
Petascale Computing with Accelerators

Michael Kistler1, John Gunnels2, Daniel Brokenshire1, Brad Benton1

1IBM Corporation
11501 Burnet Road
Austin, TX 78758

{mkistler,brokensh,brad.benton}@us.ibm.com

2IBM Corporation
1101 Kitchawan Road

Yorktown Heights, NY 10598
gunnels@us.ibm.com

Abstract
A trend is developing in high performance computing in which
commodity processors are coupled to various types of computa-
tional accelerators. Such systems are commonly called hybrid
systems. In this paper, we describe our experience developing an
implementation of the Linpack benchmark for a petascale hybrid
system, the LANL Roadrunner cluster built by IBM for Los Ala-
mos National Laboratory. This system combines traditional x86-
64 host processors with IBM PowerXCell™ 8i accelerator proc-
essors. The implementation of Linpack we developed was the
first to achieve a performance result in excess of 1.0 PFLOPS,
and made Roadrunner the #1 system on the Top500 list in June
2008. We describe the design and implementation of hybrid Lin-
pack, including the special optimizations we developed for this
hybrid architecture. We then present actual results for single
node and multi-node executions. From this work, we conclude
that it is possible to achieve high performance for certain applica-
tions on hybrid architectures when careful attention is given to
efficient use of memory bandwidth, scheduling of data movement
between the host and accelerator memories, and proper distribu-
tion of work between the host and accelerator processors.

Categories and Subject Descriptors D.1.3 [Processor Archi-
tectures]: Heterogeneous (hybrid) systems; D.2.3 [Software En-
gineering]: Coding tools and techniques.

General Terms Algorithms, Performance, Design.

Keywords Accelerators, hybrid programming models.

1. Introduction
Over the past decade, commodity clusters have scaled in size and
have become the predominant architecture in supercomputing.
However, rather than continuing on the path of scaling to ever
larger numbers of nodes in a cluster, a new trend is emerging in
which the capability of each node in the cluster is extended
through the addition of various types of computational accelera-
tors. This has led to hybrid computing technologies which com-
bine a mix of general and specific processing elements to provide
increasingly more powerful systems.

In this paper, we describe an implementation of the Linpack
benchmark we developed to run on a petascale hybrid system

called Roadrunner, which combines traditional x86-64 host proc-
essors with IBM PowerXCell 8i accelerator processors. Our pri-
mary goal in this work was to develop a version of Linpack for
this hybrid system that could achieve 10^15 floating point opera-
tions per second (1.0 PFLOPS). This result was important as a
demonstration of the computational capability of the system. We
also had the secondary goal of achieving this level of performance
using the production level system software and a targeted set of
optimizations to the existing benchmark.

Our implementation of Linpack for this hybrid system is based
on the standard open-source implementation, High Performance
Linpack (HPL) [28], which is designed for homogeneous clusters.
We employed a combination of well-known optimizations for
homogeneous systems and new techniques made possible by the
hybrid nature of the system. We also developed a performance
model for the Roadrunner system and mapped the Linpack
benchmark onto this performance model. This allowed us to
identify the key computational kernels that needed to be acceler-
ated, develop a high level design for the application, evaluate
potential optimizations and their interactions, and estimate the
expected performance of our implementation on the full Road-
runner system.

We developed specialized computational kernels for the Pow-
erXCell 8i accelerators that achieve very high computational effi-
ciency while keeping demand for memory bandwidth low. We
also developed offload functions for the host processors to redi-
rect requests for these kernels to the accelerators. Data transfers
between the host and accelerator are carefully scheduled to over-
lap with computation on host, accelerator, or both, to minimize
communication costs. The remainder of the benchmark code is
left unmodified and executes on the host processors.

The resulting implementation of Linpack for Roadrunner
achieves 350 GFLOPS (1 GFLOPS is 1 billion floating point
operations per second) on one Roadrunner compute node, 63.2
TFLOPS on a 180-node Connected Unit (CU), and 1.026
PFLOPS on the full 17-CU Roadrunner configuration. The per-
formance result on the full configuration represents 74.6% of the
peak double-precision compute capability of the system, which is
comparable to the efficiency achieved by many of the homogene-
ous clusters that appear in the Top500 list. Since the aggregate
compute capability of the x84-64 processors of the system is only
44.1 TFLOPS, it is clear that the PowerXCell 8i processors con-
tribute the vast majority of the achieved performance. The per-
formance per-node declines by less than 4% in scaling from a
single node to the full system, which demonstrates that the system
design is well-balanced and our implementation scales very well
from small to large configurations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’09 February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright © 2009 ACM 978-1-60558-397-6/09/02…$5.00.

It is not uncommon for systems to achieve efficiency in the
70%-80% range on the Linpack benchmark, but our results are

241

significant because they were achieved on a hybrid architecture
and on a scale never before attempted. In the Roadrunner system,
97% of the computational capability resides in the PowerXCell 8i
accelerator processors, and before the work we present here was
undertaken, it was not known if a significant fraction of this capa-
bility could be effectively delivered to applications, even for a
relatively regular and well-structured application such as the Lin-
pack benchmark.

