CS4501: Introduction to Computer Vision SIFT Features and Hough Transform

Various slides from previous courses by:

D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC), S. Seitz (MSR / Facebook), J. Hays (Brown / Georgia Tech), A. Berg (Stony Brook / UNC), D. Samaras (Stony Brook) . J. M. Frahm (UNC), V. Ordonez (UVA).

Last Class – Interest Points

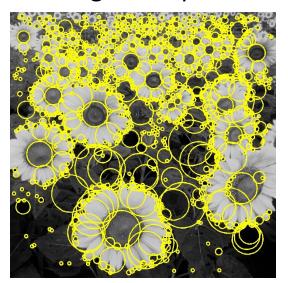
- Corner Detection Harris
- Blob Detection Laplacian of Gaussian / Difference of Gaussians (DoG)

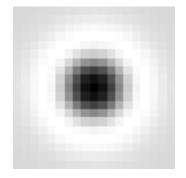
Today's Class

- Blog Detection Difference of Gaussians
- SIFT Feature descriptor Feature Matching
- Hough Transform -> For Line Detection

Basic idea

 Convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting scale space

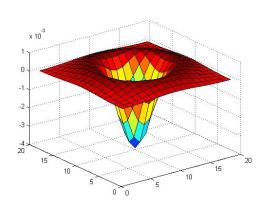




T. Lindeberg. <u>Feature detection with automatic scale selection</u>. *IJCV* 30(2), pp 77-116, 1998.

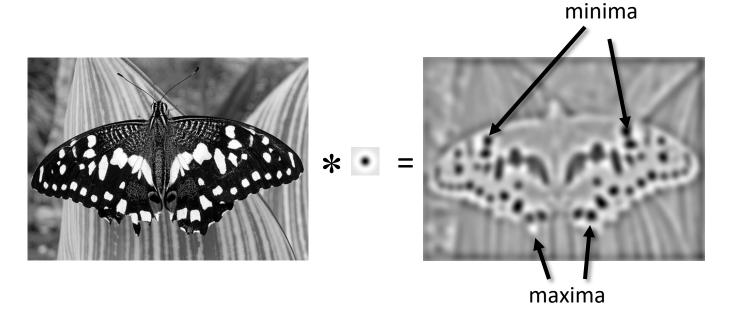
Blob filter

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D



$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

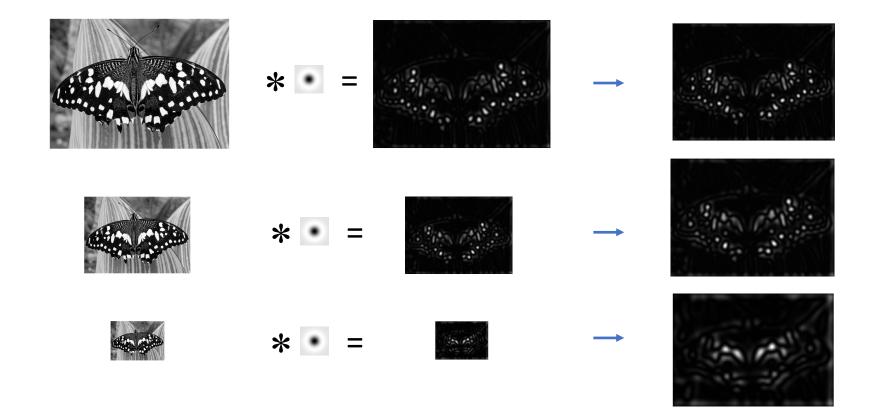
Blob detection



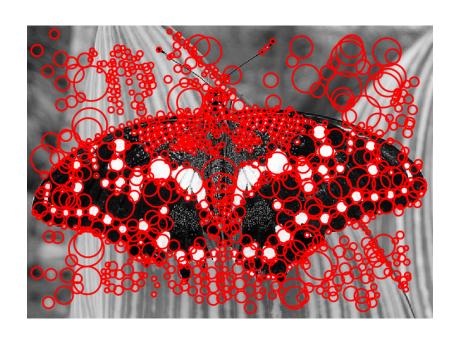
• Find maxima and minima of blob filter response in space and scale

