
Analysis and Optimization of ExplicitlyParallel Programs using the ParallelProgram Graph Representation

Vivek Sarkar

MIT Laboratory for Computer Science

(vivek@lcs.mit.edu)

1

Motivation
Current sequence of steps in compiling explicitlyparallel/multithreaded programs:1. Parallel program is mapped to low-level IL with library calls2. Sequential compiler translates low-level IL to machine code3. If machine code runs \correctly" then stop4. Add volatile declarations to program and/or adjust compileroptimization options5. Go back to step 1

2

Motivation (contd.)

Extension of sequential compiler analysis/optimization techniquesto parallel programs is necessary for

� maintaining single-processor performance in parallel programs,

� adapting program parallelism to target parallel machine,

� and making compilation of parallel programs less tedious andless error-prone.

3

Parallel Program Graphs

A Parallel Program Graph PPG = (N;Econtrol; Esync) is a directedmultigraph consisting of:� N , a set of nodes (includes CFG nodes and mgoto nodes). Anmgoto node is used to create parallel threads of computation.� Econtrol � N �N � ftrue; false;uncondg, a set of labeledcontrol edges. Edge (a; b; L) 2 Econtrol identi�es a control edgefrom node a to node b with label L.� Esync � N �N � SynchConds, a set of synchronization edges.Edge (a; b; f) 2 Esync de�nes a synchronization from node a tonode b with synchronization condition f . 4

Example of a Parallel Program Graph

S1: X1 := : : :post(ev1)cobeginS2: X2 := : : :post(ev2)S3: wait(ev1)post(ev3)S4: wait(ev8)X4 := : : :nnS5: : : :S6: wait(ev2)S7: X7 := : : :S8: wait(ev3)post(ev8)coend
synchronization edge

control edge

S2

MGOTO

S6S3

S5

COEND

S7

S8

S4

S1

5

Relating CFGs to PPGs

Construction of PPG for a sequential program

� PPG nodes = CFG nodes

� PPG control edges = CFG edges

� PPG synchronization edges = empty set

6

Relating PDGs to PPGs

Construction of PPG from PDG:

� PPG nodes = PDG nodes(A region node in a PDG maps to an mgoto node in the PPG)

� PPG control edges = PDG control dependence edges

� PPG synchronization edges = PDG data dependence edgesSynchronization condition f in PPG synchronization edgemirrors context of PDG data dependence edge 7

Reaching De�nitions Analysis on CFGs

REACHin(n) = set of de�nitions d s.t. there is a path from d to nand d is not killed along that path.

REACHout(n) = (REACHin(n)�Kill(n)) [Gen(n)

REACHin(n) = [p 2 pred(n)REACHout(p)

8

Computing Rede�nition (REDEF) sets for CFGs

REDEFin(n) = set of de�nitions d s.t. d is rede�ned (killed) onALL paths from d to n (and there is at least one path from d to n)REDEFout(n) = (REDEFin(n)�Gen(n)) [(Kill(n) \REACHin(n))REDEFin(n) = \p 2 pred(n)REDEFout(p)

Three mutually exclusive cases for de�nition d and basic block n:1. d 2 REACHin(n)2. d 2 REDEFin(n)3. there is no CFG path from d to n 9

Reaching De�nitions Analysis on PPGs

REACHout(n) = (REACHin(n)�Kill(n)) [Gen(n)REACHin(n) = 0B@ [p 2 pred(n)REACHout(p)1CA � REDEFin(n)

REDEFout(n) = (REDEFin(n)�Gen(n)) [(Kill(n) \REACHin(n))REDEFin(n) = [p 2 sync pred(n)REDEFout(p) [\p 2 control pred(n)REDEFout(p)
10

Reaching De�nitions Analysis on Example PPG

Node n REDEFin(n) REACHin(n) REDEFout(n) REACHout(n)S1 ; ; ; fX1gcobegin ; fX1g ; fX1gS2 ; fX1g fX1g fX2gS3 fX1g fX2g fX1g fX2gS5 ; fX1g ; fX1gS6 fX1g fX2g fX1g fX2gS7 fX1g fX2g fX1; X2g fX7gS8 fX1g fX2g fX1; X2g fX7gS4 fX1; X2g fX7g fX1; X2; X7g fX4gcoend fX1; X2; X7g fX4g fX1; X2; X7g fX4g
11

