CS4501: Introduction to Computer Vision RANSAC

Various slides from previous courses by:

D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC), S. Seitz (MSR / Facebook), J. Hays (Brown / Georgia Tech), A. Berg (Stony Brook / UNC), D. Samaras (Stony Brook) . J. M. Frahm (UNC), V. Ordonez (UVA).

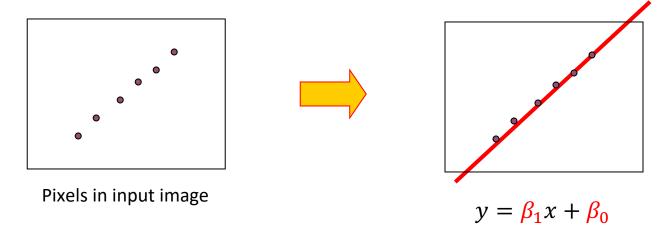
Last Class

- Interest Points (DoG extrema operator)
- SIFT Feature descriptor
- Feature matching

Today's Class

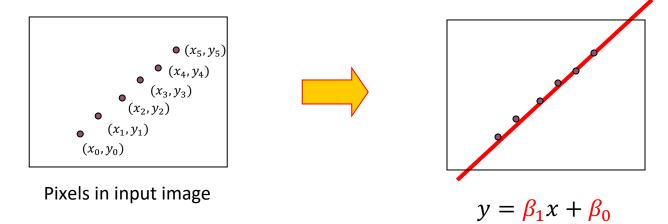
- Line Detection using the Hough Transform
- Least Squares / Hough Transform / RANSAC

Line Detection



Have you encountered this problem before?

Line Detection – Least Squares Regression

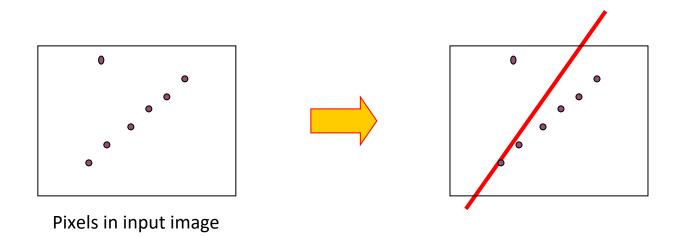


Have you encountered this problem before?

Find betas that minimize: $\sum_i (y_i - \beta_1 x_i - \beta_0)^2 = || \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} ||^2$

Solution:
$$\boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

However Least Squares is not Ideal under Outliers

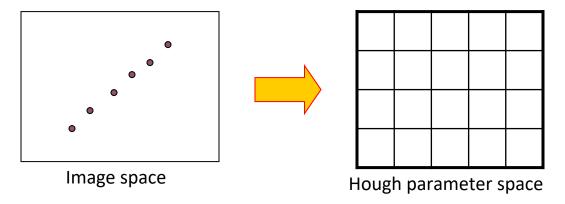


Solution: Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

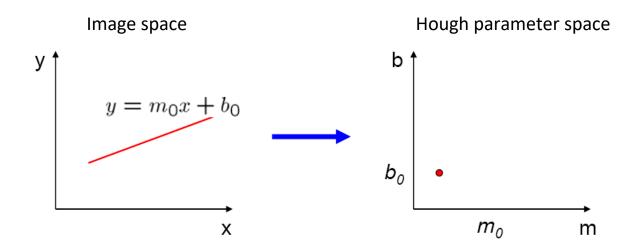
Hough transform

- An early type of voting scheme
- General outline:
 - Discretize *parameter space* into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

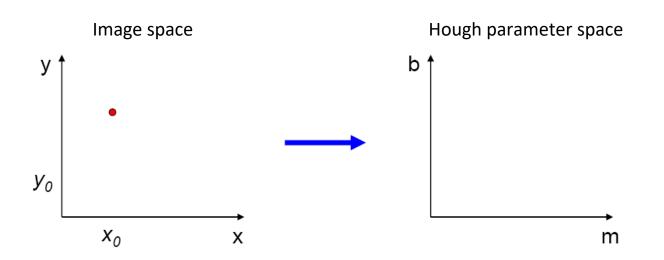


P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

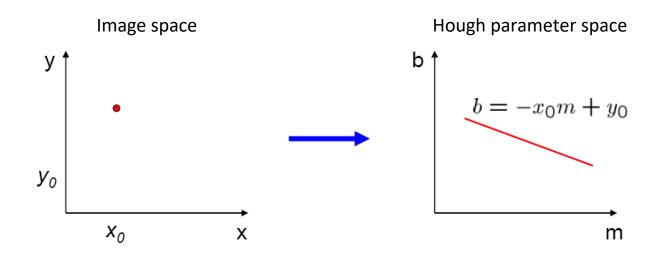
• A line in the image corresponds to a point in Hough space



