Analysis and Optimization of Explicitly Parallel Programs using the Parallel Program Graph Representation

Vivek Sarkar

MIT Laboratory for Computer Science

(vivek@lcs.mit.edu)

Current sequence of steps in compiling explicitly

parallel/multithreaded programs:

- 1. Parallel program is mapped to low-level IL with library calls
- 2. Sequential compiler translates low-level IL to machine code
- 3. If machine code runs "correctly" then stop
- 4. Add volatile declarations to program and/or adjust compiler optimization options
- 5. Go back to step 1

Extension of sequential compiler analysis/optimization techniques to parallel programs is necessary for

- maintaining single-processor performance in parallel programs,
- adapting program parallelism to target parallel machine,

 and making compilation of parallel programs less tedious and less error-prone. A Parallel Program Graph $PPG = (N, E_{control}, E_{sync})$ is a directed multigraph consisting of:

- N, a set of nodes (includes CFG nodes and *mgoto* nodes). An *mgoto* node is used to create parallel threads of computation.
- $E_{control} \subseteq N \times N \times \{\text{TRUE, FALSE, UNCOND}\}$, a set of labeled control edges. Edge $(a, b, L) \in E_{control}$ identifies a control edge from node a to node b with label L.
- E_{sync} ⊆ N × N × SynchConds, a set of synchronization edges.
 Edge (a, b, f) ∈ E_{sync} defines a synchronization from node a to node b with synchronization condition f.

Example of a Parallel Program Graph

Construction of PPG for a sequential program

- PPG nodes = CFG nodes
- PPG control edges = CFG edges

• PPG synchronization edges = empty set

Construction of PPG from PDG:

• PPG nodes = PDG nodes

(A region node in a PDG maps to an mgoto node in the PPG)

- PPG control edges = PDG control dependence edges
- PPG synchronization edges = PDG data dependence edges
 Synchronization condition f in PPG synchronization edge
 mirrors context of PDG data dependence edge

 $REACH_{in}(n) = set of definitions d s.t.$ there is a path from d to n and d is not killed along that path.

$$\mathsf{REACH}_{out}(n) = (\mathsf{REACH}_{in}(n) - Kill(n)) \bigcup Gen(n)$$

$$\mathsf{REACH}_{in}(n) = \bigcup_{p \in \mathsf{pred}(n)} \mathsf{REACH}_{out}(p)$$

REDEF_{in}(n) = set of definitions d s.t. d is redefined (killed) on ALL paths from d to n (and there is at least one path from d to n)

$$\begin{aligned} \mathsf{REDEF}_{out}(n) &= (\mathsf{REDEF}_{in}(n) - Gen(n)) \ \bigcup \\ (Kill(n) \cap \mathsf{REACH}_{in}(n)) \\ \\ \mathsf{REDEF}_{in}(n) &= \bigcap_{p \in \mathsf{pred}(n)} \mathsf{REDEF}_{out}(p) \end{aligned}$$

Three mutually exclusive cases for definition d and basic block n:

- 1. $d \in \mathsf{REACH}_{in}(n)$
- 2. $d \in \mathsf{REDEF}_{in}(n)$
- 3. there is no CFG path from d to n

$$REACH_{out}(n) = (REACH_{in}(n) - Kill(n)) \bigcup Gen(n)$$

$$REACH_{in}(n) = \left(\bigcup_{p \in pred(n)} REACH_{out}(p)\right) - REDEF_{in}(n)$$

$$REDEF_{out}(n) = (REDEF_{in}(n) - Gen(n)) \bigcup$$

$$(Kill(n) \cap REACH_{in}(n))$$

$$REDEF_{in}(n) = \bigcup_{p \in sync_pred(n)} REDEF_{out}(p) \bigcup$$

$$p \in control_pred(n)$$

Node n	$REDEF_{in}(n)$	$REACH_{in}(n)$	$REDEF_{out}(n)$	$REACH_{out}(n)$
S1	Ø	Ø	Ø	$\{X_1\}$
cobegin	Ø	$\{X_1\}$	Ø	$\{X_1\}$
S2	Ø	$\{X_1\}$	$\{X_1\}$	$\{X_2\}$
S3	$\{X_1\}$	${X_2}$	$\{X_1\}$	$\{X_2\}$
S5	Ø	$\{X_1\}$	Ø	$\{X_1\}$
S6	$\{X_1\}$	${X_2}$	$\{X_1\}$	$\{X_2\}$
S7	$\{X_1\}$	${X_2}$	$\{X_1, X_2\}$	$\{X_7\}$
S8	$\{X_1\}$	$\{X_2\}$	$\{X_1, X_2\}$	$\{X_7\}$
S4	$\overline{\{X_1, X_2\}}$	$\{X_7\}$	$\{X_1, X_2, X_7\}$	${X_4}$
coend	$\{X_1, X_2, X_7\}$	$\{X_{4}\}$	$\{X_1, X_2, X_7\}$	$\{X_{4}\}$