17 CUs

12 links per CU to
each of 8 switches

Eight 2nd -stage 288-port IB 4X DDR switches

288-port IB 4x DDR

180 compute nodes 12 I/O
nodes

180 compute nodes

288-port IB 4x DDR

12 I/O
nodes

17 CUs

12 links per CU to
each of 8 switches

Eight 2nd -stage 288-port IB 4X DDR switches

288-port IB 4x DDR

180 compute nodes 12 I/O
nodes

288-port IB 4x DDR

180 compute nodes 12 I/O
nodes

180 compute nodes

288-port IB 4x DDR

12 I/O
nodes

180 compute nodes

288-port IB 4x DDR

12 I/O
nodes

Figure 1. LANL’s Roadrunner System

While our work focused only on the Roadrunner architecture
and the Linpack benchmark, we believe that it provides valuable
insights into the more general area of developing high perform-
ance applications for hybrid architectures. In particular, our work
indicates that memory bandwidth is a key constraint to applica-
tion performance in hybrid architectures, so careful attention must
be given to reducing the memory bandwidth demands of compu-
tational kernels. Most hybrid systems have separate memory
domains for the host and accelerator processors, and we found
that the design of the data movement between these domains
plays a significant role in achieved performance. Finally, our
work shows that the host processor can often be used to perform
small, poorly structured, or otherwise low efficiency computa-
tions, allowing the computations on the accelerator to achieve
very high efficiency.

Since the 1.0 PFLOPS Linpack run, a number of impressive
results have been achieved on the Roadrunner system with a vari-
ety of applications. Researchers at Los Alamos National Labora-
tory (LANL) were able to demonstrate a molecular dynamics
code, SPaSM, that achieved 361 TFLOPS (double precision) on
the full Roadrunner system [29]. A second application, VPIC,
which employs the particle in cell method for plasma simulation,
achieved 374 TFLOPS (single precision) on the full Roadrunner
configuration, with almost linear scaling up to the full system
level [4]. These codes are representative of the application work-
loads that LANL plans to execute on Roadrunner, demonstrating
that the results we achieved with Linpack are not an isolated case,
and that real applications are also able to exploit the computa-
tional capability of this hybrid architecture.

The remainder of this paper is organized as follows. Section 2
describes the hardware and system software of the Roadrunner
system. Section 3 presents the design and Section 4 describes the
implementation of our version of Linpack for Roadrunner. Per-
formance results are presented in Section 5. Section 6 reviews
related work and Section 7 concludes the paper.

2. The LANL Roadrunner System

2.1 System Overview

Roadrunner is a petascale hybrid supercomputer developed by
IBM for the Los Alamos National Laboratory (LANL) under the
LANL project name "Roadrunner" [3]. The Roadrunner project
was named after the state bird of New Mexico. Roadrunner is a
hybrid system combining traditional x86-64 host processors with
PowerXCell 8i accelerator processors. The host processors are
intended to serve as the basic execution engine for applications.
The host processors also can offload compute-intensive opera-
tions to a companion PowerXCell 8i processor, which has a peak
floating point capability of almost 30x that of the host processor.

An overview of the Roadrunner system is shown in Figure 1.
The system consists of 17 Connected Units (CUs), where each
CU contains 180 compute nodes and 12 I/O nodes. All the nodes
in a CU are interconnected with a 288-port 4X double-data-rate
(DDR) InfiniBand switch. The CUs are interconnected with a
second level of 288-port 4X DDR InfiniBand switches. The net-

work is configured in a reduced-bandwidth fat-tree topology,
which means that simultaneous independent broadcasts within a
CU will perform at full bandwidth, but broadcasts across CUs
might see as little as 50% of full bandwidth due to link conten-
tion.

2.2 The Roadrunner Compute Node

The basic building block of Roadrunner is a hybrid compute node,
which consists of a 4-core 1.8 GHz Opteron LS21 blade with 16
GB of memory, linked to two QS22 Cell blades, each with two
IBM PowerXCell 8i processors and 8 GB of memory. The mem-
ory on each blade is physically local to the blade, meaning that
only the processors on that blade have direct access to the mem-
ory. Each host processor can communicate with its associated
accelerator over a dedicated PCI Express x8 link, which can pro-
vide bandwidths of up to 2.0 GB/s in each direction. Each com-
pute node has a single 4X DDR InfiniBand adapter for application
traffic and a 1 gigabit Ethernet connection used for management
functions. For reliability and ease of software distribution, all the
compute nodes are diskless. The compute nodes are called trib-
lades since they combine one Opteron blade with two QS22 Cell
blades, but the physical package is actually 4-wide, since one
additional slot is used for the interconnect cables and bridge com-
ponents that link the Opteron and PowerXCell 8i processors.
Figure 2 is a diagram of a triblade compute node of Roadrunner.

