Analysis and Optimization of Explicitly
Parallel Programs using the Parallel
Program Graph Representation

Vivek Sarkar

MIT Laboratory for Computer Science

(vivek@lcs.mit.edu)

Motivation

Current sequence of steps in compiling explicitly

parallel/multithreaded programs:

1.

2
3.
4

Parallel program is mapped to low-level IL with library calls

. Sequential compiler translates low-level IL to machine code

If machine code runs ‘“correctly” then stop

. Add volatile declarations to program and/or adjust compiler

optimization options

Go back to step 1

Motivation (contd.)

Extension of sequential compiler analysis/optimization techniques

to parallel programs is necessary for

e Maintaining single-processor performance in parallel programs,

e adapting program parallelism to target parallel machine,

e and making compilation of parallel programs less tedious and

less error-prone.

Parallel Program Graphs

A Parallel Program Graph PPG = (N, E . nirols Esync) 1S a directed
multigraph consisting of:
e N, a set of nodes (includes CFG nodes and mgoto nodes). An
mgoto node is used to create parallel threads of computation.
¢ F . nirol ©€ N X N X {TRUE, FALSE, UNCOND}, a set of labeled
control edges. Edge (a,b,L) € E_ 17 identifies a control edge
from node a to node b with label L.
o Fsync C N X N x SynchConds, a set of synchronization edges.
Edge (a,b, f) € Esync defines a synchronization from node a to

node b with synchronization condition f.

Example of a Parallel Program Graph

control edge

Si: X1 := ... synchronization edge
post(evl)
cobegin

S2: Xo 1= ...

post(ev2)

S3: wait (evl)

post(ev3)

S4: wait (ev8)

Xgq 1= ...
\\

S5

S6: wait(ev2)

S7: X7 1= ...

S8: wait(ev3)

post(ev8)

coend

Relating CFGs to PPGs

Construction of PPG for a sequential program

e PPG nodes = CFG nodes

e PPG control edges = CFG edges

e PPG synchronization edges = empty set

Relating PDGs to PPGs

Construction of PPG from PDG:

e PPG nodes = PDG nodes

(A region node in a PDG maps to an mgoto node in the PPQG)

e PPG control edges = PDG control dependence edges

e PPG synchronization edges = PDG data dependence edges

Synchronization condition f in PPG synchronization edge

mirrors context of PDG data dependence edge

Reaching Definitions Analysis on CFGs

REACH,,(n) = set of definitions d s.t. there is a path from d to n

and d is not Kkilled along that path.

REACH ,:(n) (REACH;,(n) — Kill(n)) |J Gen(n)

REACH;,(n) = U REACH .t (p)
p € pred(n)

Computing Redefinition (REDEF) sets for CFGs

REDEF;,(n) = set of definitions d s.t. d is redefined (killed) on

ALL paths from d to n (and there is at least one path from d to n)

REDEF,,+(n) = (REDEF;,(n) — Gen(n)) U
(Kill(n) N REACH;,,(n))
REDEF,,(n) = M REDEF oyt (p)

p € pred(n)

Three mutually exclusive cases for definition d and basic block n:
1. d € REACH;,,(n)

2. d ¢ REDEF;,(n)

3. there is no CFG path from d to n

Reaching Definitions Analysis on PPGs

REACHut(n) = (REACH;,(n) — Kill(n)) |J Gen(n)
REACH;,(n) = g REACH,,:(p) | — REDEF,,(n)
p € pred(n)
REDEF,ut(n) = (REDEF;,(n) — Gen(n)) (J
(Kill(n) N REACH;,(n))
REDEF,, (n) = v REDEF,u(p) |
p € sync_pred(n)
ﬂ REDEF,,,:(p)

p € control_pred(n)

10

Reaching Definitions Analysis on Example PPG

Node n | REDEF,, (n) | REACH;, (n) | REDEF (1) | REACH (1)
S1) 0 0 (X1}

cobegin 0 {X1} 0 (X1}
S2) {X1} {X1} {Xo}
S3 {X1} {Xo} {X1} {Xo}
S5) {X1}) {X1}
S6 {X1} { X5} {X1} { X5}
S7 {X1} { X5} { X1, X0} {X7}
S8 {X1} { X5} { X1, X0} {X7}
S4 {X1, X0} { X7} {X1, X0, X7} {X4}

coend | {X1,Xo, X7} { X4} {X1, X0, X7} {X4}

11

Related Work

[Midkiff et al 89], [Chow, Harrison 92], ...