Source: N. Snavely

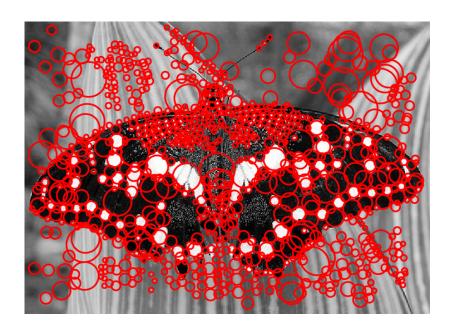
Blob at multiple scales – Option 1



Apply Non-Max Suppression – Show blobs as circles



Scale-space blob detector: Example



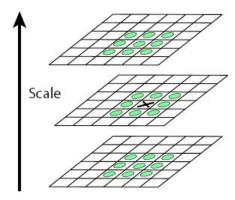
Scale-space blob detector: Example

Blog at Multiple Scales: Option 2

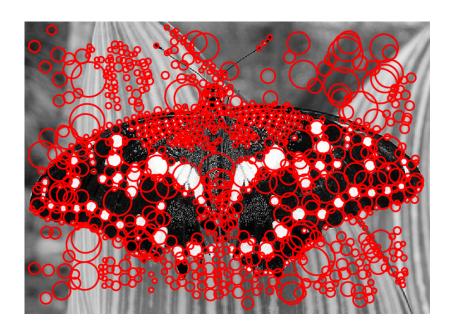
sigma = 11.9912

Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space



Scale-space blob detector: Example

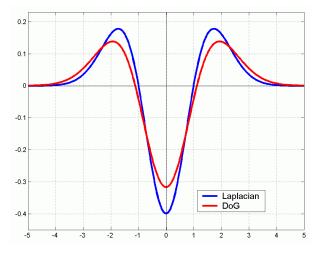


Efficient implementation

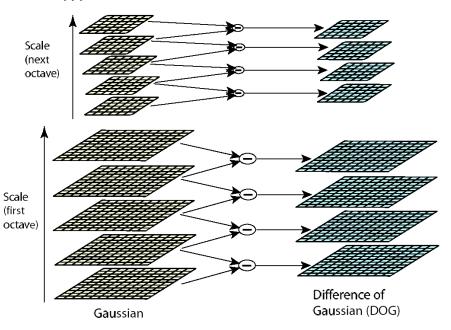
Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)

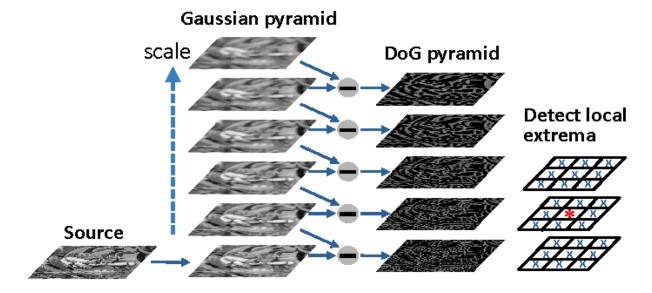


Efficient implementation



David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Gaussian Pyramid – DoG pyramid



David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

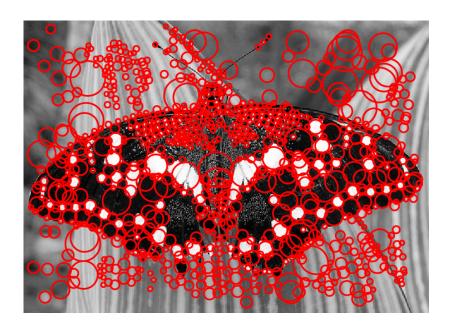
Figure from Workload analysis and efficient OpenCL-based implementation of SIFT algorithm on a smartphone •Guohui Wang, Blaine Rister, Joseph R. Cavallaro

Gaussian Pyramid

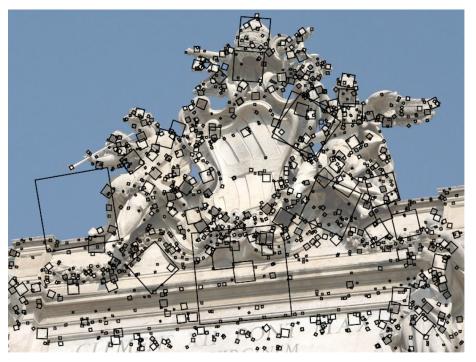
David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Figure from Workload analysis and efficient OpenCL-based implementation of SIFT algorithm on a smartphone •Guohui Wang, Blaine Rister, Joseph R. Cavallaro

Same results



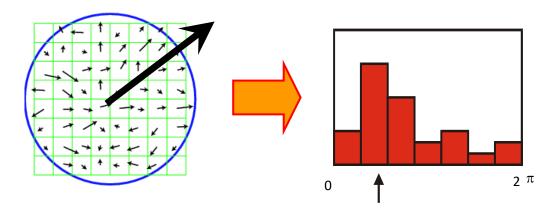
Locations + Scales + Orientations



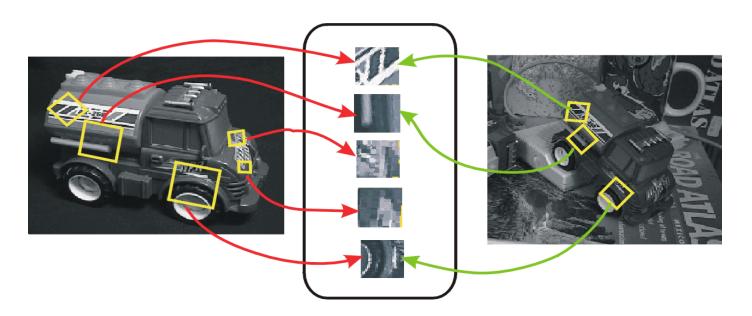
D. Lowe, <u>Distinctive image features from scale-invariant keypoints</u>, *IJCV* 60 (2), pp. 91-110, 2004.