- [Midkiff et al 89], [Chow, Harrison 92], ...
 Analysis of explicit (nondeterministic) parallel programs with scalar and array variables, a sequentially consistent memory model, and structured parallelism (no explicit synchronization)
- [Pingali et al 90]
- Presented a constant propagation algorithm for Dependence Flow Graphs (dataflow graphs with an imperative store)
- [Srinivasan 94], [Ferrante et al 96]
 - Analysis of explicit deterministic parallel programs with scalar and array variables and copy-in/copy-out semantics

In this talk, we

- motivated using the Parallel Program Graph (PPG) representation in analysis and optimization of parallel programs, and
- presented a solution for reaching definitions analysis on PPGs that is more precise than in past work.

- Extend other traditional analysis and optimization algorithms for use on PPGs
- Use PPGs as intermediate representation in common compilation and execution environment for different parallel programming languages
- Extend PPG execution model to support mutual exclusion and nondeterminism

Three cases:

- 1. An mgoto node a with $k \ge 0$ outgoing control edges, $(a, b_1, \text{UNCOND}), \ldots, (a, b_k, \text{UNCOND})$, all with label UNCOND: An execution instance I_a of node a creates new execution instances I_{b_1}, \ldots, I_{b_k} of nodes b_1, \ldots, b_k and then terminates itself.
- 2. A non-mgoto node a with one outgoing control edge (a, b, L) for branch label L:

When an execution instance I_a of node a evaluates node a's branch label as L, it creates a new execution instances I_b of node b and then terminates itself.

3. A non-mgoto node *a* with no outgoing control edges for branch label *L*:

When an execution instance I_a of node a evaluates node a's branch label as L, it terminates itself.

 $H(I_a)$ = execution history of instance I_a of PPG node a

= sequence of (node, label) branch conditions that

caused execution instance I_a to be created

Execution histories are defined recursively:

- 1. $H(I_{start}) = <>$ (empty sequence)
- 2. If execution instance I_a creates execution instance I_b due to control edge (a, b, L), then $H(I_b) = \text{concat}(H(I_a), \langle a, L \rangle)$

Consider synchronization edge $(a, b, f) \in E_{sync}$

Synchronization condition f is a boolean function on execution histories

Given execution instances I_a and I_b of nodes a and b, $f(H(I_a), H(I_b)) = true$ means that execution instance I_a must complete execution before execution instance I_b can be started

- All memory accesses are assumed to be non-atomic
- Read-write hazard if I_a reads location l in σ_i and there is a parallel write of a different value, then the result is an error
- Write-write hazard if I_a writes value v into location l and there is a parallel write of a different value, then the resulting value in location l is undefined
- Separation of data communication and synchronization:
 - Data communication specified by read/write operations
 - Sequencing specified by synchronization and control edges

A synchronization edge (x, y, f) is control-independent if a necessary condition for $f(H(I_a), H(I_b)) = true$ is that $nodeprefix(H(I_x), a) = nodeprefix(H(I_y), a)$ for all nodes a that are control ancestors of both x and y. Consider an execution instance I_x of PPG node x with execution history $H(I_x) = \langle u_1, L_1, \dots, u_i, \dots, u_j, \dots, u_k, L_k \rangle$, $u_k = x$. We define nodeprefix $(H(I_x), a)$ as follows: If $a \neq x$, nodeprefix $(H(I_x), a) = \langle u_1, L_1, \dots, u_i, L_i \rangle$, $u_i = a$, $u_j \neq a$, $i < j \leq k$. If a = x, then nodeprefix $(H(I_x), a) =$ $H(I_x) = \langle u_1, L_1, \dots, u_i, \dots, u_j, \dots, u_k, L_k \rangle$.

A node a is a control ancestor of node x if there exists an acyclic path of control edges from START to x such that a is on that path.