The IBM PowerXCell 8i processors contained in the QS22
blades are a new implementation of the Cell Broadband Engine™
Architecture (CBEA) [18]. The first implementation of the
CBEA is the Cell/B.E. processor, which was jointly developed by
IBM, Sony, and Toshiba and is used in Sony's Playstation® 3
game console. The PowerXCell 8i consists of one PowerPC
Processor Element (PPE) and eight Synergistic Processor Ele-
ments (SPEs) which implement a completely new instruction set
architecture designed specifically for high-performance numerical
computations. The PPE can be thought of as the "host" or "con-
trol" core, where the operating system and general control func-
tions for an application are executed. Each SPE has a Synergistic
Processor Unit (SPU), 256KB local store, and corresponding
Memory Flow Controller (MFC). The SPU is an in-order stream-
ing processor with a 128-bit SIMD instruction set architecture that
operates only on data within the SPE local store. The MFC is
used to control transfers between local store and system memory
or to another SPE's local store. The SPU issues direct memory
access (DMA) commands to the MFC to get data from main
memory into local store or put data from local store into main
memory. DMA commands are performed concurrently with SPU
program execution, allowing very efficient overlap of computa-

242

tion with communication. The PPE and SPEs are connected to
each other and to an on-chip memory controller and I/O controller
through the Element Interconnect Bus (EIB), which delivers a
peak bandwidth of 204.8 GB/sec. The memory controller can
support up to 25.6 GB/s of bandwidth to off-chip memory.

The IBM PowerXCell 8i differs from the Cell/B.E. in that it
includes an enhanced double precision unit on the SPEs, giving it
a peak computational capability of 108.8 GFLOPS in double pre-
cision (102.4 GFLOPS in the SPEs and 6.4 GFLOPS in the PPE).
In addition, the IBM PowerXCell 8i supports industry-standard
DDR2 SDRAM memory, enabling system designs with large
memory capacities. The PowerXCell 8i processor is implemented
in a 65nm SOI process with a die size of 212 square mm and runs
at frequencies u

2.3 Systems Software

p to 3.2 GHz. Figure 3 shows a die photo of the
IBM PowerXCell 8i processor that identifies the new features of
this processor.

Each compute node in the Roadrunner system runs three separate
OS images, one for the Opteron blade, and one for each of the
QS22 Cell blades; all are based on the Fedora distribution of
Linux. In addition to the standard Linux packages, each node has
specialized components for application development on the hy-
brid architecture provided in the IBM Software Kit for Multicore
Acceleration (IBM SDK) [15]. This combination of open-source
software and the SDK provides compilers, debuggers, integrated
development environment, performance analysis tools, and opti-
mized libraries. A good review of programming methods and
tooling for Cell/B.E. is available elsewhere [5].

A key component of the IBM SDK used in our implementation
of Linpack is the Data Communication and Synchronization
(DaCS) services, which provide communication and control
mechanisms between the host and accelerator processors in het-
erogeneous multi-core systems. These mechanisms include stan-
dard two-sided send/receive message passing, one-sided remote
DMA services, lightweight synchronization and mailbox facili-
ties, process management, topology services, and error handling.
In Roadrunner, DaCS uses special device drivers to route host-to-
accelerator communications over the PCI Express link between
the Opteron and QS22 blades, and the DaCS configuration asso-
ciates a dedicated IBM PowerXCell 8i processor to each of the
host Opteron cores.

For inter-node communication, Roadrunner uses the Message
Passing Interface (MPI) [23][24], which has become the de facto
standard for scientific parallel computing. MPI provides a rich set
of semantics for distributed-memory programming where explicit
data movement is required by the application developer. The
MPI library chosen for use on Roadrunner is Open MPI, an open
source MPI implementation from the Open MPI Project [11]. The
Open MPI library allows for selection (and restriction) of compo-
nents at both configuration time and run time, and its numerous
tuning parameters allow us to carefully tune Open MPI for the
Roadrunner environment.

3. The Design of Hybrid Linpack
The Linpack benchmark has become an industry standard bench-
mark for measuring the performance of large scale computer sys-
tems. The benchmark solves a system of linear equations of the
form Ax = b by performing LU factorization with partial pivoting
on a dense matrix, and then solves the resulting triangular system
of equations. The bulk of the computation is performed in the LU
factorization, which takes an input matrix A and produces a unit-
lower-triangular matrix L and an upper-triangular matrix U for
which A = LU. All calculations are performed in double-
precision. For a matrix of dimension N, the LU factorization
requires (2/3)*N3 floating point operations while the triangular
solve requires only O(N2) floating point operations. The size of
the problem is a key factor in the achievable performance.

 LU factorization is typically performed using a blocked, right-
looking algorithm, where each iteration produces a portion of the
final L and U matrices and leaves a reduced region of the matrix,
the trailing submatrix, to be solved by the remaining iterations.
This approach allows much of the computation to be performed
using matrix-matrix (BLAS3) operations [8], which are much
more efficient than vector-vector (BLAS1) or matrix-vector
(BLAS2) operations [22] on modern computer systems with deep
memory hierarchies. The high-level flow of the benchmark is as
follows:

Figure 2. Diagram of the triblade Compute Node

Dual Core
Opteron

HT x16

LS21

HT x16

HT x16

D
ual PC

I-E x8 flex-cables

Dual Core
Opteron

Expansion blade

8GB 8GB

PowerXCell
8i

QS22
4GB

PowerXCell
8i

4GB

I/O Hub

I/O Hub

PowerXCell
8i

QS22

2x
PC

I-E x8

4GB

PowerXCell
8i

4GB

I/O Hub

I/O Hub

PCI-E x8 IB 4X DDR
HT2100

2 x HT x16
Conn.