Eliminating rotation ambiguity

- To assign a unique orientation to circular image windows:
 - Create histogram of local gradient directions in the patch
 - Assign canonical orientation at peak of smoothed histogram

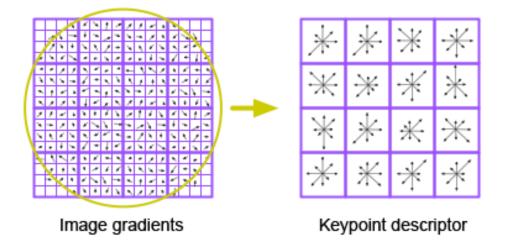


From keypoint detection to keypoint representation (feature descriptors)



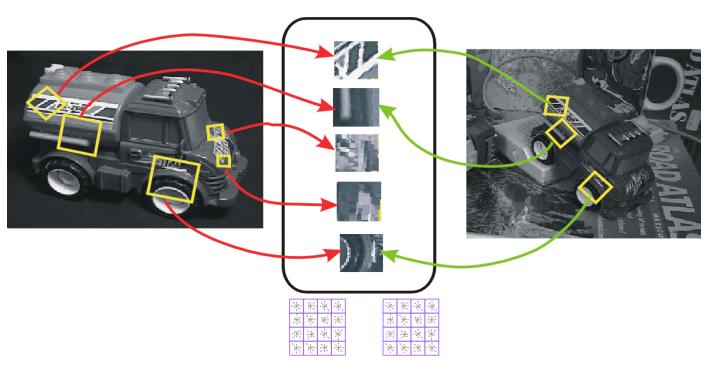
SIFT descriptors

Inspiration: complex neurons in the primary visual cortex



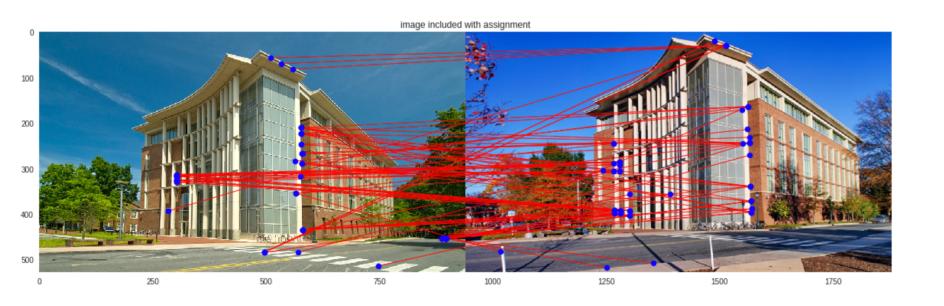
D. Lowe. <u>Distinctive image features from scale-invariant keypoints.</u> *IJCV* 60 (2), pp. 91-110, 2004.

From keypoint detection to keypoint representation (feature descriptors)

