Announcements

• Next class will be on March 12 as usual

• No regular class during March 17 – April 7

• Tentative dates for make-up classes
 — Friday, March 27, 3pm – 4:30pm
 — Thursday, April 2, 3pm – 4:30pm (Midterm Recess)
 — Friday, April 3, 3pm – 4:30pm (Midterm Recess)

• We will resume our regular schedule on April 9 (Thursday)
Acknowledgments

• Slides from previous offerings of COMP 515 by Prof. Ken Kennedy
 — http://www.cs.rice.edu/~ken/comp515/
Scheduling

Chapter 10
Introduction

• We shall discuss:
 – Straight line scheduling
 – Trace Scheduling
 – Kernel Scheduling (Software Pipelining)
 – Vector Unit Scheduling
 – Cache coherence in coprocessors
Introduction

• Scheduling: Mapping of parallelism within the constraints of limited available parallel resources

• Best Case Scenario: All the uncovered parallelism can be exploited by the machine

• In general, we must sacrifice some execution time to fit a program within the available resources

• Our goal: Minimize the amount of execution time sacrificed
Introduction

• **Variants of the scheduling problem:**
 - Instruction scheduling: Specifying the order in which instructions will be executed
 - Vector unit scheduling: Make most effective use of the instructions and capabilities of a vector unit. Requires pattern recognition and synchronization minimization

• Will concentrate on instruction scheduling (fine grained parallelism)
Introduction

- Categories of processors supporting fine-grained parallelism:
 - VLIW
 - Superscalar processors
 - Fine-grained SIMD (SSE, Altivec)
Introduction

• **Scheduling in VLIW and Superscalar architectures:**

 — Order instruction stream so that as many function units as possible are being used on every cycle

• **Standard approach:**

 — Emit a sequential stream of instructions

 — Reorder this sequential stream to utilize available parallelism

 — Reordering must preserve dependences
Introduction

• **Issue:** Creating a sequential stream must consider available resources. This may create artificial dependences

\[a = b + c + d + e \]

• **One possible sequential stream:**
 - add \(a, b, c \)
 - add \(a, a, d \)
 - add \(a, a, e \)

• **And, another:**
 - add \(r1, b, c \)
 - add \(r2, d, e \)
 - add \(a, r1, r2 \)
Fundamental conflict in scheduling

- **Fundamental conflict in scheduling:**
 - If the original instruction stream takes into account available resources, will create artificial dependences.
 - If not, then there may not be enough resources to correctly execute the stream.
Machine Model

- Machine contains a number of *issue units*
- Issue unit has an associated *type* and a *delay*

- I^k_j denotes the j^{th} unit of type k

- Number of units of type k is denoted m_k

- Total number of issue units: $M = \sum_{i=1}^{l} m_i$

 where, $l = \text{number of issue-unit types in the machine}$
Machine Model

• We will assume a VLIW model

• \textbf{Goal of compiler:} select set of M instructions for each cycle such that the number of instructions of type k is $\leq m_k$

• Note that code can be generated easily for an equivalent superscalar machine
Straight Line Graph Scheduling

• Scheduling a basic block: Use a dependence graph

\[G = (N, E, \text{type}, \text{delay}) \]

– \(N \): set of instructions in the code
– Each \(n \in N \) has a type, \(\text{type}(n) \), and a delay, \(\text{delay}(n) \)
– \((n_1, n_2) \in E \) iff \(n_2 \) must wait completion of \(n_1 \) due to a shared register. (True, anti, and output dependences)
Straight Line Graph Scheduling

• A correct schedule is a mapping, S, from vertices in the graph to nonnegative integers representing cycle numbers such that:
 1. $S(n) \geq 0$ for all $n \in \mathbb{N}$,
 2. If $(n_1, n_2) \in E$, $S(n_1) + \text{delay}(n_1) \leq S(n_2)$, and
 3. For any type t, no more than m_t vertices of type t are mapped to a given integer.

• The length of a schedule, S, denoted $L(S)$ is defined as:
 $L(S) = \max_{n \in \mathbb{N}} (S(n) + \text{delay}(n))$

• Goal of straight-line scheduling: Find a shortest possible correct schedule. A straight line schedule is said to be optimal if:
 $L(S) \leq L(S_1), \quad \forall$ correct schedules S_1
List Scheduling

- Use variant of topological sort:
 - Maintain a list of instructions which have no predecessors in the graph
 - Schedule these instructions
 - This will allow other instructions to be added to the list
List Scheduling

- Algorithm for list scheduling:
 - Schedule an instruction at the first opportunity after all instructions it depends on have completed
 - count array determines how many predecessors are still to be scheduled
 - earliest array maintains the earliest cycle on which the instruction can be scheduled
 - Maintain a number of worklists which hold instructions to be scheduled for a particular cycle number. How many worklists are required?
List Scheduling

• How shall we select instructions from the worklist?
 — Random selection
 — Selection based on other criteria: Worklists are priority queues. Highest Level First (HLF) heuristic schedules more critical instructions first
List Scheduling Algorithm I

Idea: Keep a collection of worklists \(W[c] \), one per cycle
—We need \(\text{MaxC} = \text{max delay} + 1 \) such worklists

Code:

```plaintext
for each \( n \in N \) do begin
  count[\( n \)] := 0; earliest[\( n \)] = 0
end
for each \( (n1, n2) \in E \) do begin
  count[\( n2 \)] := count[\( n2 \)] + 1;
  successors[\( n1 \)] := successors[\( n1 \)] \cup \{n2\};
end
for \( i := 0 \) to \( \text{MaxC} - 1 \) do
  \( W[i] := \emptyset \);
  Wcount := 0;
for each \( n \in N \) do
  if count[\( n \)] = 0 then begin
    \( W[0] := W[0] \cup \{n\}; Wcount := Wcount + 1; \)
  end
  c := 0; // c is the cycle number
  cW := 0; // cW is the number of the worklist for cycle c
  instr[c] := \emptyset;
```
while Wcount > 0 do begin
 while W[cW] = ∅ do begin
 c := c + 1; instr[c] := ∅; cW := mod(cW+1,MaxC);
 end
 nextc := mod(c+1,MaxC);
 while W[cW] ≠ ∅ do begin
 select and remove an arbitrary instruction x from W[cW];
 if ∃ free issue units of type(x) on cycle c then begin
 instr[c] := instr[c] ∪ {x}; Wcount := Wcount - 1;
 for each y ∈ successors[x] do begin
 count[y] := count[y] – 1;
 earliest[y] := max(earliest[y], c+delay(x));
 if count[y] = 0 then begin
 loc := mod(earliest[y],MaxC);
 end
 end
 end
 else W[nextc] := W[nextc] ∪ {x};
 end
end
Homework

• Homework assignment for discussion in next class
 —Exercise 10.1