Analysis of explicit (nondeterministic) parallel programs with
scalar and array variables, a sequentially consistent memory
model, and structured parallelism (no explicit synchronization)
[Pingali et al 90]

Presented a constant propagation algorithm for Dependence
Flow Graphs (dataflow graphs with an imperative store)
[Srinivasan 94], [Ferrante et al 96]

Analysis of explicit deterministic parallel programs with scalar

and array variables and copy-in/copy-out semantics

12

Conclusions

In this talk, we

e motivated using the Parallel Program Graph (PPG)

representation in analysis and optimization of parallel programs,

and

e presented a solution for reaching definitions analysis on PPGs

that is more precise than in past work.

13

Future Work

e Extend other traditional analysis and optimization algorithms

for use on PPGs

e Use PPGs as intermediate representation in common
compilation and execution environment for different parallel

programming languages

e Extend PPG execution model to support mutual exclusion and

nondeterminism

14

Parallel Control Flow in a PPG

Three cases:

1. An mgoto node a with k£ > 0 outgoing control edges,
(a,b1,UNCOND), ..., (a,bg, UNCOND), all with label UNCOND:
An execution instance I, of node a creates new execution

instances I ,...,I;, of nodes by,...,b; and then terminates

k
itself.

2. A non-mgoto node a with one outgoing control edge
(a,b, L) for branch label L:
When an execution instance I, of node a evaluates node a’'s

branch label as L, it creates a new execution instances [, of

node b and then terminates itself.
15

3. A non-mgoto node a with no outgoing control edges for
branch label L:
When an execution instance I, of node a evaluates node a’s

branch label as L, it terminates itself.

Execution Histories

H(Iy) execution history of instance I, of PPG node a

— sequence of (node,label) branch conditions that

caused execution instance I, to be created

Execution histories are defined recursively:

1. H(Istqrt) = <> (empty sequence)

2. If execution instance I, creates execution instance [due to

control edge (a,b, L), then H(I;) = concat(H(I,),< a, L >)

16

Synchronization Conditions

Consider synchronization edge (a,b, f) € Esync

Synchronization condition f is a boolean function on execution

histories

Given execution instances I, and I of nodes a and b,
f(H(Ig), H(I)) = true means that execution instance I, must

complete execution before execution instance I can be started

17

Weak (Deterministic) Memory Consistency Model

e All memory accesses are assumed to be non-atomic

e Read-write hazard — if I, reads location [in o; and there is a
parallel write of a different value, then the result is an error

e Write-write hazard — if I, writes value v into location [and
there is a parallel write of a different value, then the resulting
value in location [is undefined

e Separation of data communication and synchronization:
— Data communication specified by read/write operations

— Sequencing specified by synchronization and control edges

18

Control-Independent Synchronizations in a PPG

A synchronization edge (z,vy, f) is control-independent if a
necessary condition for f(H(I,), H(I)) =true is that
nodeprefix(H(Ix),a) = nodeprefix(H(Ily),a) for all nodes a that are

control ancestors of both z and y.

19

Control-Independent Synchronizations in a PPG (contd.)

Consider an execution instance I, of PPG node = with execution
history H(Iz) =< u1,L1,...,%,...,uj,...,ug, L >, up = x. We
define nodeprefix(H(I;),a) as follows:

If a = x, nodeprefix(H(Iz),a) =< ui,L1,...,u;, L; >, u; = a, uj # a,
1 <3< k.

If a = x, then nodeprefix(H(I;),a) =

H(Im) =< ul,Ll,...,ui,...,uj,...,uk,Lk >

A node a is a control ancestor of node x if there exists an acyclic
path of control edges from START to x such that a is on that

path.
20