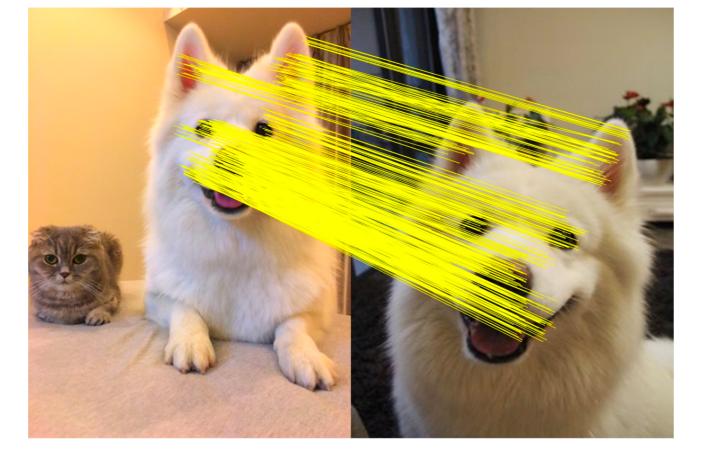


Compare SIFT feature vectors instead

SIFT Feature Matching

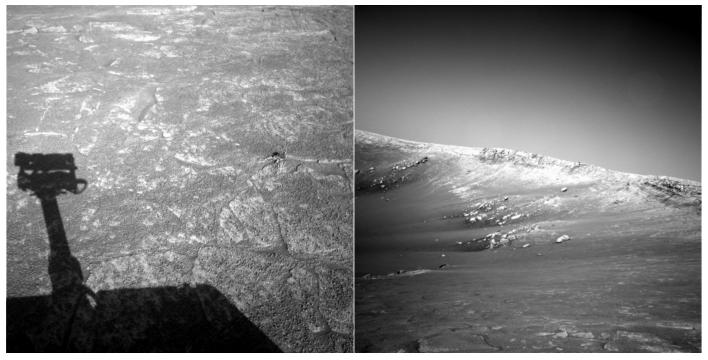


Rice Hall at UVA



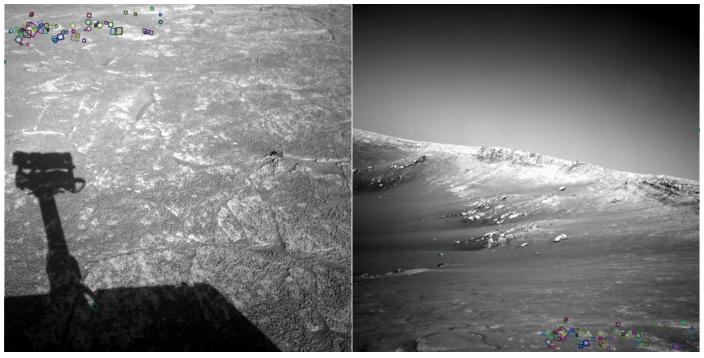
<u>JiaWang Bian</u>, Wen-Yan Lin, <u>Yasuyuki Matsushita</u>, <u>Sai-Kit Yeung</u>, Tan Dat Nguyen, <u>Ming-Ming Cheng</u> **GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence IEEE CVPR, 2017** The method has been integrated into OpenCV library (see xfeatures2d in <u>opency_contrib</u>).

A hard keypoint matching problem



NASA Mars Rover images

Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Feature Descriptors Zoo

- SIFT (under a patent) Proposed around 1999
- SURF (under a patent too I think)
- BRIEF
- ORB (seems free as it is OpenCV's preferred)
- BRISK
- FREAK
- FAST
- KAZE
- LIFT (Most recently proposed at ECCV 2016)

DG Lowe

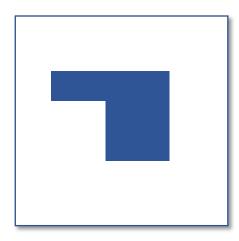
David Lowe

International Conference on Computer Vision, 1999, 1150-1157

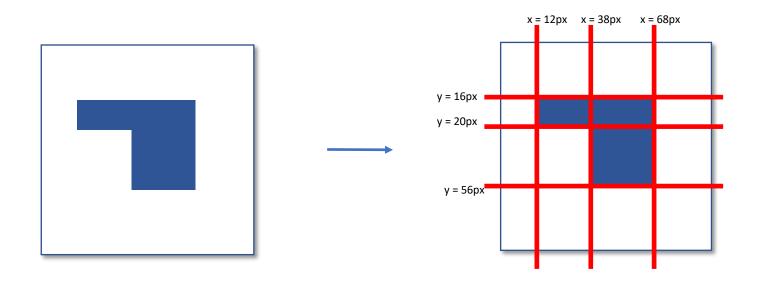
Senior Research Scientist, <u>Google</u>
Verified email at google.com - <u>Homepage</u>
Computer Vision Object Recognition

TITLE	CITED BY	YEAR
Distinctive image features from scale-invariant keypoints DG Lowe International journal of computer vision 60 (2), 91-110	45496	2004
Object recognition from local scale-invariant features	14817	1999

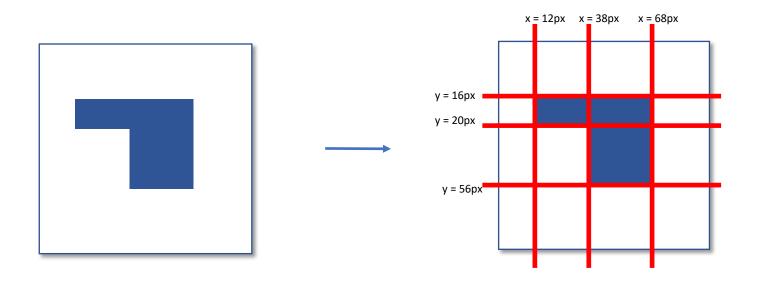
How to do Line Detection?



