

Deep Learning for Vision & Language

Self-supervised Models for Computer Vision

ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders

Jefferson Hernandez¹, Ruben Villegas², Vicente Ordonez¹ ¹Rice University, ²Google DeepMind {jefehern, vicenteor}@rice.edu, rubville@google.com

VIC-MAE

Self-Supervision for Visual Model Learning

- Lots of data but no labels
- Labeling data is expensive

Similarity Learning: Triplet Loss (Supervised)

 x_i^n

$$\sum_{i=1}^{N} \left[\|f(x_{i}^{a}) - f(x_{i}^{p})\|_{2}^{2} - \|f(x_{i}^{a}) - f(x_{i}^{n})\|_{2}^{2} + \alpha \right]_{+}$$

FaceNet: A Unified Embedding for Face Recognition and Clustering

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Similarity Learning: Triplet Loss (Self Supervised)

FaceNet: A Unified Embedding for Face Recognition and Clustering

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

SimCLR: Contrastive Learning

A Simple Framework for Contrastive Learning of Visual Representations

https://arxiv.org/abs/2002.05709

Contrastive Learning

A Simple Framework for Contrastive Learning of Visual Representations

https://arxiv.org/abs/2002.05709

Issue with Contrastive Learning

- Large number of negative examples in the denominator are needed
- In practice this is approximated through batches all other elements in the batch are negatives.
- Random negative examples are easy
- Large number of negative examples means larger batch sizes which occupy more memory
- GPU memory is expensive (What is the max memory a GPU has these days vs your PC?)

Momentum Contrastive Learning (MoCo)

Improved Baselines with Momentum Contrastive Learning

https://arxiv.org/abs/2003.04297 https://arxiv.org/abs/1911.05722

Improved Baselines with Momentum Contrastive Learning

https://arxiv.org/abs/2003.04297 https://arxiv.org/abs/1911.05722

Alternative: Masked AutoEncoders (MAE)

Masked Autoencoders Are Scalable Vision Learners

https://arxiv.org/abs/2111.06377

Examples

- After training, the model learns to fill-in-theblanks for images.
- Similar to text masked image modeling
- The model can be finetuned for any other task.

Several Analysis in the Paper

Video MAE

https://arxiv.org/abs/2203.12602

ST MAE

Masked Autoencoders As Spatiotemporal Learners https://arxiv.org/abs/2205.09113

VIC-MAE

ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders https://arxiv.org/abs/2303.12001

VIC-MAE

Results

	Method	Arch.	Pre-training Data	In-Domain		Out-of-Domain	
				IN1K	K400	Places-365	SSv2
Supervised	ViT [22] <i>ICML'20</i>	ViT-B	IN1K	82.3	68.5	57.0	61.8
	ViT [22] <i>ICML'20</i>	ViT-L	IN1K	82.6	78.6	58.9	66.2
	OMNIVORE [27] CVPR'22	ViT-B	IN1K + K400 + SUN RGB-D	84.0	83.3	59.2	68.3
	OMNIVORE [27] CVPR'22	ViT-L	IN1K + K400 + SUN RGB-D	86.0	84.1	_	_
	TubeViT [63] CVPR'23	ViT-B	K400 + IN1K	81.4	88.6	_	_
	TubeViT [63] CVPR'23	ViT-L	K400 + IN1K	_	90.2	_	76.1
Self-Supervised	MAE [35] CVPR'22	ViT-B	IN1K	83.4	_	57.9	59.6
	MAE [35] CVPR'22	ViT-L	IN1K	85.5	82.3	59.4	57.7
	ST-MAE [26] NeurIPS'22	ViT-B	K400	81.3	81.3	57.4	69.3
	ST-MAE [26] NeurIPS'22	ViT-L	K400	81.7	84.8	58.1	73.2
	VideoMAE [68] NeurIPS'22	ViT-B	K400	81.1	80.0	_	69.6
	VideoMAE [68] NeurIPS'22	ViT-L	K400	_	85.2	_	74.3
	OmniMAE [29] CVPR'23	ViT-B	K400 + IN1K	82.8	80.8	58.5	69.0
	OmniMAE [29] CVPR'23	ViT-L	K400 + IN1K	84.7	84.0	59.4	73.4
	ViC-MAE	ViT-L	K400	85.0	85.1	59.5	73.7
	VIC-MAE	ViT-L	MiT	85.3	84.9	59.7	73.8
	VIC-MAE	ViT-B	K400 + IN1K	83.0	80.8	58.6	69.5
	VIC-MAE	ViT-L	K400 + IN1K	86.0	86.8	60.0	75.0
	VIC-MAE	ViT-B	K400 + K600 + K700 + MiT + IN1K	83.8	80.9	59.1	69.8
	VIC-MAE	ViT-L	K400 + K600 + K700 + MiT + IN1K	87.1	87.8	60.7	75.9

Questions