2 x HT x16
Conn.

HT x16

HT2100

2x
PC

I-E x8

Dual Core
Opteron

HT x16

LS21

HT x16

HT x16

D
ual PC

I-E x8 flex-cables

Dual Core
Opteron

Expansion blade

8GB 8GB

PowerXCell
8i

QS22
I/O Hub

4GB

PowerXCell
8i

4GB
I/O Hub

2x
PC

I-E x8

PowerXCell
8i

QS22

2x
PC

I-E x8

4GB

PowerXCell
8i

4GB

I/O Hub

I/O Hub

PowerXCell
8i

QS22
I/O Hub

4GB2x
PC

I-E x8 PowerXCell
8iI/O Hub

4GB

PCI-E x8 IB 4X DDR
HT2100

2 x HT x16
Conn.

2 x HT x16
Conn.

HT x16

HT2100

Figure 3. Die photo of IBM PowerXCell 8i processor

D
D

R
2 C

ontroller

Enhanced DP-Float

D
D

R
2 C

ontroller

Enhanced DP-Float

243

Allocate and Initialize Matrix
Iterating over block columns:
 Panel Factorization – factor current block column
 Forward Pivot trailing submatrix
 Compute block row of final U matrix (DTRSM)
 Update trailing submatrix (DGEMM)
Compute solution of the given system
Check the result

Figure 4. High Level Design of Hybrid Linpack

Allocate and Initialize Matrix (block-cyclic layout)
Copy matrix data to accelerators (no reformatting)
Reformat the matrix data on accelerators to block-row layout
Iterating over block columns:

Panel Factorization (LU decomp w/ pivoting) on left block column
Broadcast factored panel to all other processor columns
Transfer factored panel (L2) to accelerators
Pivot trailing submatrix (with transfers from/to accel)
Triangular Solve on block row (producing U)
Update trailing submatrix A = A - L2 * U
Transfer next block column to host

Compute solution of the given system
Check the result

Host

Host

Accelerator

O(N2)

O(N2)
O(N3)

O(N2)

Op Count

Timed portion of
the benchmark

Allocate and Initialize Matrix (block-cyclic layout)
Copy matrix data to accelerators (no reformatting)
Reformat the matrix data on accelerators to block-row layout
Iterating over block columns:

Panel Factorization (LU decomp w/ pivoting) on left block column
Broadcast factored panel to all other processor columns
Transfer factored panel (L2) to accelerators
Pivot trailing submatrix (with transfers from/to accel)
Triangular Solve on block row (producing U)
Update trailing submatrix A = A - L2 * U
Transfer next block column to host

Compute solution of the given system
Check the result

Host

Host

Accelerator

O(N2)

O(N2)
O(N3)

O(N2)

Op Count

Timed portion of
the benchmark

First, storage for the matrix is allocated and initialized with
random values. Then the benchmark enters the main loop of the
LU factorization. The first step of this loop is panel factorization,
which performs LU factorization on the left-most column of
blocks in the trailing submatrix. This produces one block column
of the final L matrix, called the L-panel. Pivoting is performed
within the panel during panel factorization to ensure numerical
stability. The sequence of pivot operations is saved and then
applied to the trailing submatrix in the forward pivoting step.
Then a triangular solve with multiple right-hand-sides (DTRSM)
is performed on the top block row of the trailing submatrix, pro-
ducing one block row of the final U matrix, called the U-panel.
In the final step of the main loop, the product of the L-panel and
U-panel is subtracted from the remainder of the trailing subma-
trix. On termination of the main loop, the LU factorization is
complete, and the orginal system of equations Ax=b has been
transformed into Ux=y, where y = Lb. At this point the final
solution, x, is computed using a triangular solve, and then the
benchmark checks this solution for correctness. Computation
time is dominated by the matrix update step which is a form of
matrix-matrix multiply (DGEMM), an O(N3) operation. The
panel factorization, DTRSM, and triangular solve operations are
all O(N2) operations.

Parallel LU factorization builds on the standard blocked right-
looking approach by distributing the blocks of the matrix across
nodes in a block-cyclic fashion. Nodes are organized into a two-
dimensional grid (rows and columns). Each node performs up-
dates to its own blocks during the execution of the algorithm us-
ing data supplied by other nodes, and in turn supplies its blocks to
other nodes when needed. Inter-node communication is required
for pivoting in both the panel factorization and forward pivot
steps.

We developed a performance model for the Linpack bench-
mark to explore the potential performance we could achieve on
the Roadrunner system. The model allowed us to identify the key
computational kernels that needed to be accelerated, to develop a
high level design for the application, evaluate potential optimiza-
tions and their interactions, and to estimate the expected perform-
ance of our implementation on the full Roadrunner system.
Details of the performance model are described elsewhere [20], so
only the key results are included here. Clearly, the matrix update
(DGEMM) operation should be assigned to the accelerators, since
this is where the bulk of the computation occurs. The performance
model indicated that it would also be beneficial to perform the
DTRSM computations on the accelerators. The remainder of the
benchmark, including the panel factorization and pivoting code,
would remain on the host. In particular, the panel factorization
and final triangular solve step are performed by the host proces-
sors, in large part because of the inter-node communication re-
quired in performing these operations.