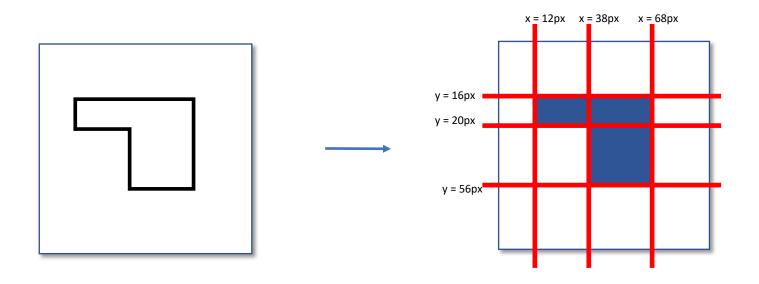
How to do Line Detection?



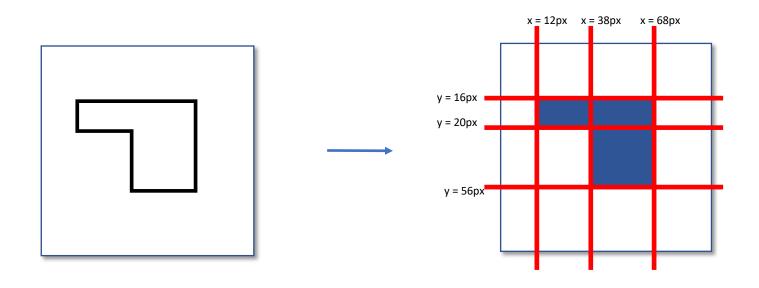
Idea: Sobel First!



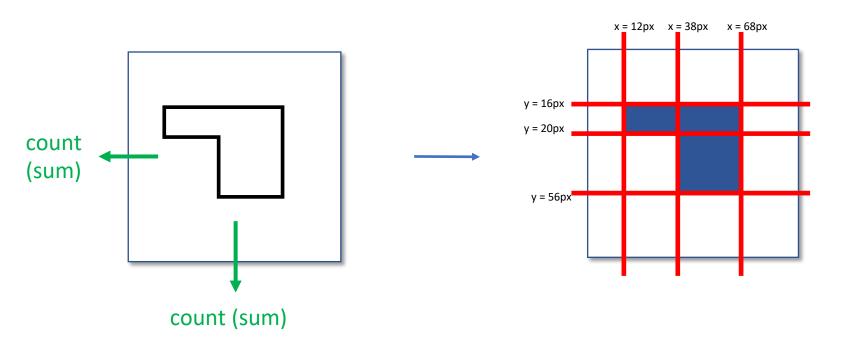
Idea: Sobel First!



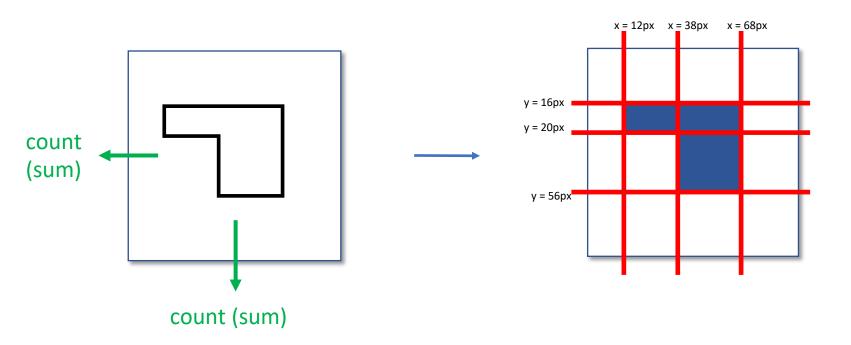
Idea: Then Count Pixels that support each line hypothesis.



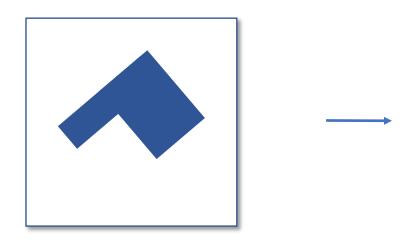
Idea: Then Count Pixels that support each line hypothesis.



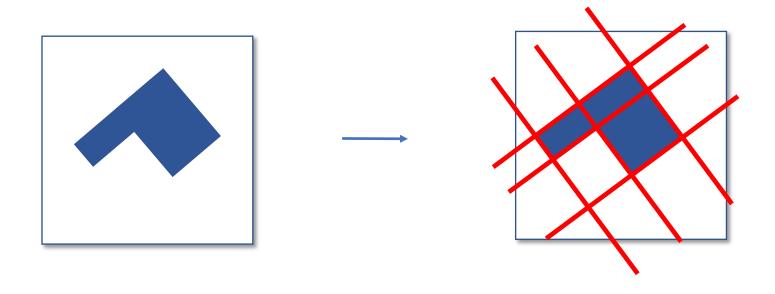
Problem with this?



