discriminator by ascending its stochastic gradient:
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end for
e Sample minibatch of m noise samples {z1)| ..., z(™)} from noise prior p,(z).
Update e Update the generator by descending its stochastic gradient:
Generator L m
G Vo, > log (1-D (G (29))).
end for
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Goodfellow et al. NeurlPS 2014
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Generative Adversarial Networks (GAN)
|Goodfellow et al.]

Training set

Generator

https://deeplearning4j.org/generative-adversarial-network
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Generative Adversarial Networks (GAN)
|Goodfellow et al.]

* GANSs are hard to train, loss
for the discriminator and

generator might fluctuate.

Training set V Discriminator

* There are many choices for L L, M Rea

; /1 D=

loss, and other auxiliary B
signals. Y I | %

Fake image

Generator

* Training of these models is
even less well understood
than for other deep models.

https://deeplearning4j.org/generative-adversarial-network



Basic GAN Results (Example implementation is
orovided in Pytorch’s examples)

http://torch.ch/blog/2015/11/13/gan.html



NVidia’s progressive GANs ICLR 2018




Google’s BigGAN




Google’s BigGAN

Teddy Bear Microphone
e, SR,
PR \% i
f. 4

http://aiweirdness.com/post/179626595787/the-creepiest-images-generated-by-biggan



Conditional GANs: Input is not just Noise

Aﬂﬂﬂ_’ real

Isola et al. CVPR 2017: Image-to-Image Translation with Conditional Adversarial Networks



Conditional GANs: Also Hard to Train

L1

Result they
obtained with
a regular Fully
Convolutional
Network

Encoder-decoder

Result they
obtained with a
U-Net network
(with skip-
connections)

U-Net

Isola et al. CVPR 2017: Image-to-Image Translation with Conditional Adversarial Networks



Conditional GANs: Also Hard to Train
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Conditional GANs / Text-conditioned

AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Networks

Tao Xu*!, Pengchuan Zhang?, Qiuyuan Huang?,
Han Zhang®, Zhe Gan*, Xiaolei Huang', Xiaodong He?

'Lehigh University 2Microsoft Research Rutgers University 4Duke University
{tax313, xih206}@lehigh.edu, {penzhan, gihua, xiaohe}@microsoft.com
han.zhang@cs.rutgers.edu, zhe.gan@duke.edu



Conditional GANs / Text-conditioned

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT!, AKATA?, XCYAN!, LLAJAN!
Bernt Schiele, Honglak Lee SCHIELE?,HONGLAK!
1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)

2 Max Planck Institute for Informatics, Saarbriicken, Germany (MPI-INF.MPG.DE)



Conditional GANs / Text-conditioned

This flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center
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Conditional GANs / Text-conditioned

this small bird has a pink
breast and crown, and black
primaries and secondaries.




Conditional GANs / Text-conditioned
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Conditional GANs / Text-conditioned

this bird 1s red with white and has a very short beak




More on the Idea of Feature Space
Optimization

Gatys et. al. Image Style Transfer Using
Convolutional Neural Networks. CVPR 2016



Ep =Y (G*-AaY)
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Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016

Idea 1: Image
Reconstruction from
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Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016

Idea 1. Image »Ctotal — C‘5»Ccom&ent
Reconstruction from

Features |

- “convs_2, = z]
()(;'%ﬁ T Leontent = Z (Fl - Pl)z
2 : : > <€ I 4 — — ]
Lcontent = Z (Fl - Pl) phct J e :J

L=~ conv4_3
v [z 1




Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016

Idea 1: Image
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Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016

Econtent — Z (Fl - Pl)2
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Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016
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Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016
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Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016

2 |dea 2:
B, =Y (G - ab) Liotat = BLstyle Backpropagation of

—*— GL=) FiF}.
A.

- pu [ S L L| <
::conv5_:1i;: 1 A G \_/ FL Style
t)E,, OEL
N 9FL  OFL
P . |
BT | N Fh
256I I ﬁ T
-
SZicom@ 8, s =iois I
e e et B S
1.1..28I > <« [
|- Y T ——

Gradient T
descent



0O Style D

Representations

1 1 1

T

]‘i‘ ; . % '—.",’»,-‘:../—vk | I
[
[
[
[
[
Input image ﬁ> |> L{> Q
Content
Representations

VAV

Convolutional Neural Network

Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016




Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016
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Gatys et. al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016




Questions