The decision to perform the matrix update on the accelerators
drove another important design choice - where to store the matrix
data? During any given iteration, the vast majority of the data
located on a node does not need to be communicated to other
nodes, but may be updated by the matrix update operation. This

means that it is generally unnecessary to transfer the entire results
of the matrix update of one iteration back to the host, since it
much of this data would simply have to be transferred right back
to the accelerator in the next iteration. As a result, we chose to
store the matrix data in accelerator memory. These basic design
decisions led us to the high-level design for hybrid Linpack
shown in Figure 4.

For Roadrunner, Linpack is configured so that each node runs
4 MPI tasks, one for each host core, for a system-wide total of
17*180*4 = 12240 MPI tasks. Our performance model indicates
that an aspect ratio for the task grid between 1:1 and 1:8 will give
the best performance. Therefore, we chose a rectangular grid of
68 x 180 tasks to both stay within the optimal aspect ratio and to
keep all tasks in any given row mapped to a single CU to leverage
higher network bandwidth within CUs for row broadcasts. MPI is
configured to assign a consecutive set of ranks to the four MPI
tasks of each node, and the task grid is created in row order, so
that row communications can take advantage of shared memory
communications on 3/4 of the links.

Preliminary experiments indicated that roughly 14GB per node
can be used to hold matrix data. This translates to global matrix
dimensions of 2,470,000 x 2,470,000. The expected run time for
a matrix of this size, at a performance level of 1.0 PFLOPS, is 2
hours, 48 minutes inside the timed portion of the benchmark, plus
some additional time for initialization and verification of the re-
sult. The expected mean time between failures (MTBF) for the
full Roadrunner system is 22 hours, which gives a comfortable
margin for completing a 1.0 PFLOPS run without the need for
integrated checkpointing.

4. Implementation Details

4.1 Base Implementation and Optimizations

We started with the publicly available implementation, High Per-
formance Linpack (HPL) [28], and extended it to support the
hybrid architecture of the Roadrunner system. There were a num-
ber of good reasons for taking this approach. One is that submis-
sions to the Top500 list must use certain components of HPL in
order to be considered valid. Another reason is that HPL already
contains a number of optimizations and tuning parameters that are
useful in boosting performance. In particular, the technique of
pipelining iterations of the main loop of the LU factorization, or
look-ahead [21], is a key optimization we wanted to leverage.
Finally, we wanted to demonstrate that applications initially de-
veloped for homogeneous clusters could be successfully adapted

244

to

torage for the matrix and
aux

ource files. By imple-
menting our own pivot operation, we could limit our source

iles.

rformance modeling with remote invocations
of

our work pre-dates this
pu

f extra demand, leaving ample memory band-
wi

te asynchronously operate
on

po

ta re-
for

by
avoiding data copying / reformatting, with no effect on the com-

ls.

, it is then free to perform other computations or
co

hybrid systems without a complete redesign. We provide de-
tails of the implementation effort required in Section 4.4.

We began by implementing certain well-know optimizations
for Linpack. In particular, we reformat the matrix into a hierar-
chically blocked organization. This is a well-known technique for
the optimization of dense matrix kernels [13], and is well suited to
a hybrid implementation since the matrix data already must be
transferred between the host and accelerator. To ensure compli-
ance with the benchmark rules, we could not actually reformat the
data during transfer from the host to accelerator. However, we
expect this technique will be beneficial for many hybrid applica-
tions. The data organization we chose for the matrix is blocked-
row format, where blocks of 64 columns are stored in row-major
format. Reformatting the matrix in this way allowed us to focus
on developing highly specialized versions of our DGEMM and
DTRSM kernels and improves the performance of the memory
hierarchy in the pivoting operations. We also added special
memory allocation functions to obtain s

iliary buffers in huge page memory, which significantly re-
duces memory management overheads.

We developed a new implementation of the forward pivot op-
eration that employs the MPI collectives MPI_Scatterv and
MPI_Allgatherv. Rows in the top block row are transferred into
the body of the trailing submatrix with MPI_Scatterv, and the
rows that will replace these are collected into the top block row
with MPI_Allgatherv. Each row of processors receives a copy of
this top block row to use as input to the subsequent trailing matrix
update operation. There were two motivations for this work. The
first was that we believed that the MPI collectives could actually
outperform the existing pivot implementations in the standard
HPL source base. We later determined that the performance
benefit afforded by the collective communications routines was
minimal. The second motivation was that this allowed us to cen-
tralize the code required to transfer matrix data to/from the accel-
erators during the pivot step. HPL contains several alternative
pivoting operations, but the code to implement these is distributed
across a collection of more than a dozen s

changes to the addition of just three f

4.2 Leveraging the Accelerators

We then added support to utilize the accelerators of the hybrid
system. We did this by replacing the compute-intensive kernels
identified by our pe

accelerated versions of these kernels that utilize the PowerX-
Cell 8i processors.