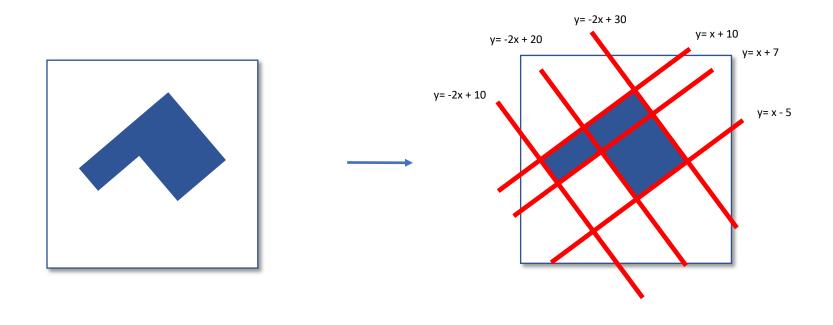
What if you're given this instead?



How do we get this?

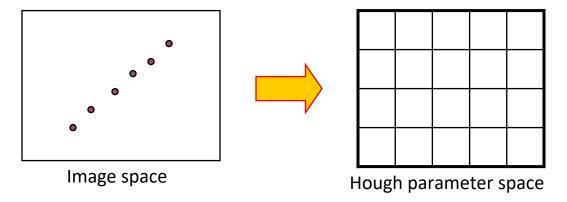


Furthermore. How do we get this!?



Hough transform

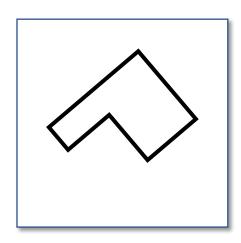
- An early type of voting scheme for Detecting Lines
- General outline:
 - Discretize *parameter space* into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes



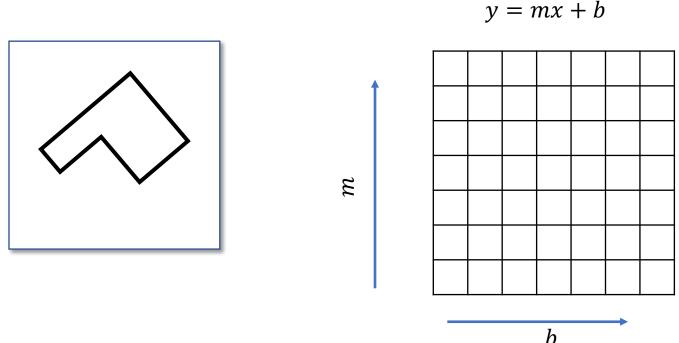
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Hough Transform: Let's again apply Sobel first

Hough Transform: Let's again apply Sobel first



Then let's count but now in a 2D array



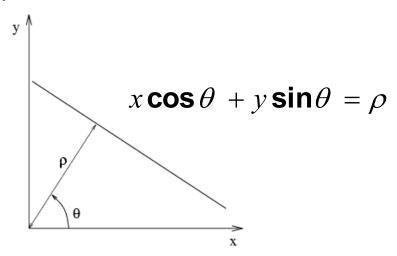
Count all points intersecting with all lines with $m = (0, inf), \vec{b} = [-B-min, B-max]$

Parameter space representation

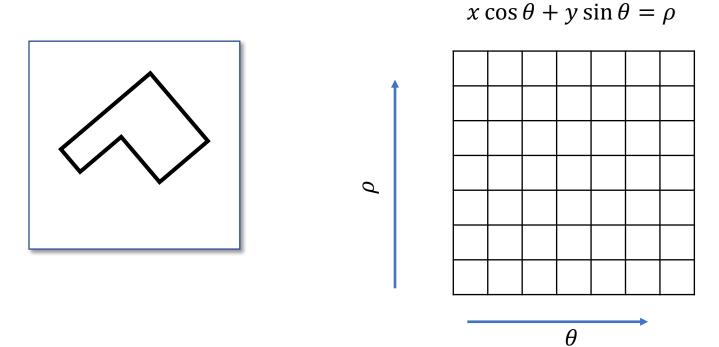
- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m

Parameter space representation

- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m
- Alternative: polar representation



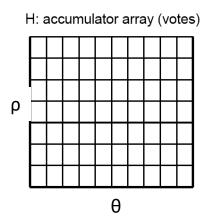
Then let's count but now in a 2D array



Count all points intersecting with all lines with rho = (-diagonal, diagonal), theta = [0, 180]