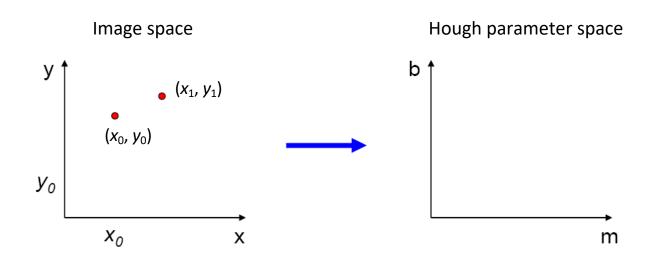
• What does a point (x_0, y_0) in the image space map to in the Hough space?



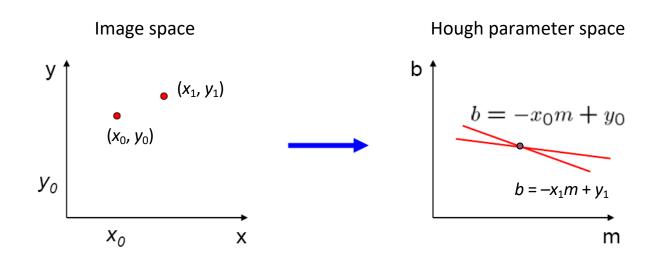
- What does a point (x_0, y_0) in the image space map to in the Hough space?
 - Answer: the solutions of $b = -x_0m + y_0$
 - This is a line in Hough space



• Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?

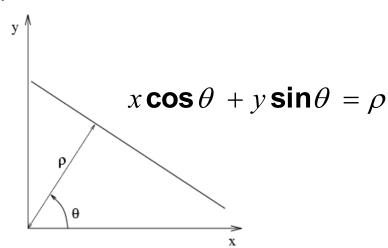


- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$



- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m

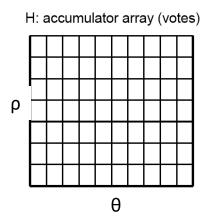
- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m
- Alternative: polar representation



Each point (x,y) will add a sinusoid in the (θ,ρ) parameter space

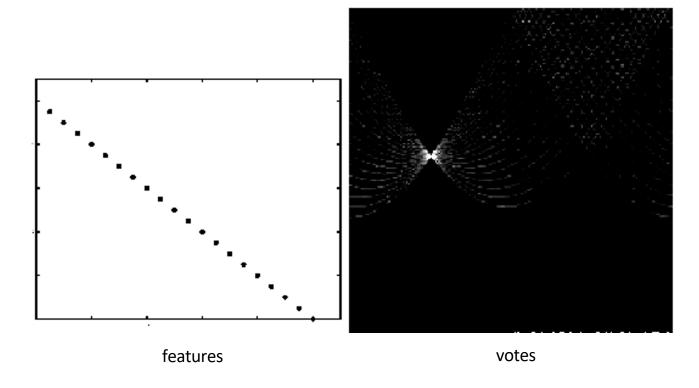
Algorithm outline

- Initialize accumulator H to all zeros
- For each feature point (x,y) in the image For $\theta = 0$ to 180 $\rho = x \cos \theta + y \sin \theta$ $H(\theta, \rho) = H(\theta, \rho) + 1$ end
 end



- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

Basic illustration



Hough Transform for an Actual Image

Edges using threshold on Sobel's magnitude

Hough Transform (High Resolution)

$$\rho = -\sqrt{h^2 + w^2}$$

$$\rho = 0$$

$$\rho = \sqrt{h^2 + w^2}$$

$$\theta = -90^0$$

$$\theta = 0$$

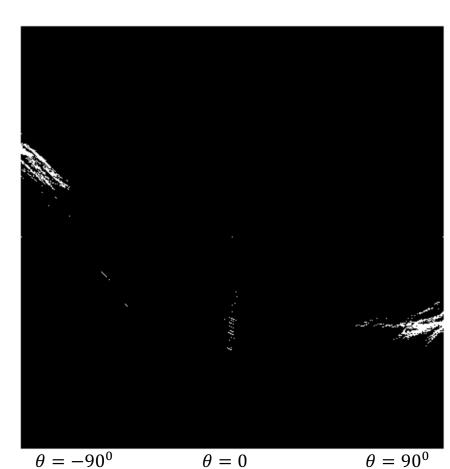
$$\theta = 90^0$$

Hough Transform (After threshold)