Since Linpack performance is dominated by the performance
of the DGEMM operation, many of the system design decisions
were dictated by the DGEMM design. A block size of 64x64 was
chosen as the largest power of two that allowed the SPE local
storage to accommodate double buffered blocks of the three ma-
trices. The matrix multiplication kernel that computes CT = CT -
A x BT was developed in assembly using techniques similar to
those described by Alvaro [2], though

blication. The resulting kernel of 7664 bytes achieves 99.87%
of the available 12.8 GFLOPS per SPE.

This very high computational performance in DGEMM can
place very high demands for bandwidth on the memory subsys-
tem. In a typical implementation using 64x64 element blocks,
DGEMM could require 17.9 GB/s of sustained memory band-
width, with occasional bursts of nearly 23.8 GB/s. Since the
maximum memory bandwidth supported by the memory control-
ler of the PowerXCell 8i is 25.6 GB/s, DGEMM could practically
consume all of the available memory bandwidth. This was prob-

lematic since we expected additional demands on the memory
subsystem from computations performed by the PPE and commu-
nications with the host processor. To address this issue, we chose
to increase the block size used by the Linpack benchmark to 128
with the accelerators operating on 64x64 sub-blocks, and we de-
veloped a novel access pattern that serpentines through the ma-
trix. These two optimizations decrease the required sustained
memory bandwidth of DGEMM to less that 12 GB/s without oc-
casional bursts o

dth to support concurrent PPE computation and host
communication.

An optimized DTRSM kernel that performs the triangular
solve was also developed. This kernel operates on 128x16 sub
blocks such that the 8 SPEs in aggrega

 128x128 blocks. This kernel is 6000 bytes of instruction text
with a compute efficiency of 98.75%.

The DGEMM and DTRSM kernels are the foundation of a
PPE callable acceleration library that parallelizes the computa-
tions across 8 SPEs. Integral multiples of the kernel block size
are offloaded to the SPEs while the remaining partial rows and
columns are handled by the PPE in parallel with the SPE request.
The PPE initiates a request by storing the request parameters to a
parameter block in memory and sending each SPE a message
containing a command opcode and the effective address of the
parameter block. Each SPE indicates that it has completed its

rtion of the operation by updating a shared completion variable
in main storage which the PPE polls until all SPEs have finished.

Matrix components are stored in varied formats in accelerator
memory to improve locality of reference and data transfer speeds.
The matrix is stored in a blocked-row organization, described
above, in big-endian format. U panels are row ordered, big-endian
because they contain rows received from other nodes during the
pivoting phase. Since L panels are the result of a panel factoriza-
tion performed by the host processors, they are stored column-
ordered, little-endian. The acceleration library provides da

matting functions to convert the data between the three differ-
ent formats using the SPEs memory flow controller (MFC).

The need for data reformatting was further reduced by incor-
porating the byte swapping of the L panel data into the DGEMM
and DTRSM kernels. This allowed us to handle the byte ordering
differences between the Opterons and PowerXCell 8i processors
with no loss of performance. In addition, both the DTRSM and
DGEMM SPE off-load functions were extended to support certain
inputs and outputs in alternate formats, further reducing data re-
formatting costs. For example, the DTRSM SPE off-load func-
tion can produce its result either back into the row ordered U
panel or directly into the matrix in blocked row format. Storing
the U panel directly into the matrix saved an extra copy step that
would have been required on the processor row that owned this
portion of the matrix. This also drove the requirement for two
variants of the DGEMM off-load function - one that takes the U
panel input from a row-ordered buffer and another that can take
the U panel directly from matrix storage. Supporting these alter-
nate formats further reduced memory bandwidth requirements

putational efficiency of these kerne

4.3 Advanced Optimizations

We further optimized our implementation by taking advantage of
the parallelism available between the host and accelerator proces-
sors. Since the host offloads the trailing matrix update step to the
accelerators

mmunications. We found two ways in which this could be
exploited.

245

First, we modified the benchmark to overlap panel factoriza-
tion performed on the host with the accelerator DGEMM update
of some number of block columns. There is a tradeoff involved in
determining the number of block columns to update, or overlap
value, during panel factorization. A small overlap value could
allow the DGEMM work to complete before panel factorization,
leaving the PowerXCell 8i processors idle. A large overlap value
could delay the work following panel factorization that needs to
employ the accelerators. Currently we have determined a good
overlap value through experimentation, but with some additional
effort this overlap point could be determined dynamically, which
wo

ors is involved in panel factori-
za

d can be employed on
any architecture. In fact, we plan to offer this implementation as

ode base.

another 250. Both of these
op

 by hand, tools or

ut very little in the way of additional code. Our
ne

rnels, only
, or about 20% of the original code size, were
hybrid implementation of Linpack.

e IBM PowerXCell 8i-
bas

of

uld allow it to vary over the course of the execution, with the
potential to further improve performance.

Our second optimization is to overlap the broadcast of the L
panel with DGEMM updates on the accelerators. This optimiza-
tion is significant because all MPI tasks participate in L panel
broadcast, and thus will benefit from this optimization. In con-
trast, only one column of process

tion in a given iteration of the main loop, which limits the
benefits of our first optimization.