Hough Transform Algorithm outline

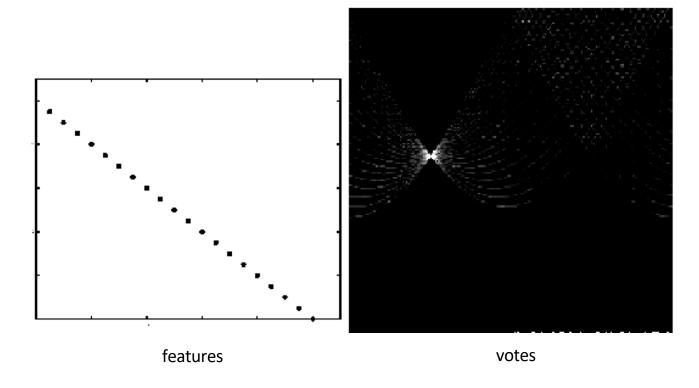
- Initialize accumulator H to all zeros
- For each feature point (x,y) in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ
 H(θ, ρ) = H(θ, ρ) + 1
 end
 end



- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

 Each point (x,y) in Image Space will add a sinusoid in the Hough Transform (θ, ρ) parameter space

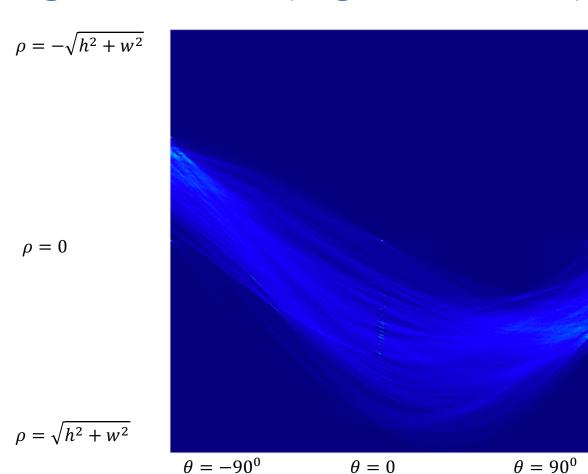
Basic illustration



Hough Transform for an Actual Image

Edges using threshold on Sobel's magnitude

Hough Transform (High Resolution)

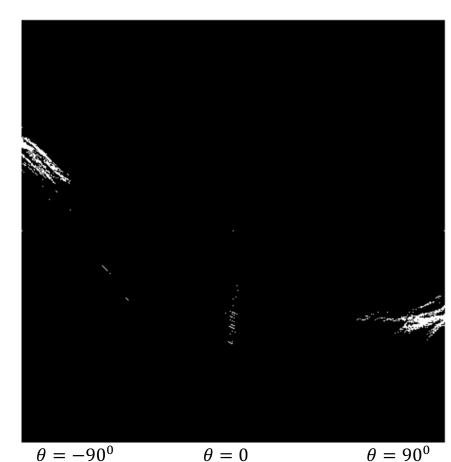


Hough Transform (After threshold)