$$\rho = -\sqrt{h^2 + w^2}$$

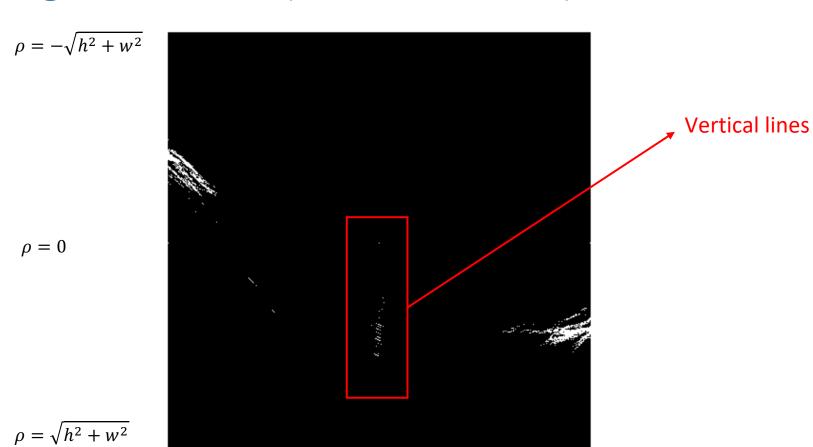
$$\rho = 0$$

$$\rho = \sqrt{h^2 + w^2}$$



Hough Transform (After threshold)

 $\theta = -90^{\circ}$



 $\theta = 0$

 $\theta = 90^{0}$

Hough Transform (After threshold)

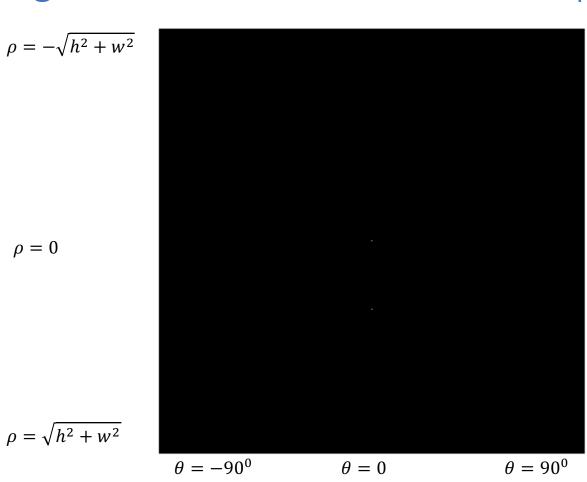
 $\theta = -90^{\circ}$



 $\theta = 0$

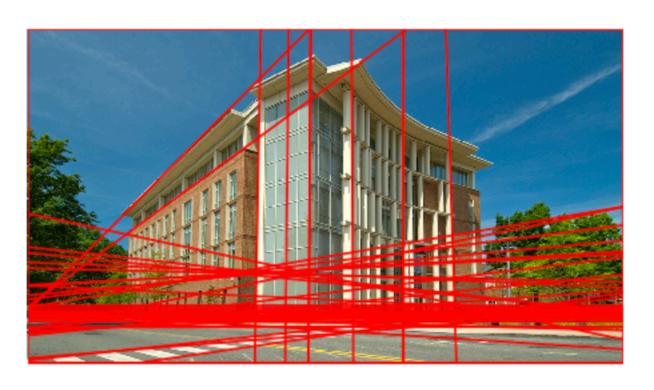
 $\theta = 90^{0}$

Hough Transform with Non-max Suppression



Back to Image Space – with lines detected

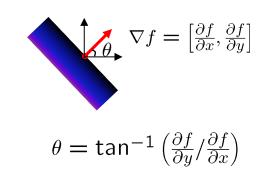
$$y = -\frac{\cos\theta}{\sin\theta}x + \frac{\rho}{\sin\theta} \qquad x\cos\theta + y\sin\theta = \rho$$



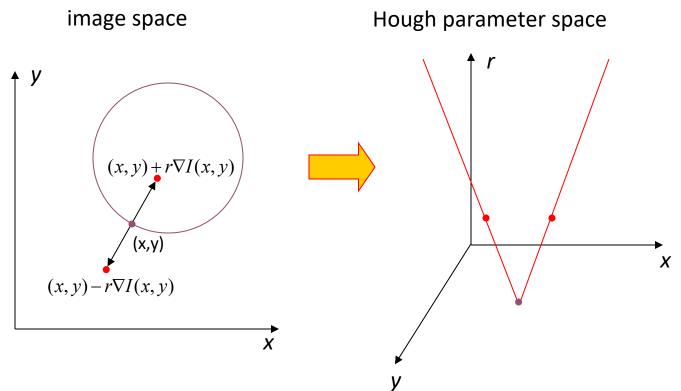
Hough transform demo

Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!
- Modified Hough transform:
- For each edge point (x,y) θ = gradient orientation at (x,y) ρ = x cos θ + y sin θ $H(\theta, \rho)$ = $H(\theta, \rho)$ + 1 end