Finally, we identified a problem in MPI scaling as we started
ramping execution to larger configurations, specifically in the
Open MPI implementation of MPI_Allgatherv. This function is
used in the pivoting step, where rows in the body of the matrix are
gathered to all processor rows to be used as input to the matrix
update step. We determined that the performance problem
stemmed from the fact that the number of matrix rows gathered
from each participating task could vary significantly, and
MPI_Allgatherv implementation in Open MPI was really de-
signed for the case of equally sized data coming from all tasks [6].
To resolve this performance problem, we developed a two-step
implementation of Allgatherv, where the first step uses point-to-
point messages to distribute the rows equally across the tasks, and
the second step issues MPI_Allgatherv. Our new Allgatherv im-
plementation is also completely general an

a contribution to the Open MPI c

4.4 Implementation Effort

The base for our implementation, High Performance Linpack,
contains approximately 16K lines of code. Our implementation
of the forward pivot using MPI collectives added about 500 lines
to the code base, and new functions to allocate matrix and buffer
storage from huge page regions added

timizations are implemented in a general way and are not spe-
cific to the Roadrunner architecture.

Our computational kernels for the PowerXCell 8i contain
about 4000 lines of C-language code and approximately 6000
lines of SPU assembly code. To access these functions from the
host, we wrote an additional 2000 lines of C code, split about
evenly between the host and PPE, for function offload and data
communication between the two processors. The implementation
of the offload functions is relatively straightforward, involving
marshalling of parameters into messages and demarshalling on the
receiver. While we wrote these functions
frameworks could be developed to automatically generate or sig-
nificantly reduce the size of these functions.
Overlapping panel factorization and panel broadcast on the host
with DGEMM operations on the accelerators required some code
restructuring b

w Allgatherv implementation required about 200 lines of addi-
tional C code.

In total, we added about 7000 lines of C code and 6000 lines
of SPU assembly to the HPL code base. However, the majority of

this new code is in the specialized kernel functions we developed
for the PowerXCell 8i accelerators. Recent versions of the IBM
SDK for Multicore Acceleration [15] include versions of the
BLAS and LAPACK libraries for the PowerXCell 8i, so typical
applications should be able to use existing libraries and avoid this
effort. The remaining 3000 lines include our basic and advance
optimizations and the interface functions that connect the host and
accelerator processes. Excluding the specialized ke
3000 lines of code
needed to create a

5. Results

5.1 Single Node Results

We executed our hybrid implementation of Linpack on produc-
tion-level versions of the Roadrunner compute nodes and verified
that it produces correct solutions. Figure 5 presents the perform-
ance of our hybrid Linpack implementation on a single Roadrun-
ner compute node, along with the measured performance of the
standard HPL implementation linked with the AMD Core Math
Library (ACML) [1]. For these experiments, Linpack is config-
ured to use a 1x4 grid of processes and both the host-only and
accelerated version use our huge page optimization and MPI col-
lectives pivoting implementation. The x-axis of the graph is the
size of the matrix (N), and the y-axis indicates the achieved per-
formance of the benchmark in GFLOPS. On a single compute
node, our implementation of Linpack achieves 350 GFLOPS for a
matrix of size N=42943. This performance result is 77.8% of the
peak compute capability of a Roadrunner compute node (counting
all the flops available in the Opteron, PowerPC, and SPU cores),
which is equal to or better than the Linpack efficiency achieved
by many conventional systems. These results also show that our
implementation of Linpack utilizing th

ed accelerators can outperform the host-only implementation
by a factor of 28 at large problem sizes.

To determine the benefits of overlapping host processing with
DGEMM updates on the accelerators, we performed experiments
in which we selectively disabled the overlap of panel factorization
with DGEMM and the overlap of panel broadcast with DGEMM.
The graph in Figure 6 presents the results of these experiments,
using the same axes as Figure 5. These experiments indicate that
both overlap techniques have significant value, but the overlap of
the panel broadcast with DGEMM has a far greater impact on
performance, even on this relatively small configuration. The
likely reason for this is that every task participates in a broadcast
in every iteration of the main loop, whereas only one column

Figure 5. Hybrid Linpack Performance by Matrix Size

Hybrid Linpack Performance

250
300
350
400
450

PS

0
50

100
150
200

0 10000 20000 30000 40000 50000

Matrix Size (N)

G
FL

O

accelerated
host only

246

tasks (in our single node experiments, just one task) can overlap
panel factorization with DGEMM.

We used the detailed timing option of HPL to obtain a break-
down of the overall benchmark time into the major components of
benchmark execution. The main components in this breakdown
are pfact, which is the panel factorization step, bcast, which is the
broadcast of the L panel across rows of processors in the grid,
laswp, which is the local data transfers needed for pivoting, up-
date, which is the DTRSM and DGEMM update of the trailing
submatrix, tr_solve, which is the triangular solve performed dur-
ing the backsolve step to obtain the final solution, and accel,
which is a category we added to track the costs of matrix refor-
matting and data transfer to/from the accelerators.