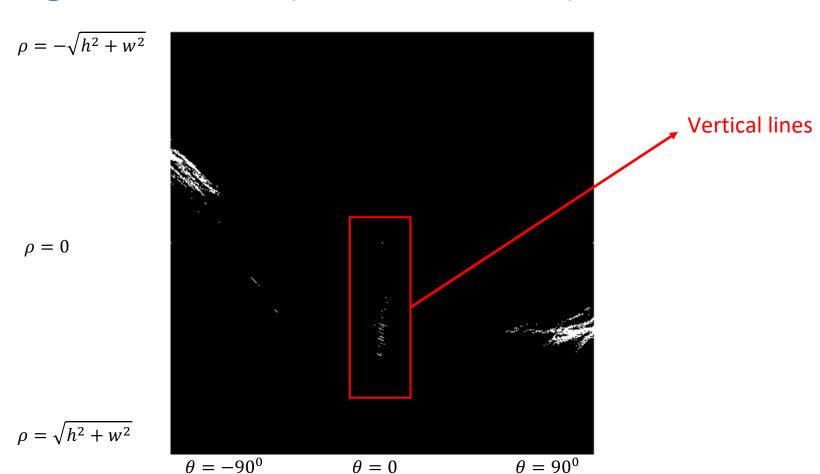
$$\rho = -\sqrt{h^2 + w^2}$$

$$\rho = 0$$

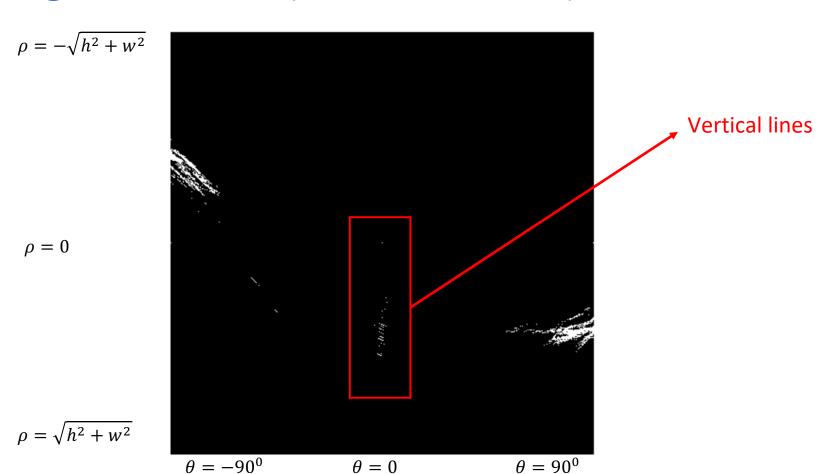
$$\rho = \sqrt{h^2 + w^2}$$



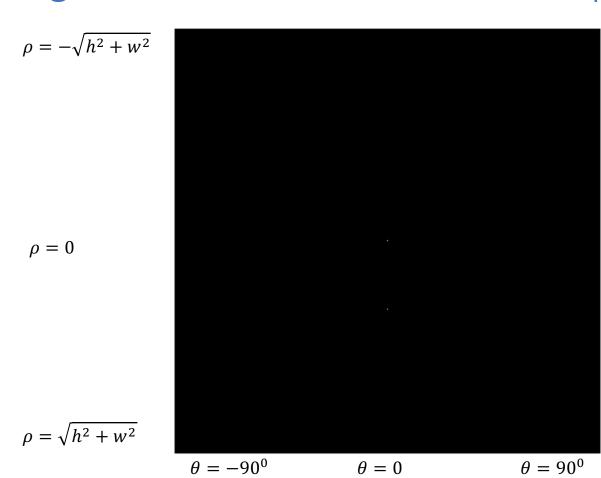
Hough Transform (After threshold)



Hough Transform (After threshold)

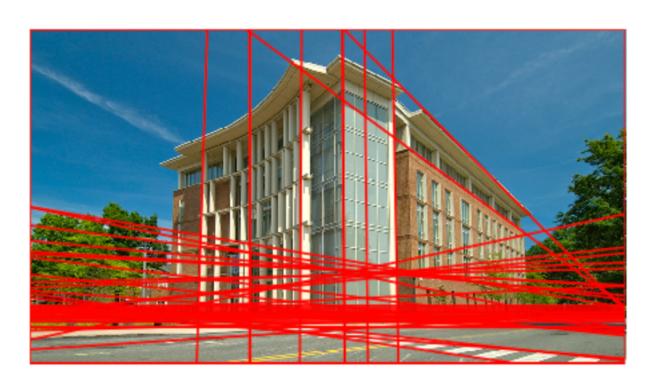


Hough Transform with Non-max Suppression



Back to Image Space – with lines detected

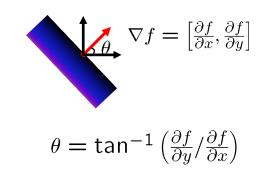
$$y = -\frac{\cos\theta}{\sin\theta}x + \frac{\rho}{\sin\theta} \qquad x\cos\theta + y\sin\theta = \rho$$



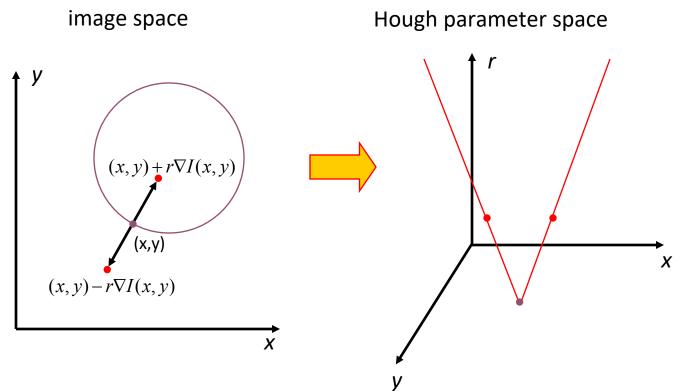
Hough transform demo

Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!
- Modified Hough transform:
- For each edge point (x,y) θ = gradient orientation at (x,y) ρ = x cos θ + y sin θ $H(\theta, \rho)$ = $H(\theta, \rho)$ + 1 end

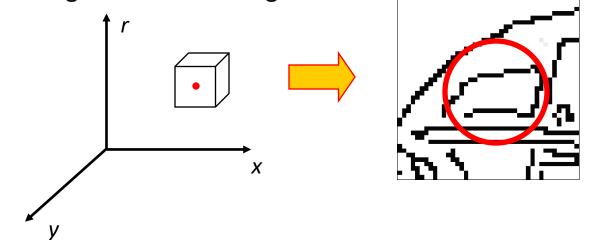


Hough transform for circles



Hough transform for circles

• Conceptually equivalent procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"



Is this more or less efficient than voting with features?

Questions?