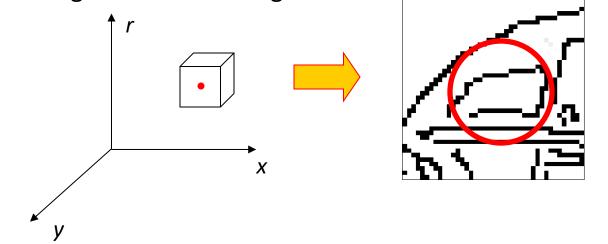


Hough transform for circles



Hough transform for circles

• Conceptually equivalent procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"



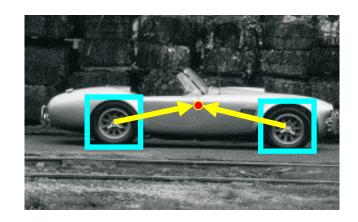
Is this more or less efficient than voting with features?

RANSAC – Random Sample Consensus

- Another Voting Scheme
- Idea: Maybe you do not need to have all samples have a vote.
 - Only a random subset of samples (points) vote.

Generalized Hough Transform

 You can make voting work for any type of shape / geometrical configuration. Even irregular ones.



training image

visual codeword with displacement vectors

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Generalized Hough Transform

 You can make voting work for any type of shape / geometrical configuration. Even irregular ones.

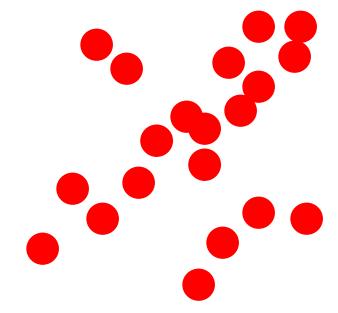
test image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an</u> <u>Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in '81.

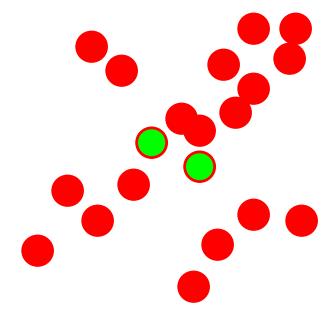


Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

Line fitting example



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC Line fitting example

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

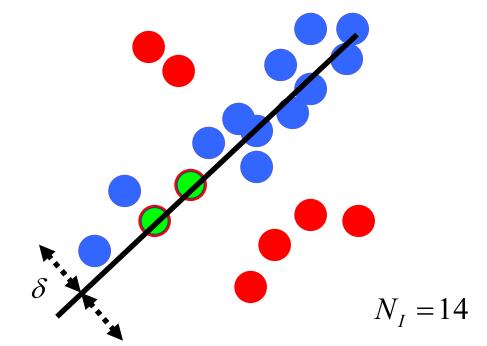
Line fitting example

$$N_I = 6$$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC



Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$

$$N = \log(1-p) / \log(1-(1-e)^{s})$$

		proportion of outliers \emph{e}						
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	1 <i>7</i>	
3	3	4	7	9	11	19	35	
4	3	5	9	13	1 <i>7</i>	34	72	
5	4	6	12	1 <i>7</i>	26	<i>57</i>	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

For p = 0.99

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of model parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

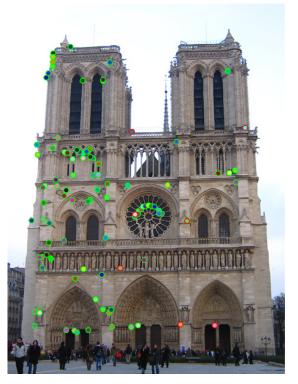
Bad

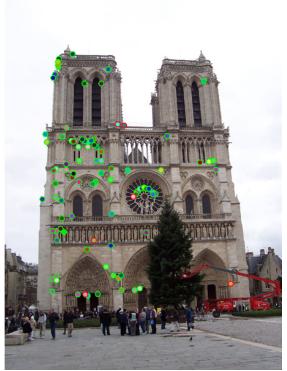
- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

How do we fit the best alignment?





How many points do you need?

Questions?