Related Work
� [Midki� et al 89], [Chow, Harrison 92], : : :Analysis of explicit (nondeterministic) parallel programs withscalar and array variables, a sequentially consistent memorymodel, and structured parallelism (no explicit synchronization)� [Pingali et al 90]Presented a constant propagation algorithm for DependenceFlow Graphs (dataow graphs with an imperative store)� [Srinivasan 94], [Ferrante et al 96]Analysis of explicit deterministic parallel programs with scalarand array variables and copy-in/copy-out semantics

12

Conclusions
In this talk, we

� motivated using the Parallel Program Graph (PPG)representation in analysis and optimization of parallel programs,and
� presented a solution for reaching de�nitions analysis on PPGsthat is more precise than in past work.

13

Future Work
� Extend other traditional analysis and optimization algorithmsfor use on PPGs

� Use PPGs as intermediate representation in commoncompilation and execution environment for di�erent parallelprogramming languages

� Extend PPG execution model to support mutual exclusion andnondeterminism

14

Parallel Control Flow in a PPG

Three cases:1. An mgoto node a with k � 0 outgoing control edges,(a; b1;uncond), : : :, (a; bk;uncond), all with label uncond:An execution instance Ia of node a creates new executioninstances Ib1; : : : ; Ibk of nodes b1; : : : ; bk and then terminatesitself.2. A non-mgoto node a with one outgoing control edge(a; b; L) for branch label L:When an execution instance Ia of node a evaluates node a'sbranch label as L, it creates a new execution instances Ib ofnode b and then terminates itself. 15

3. A non-mgoto node a with no outgoing control edges forbranch label L:When an execution instance Ia of node a evaluates node a'sbranch label as L, it terminates itself.

Execution Histories

H(Ia) = execution history of instance Ia of PPG node a= sequence of (node,label) branch conditions thatcaused execution instance Ia to be created

Execution histories are de�ned recursively:

1. H(Istart) = <> (empty sequence)

2. If execution instance Ia creates execution instance Ib due tocontrol edge (a; b; L), then H(Ib) = concat(H(Ia); < a; L >)16

Synchronization Conditions

Consider synchronization edge (a; b; f) 2 Esync

Synchronization condition f is a boolean function on executionhistories
Given execution instances Ia and Ib of nodes a and b,f(H(Ia); H(Ib)) = true means that execution instance Ia mustcomplete execution before execution instance Ib can be started

17

Weak (Deterministic) Memory Consistency Model

� All memory accesses are assumed to be non-atomic� Read-write hazard | if Ia reads location l in �i and there is aparallel write of a di�erent value, then the result is an error� Write-write hazard | if Ia writes value v into location l andthere is a parallel write of a di�erent value, then the resultingvalue in location l is unde�ned� Separation of data communication and synchronization:{ Data communication speci�ed by read/write operations{ Sequencing speci�ed by synchronization and control edges
18

Control-Independent Synchronizations in a PPG

A synchronization edge (x; y; f) is control-independent if anecessary condition for f(H(Ia); H(Ib)) =true is thatnodepre�x(H(Ix); a) = nodepre�x(H(Iy); a) for all nodes a that arecontrol ancestors of both x and y.

19

Control-Independent Synchronizations in a PPG (contd.)

Consider an execution instance Ix of PPG node x with executionhistory H(Ix) =< u1; L1; : : : ; ui; : : : ; uj; : : : ; uk; Lk >, uk = x. Wede�ne nodepre�x(H(Ix); a) as follows:If a 6= x, nodepre�x(H(Ix); a) =< u1; L1; : : : ; ui; Li >;ui = a, uj 6= a,i < j � k.If a = x, then nodepre�x(H(Ix); a) =H(Ix) =< u1; L1; : : : ; ui; : : : ; uj; : : : ; uk; Lk >.

A node a is a control ancestor of node x if there exists an acyclicpath of control edges from START to x such that a is on thatpath. 20