Figure 7 shows the breakdown of execution time on a single
compute node into these components, normalized to the runtime
of the entire benchmark, for a range of matrix sizes. Note that in
most cases the sum of the components exceeds the total runtime -
this is because some of the optimizations we implemented allow
the update function, being performed on the accelerators, to be
performed concurrently with operations on the host, such as panel

ctorization and broadcast. There are some clear trends visible
d is that update is the dominant com-
% of the run time even at very small

.

fa
in this graph. The first tren
ponent, consuming over 60
matrix sizes, and growing as a fraction of run time as the matrix
size increases. The bcast component is a relatively constant frac-
tion of runtime, which is somewhat unexpected. We believe this

nents is at most O(N

is caused by load imbalance, and does not accurately reflect the
actual time required for this communication. All other compo-
nents decrease as a fraction of run time as matrix size increases
These trends are expected, since the update step must perform
O(N3) operations, whereas the complexity of the other compo-

2). In particular, the accel overhead for the
largest matrix is reduced to nearly half its value, indicating that
host to cell communications are not a bottleneck in this design.

5.2 Multi-Node Results

To evaluate the scalability of our implementation, we ran a
graduated series of problem sizes across all 180 nodes of a single
CU. What we expected to see was a steady rise in performance
that asymptotically approaches the performance achieved on a
single node. The results of this experiment are shown in Figure
8. Here we see a nice rise up to a peak of 63.2 TFLOPS, which
represents 78.1% of peak for one CU. It is a bit surprising that
the achieved performance on a full CU actually exceeds the re-
sults achieved on a single node. The explanation for this phe-
nomenon lies in the aspect ratio of the task grid used in these two
configurations - the 18x40 aspect ratio is more favorable than a
1x4 aspect ratio for our implementation.

Finally, Figure 9 shows performance scaling across multiple
CUs of the Roadrunner system. Only a limited set of results
could be obtained due to limitations on availability of larger sys-

Figure 6. Performance of various overlap scenarios

Benefits from Host/Accel Parallelism

150

200

250

300

350

400

450

Performance by Problem Size on one CU
(180 Nodes, P=18, Q=40)

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

0 200000 400000 600000

Matrix Size (N)

TF
LO

PS

0

50

100

0 10000 20000 30000 40000 50000

Matrix Size (N)

G
FL

O
PS

All Optimizations
No Pfact Overlap
No Bcast Overlap

Components of Normalized Runtime

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 5 83 39 3 31 7 1
81

9
12

41
16

3
20

35
1

23
0

26
62

3
29

18
31

2
33

27
9

35
32

37
37

5
39

42
3

41
47

42
94

3

 Size (NxN)Matrix

accel
tr solve
update
laswp
bcast
pfact

Figure 7. Breakdown of execution time

Figure 8. Performance on one Connected Unit

Performance Scaling by CU

600

800

1000

1200

TF
LO

PS

0

200

400

0 2 4 6 8 10 12 14 16 18

Number of CUs

Figure 9. Performance by number of CUs

247

tem configurations. Nevertheless, our results show excellent scal-
ing from a single CU all the way up to the full 17 CU configura-
tion of Roadrunner. The achieved performance on 17 CUs was

of the peak of this configuration.
 effects create no more than a 3.5% per-

n the accelerator processors have a large
co

performance [14]. The matrix
ultiplication kernel at the heart of Linpack has also been care-

er compute node. For example, a
quad-core processor has a peak of 48

2 D GFLOPS per core), and Intel has published
pertown sys-

 the
-

F
r

line re
acce e

syst
SPU or-

sing -
tify

We hmark
for nes
traditional x86-64 host processors with IBM PowerXCell 8i ac-

ation of traditional opti-
miz rnels for
the PowerXCell 8i processors, and novel techniques for exploiting

d
that in
craf els, but also in carefully conserving

tatio ,
and
tatio owing the computations on the accelerator to achieve

O e
Roa -
prec s,
Linp

se
resu e con-
figu ults are particularly significant

syst
parable to homogeneous systems.

Pow a-
chin both.

r-
tain
used

[1] MD Core Math Library,

[2] rt Vec-

[3] . Pakin,

of

[5] uszczek, J. Kurzak, J. Dongarra, and G. Bosilca, A

xville, May 11, 2007.

et,
rnational Conference on High-

[7] rs,

g, A set of

,

[10]

ystems Jour-
nal, Vol 45, Number 1, 2006

1.026 PFLOPS, which is 74.6%
This implies that scaling
formance loss (measured as percent of peak) from 1 to 17 CUs.

6. Related Work
There is a large body of related work in the general area of ex-
ploiting accelerators to increase computational performance.
Recent work in this area has focused on utilizing graphics proc-
essing units (GPUs) for accelerating a variety of dense linear
algebra routines such as LU, QR, and Cholesky factorization
[26][30]. Others have developed special-purpose processors in-
tended for use as accelerators for technical computing applica-
tions, e.g. Clearspeed [7]. However, recent work has found that
the benefits of accelerators for certain large scale applications can
only be realized whe

mputational capability in comparison to the host processors
[19]. This suggests that the PowerXCell 8i could be quite benefi-
cial as an accelerator for such applications.

Due to its position as the benchmark used in the Top500 rank-
ings, the Linpack benchmark is another area that has been exten-
sively studied. A detailed explanation of the benchmark
computations and general performance model are given in [9]. A
number of researchers have studied the performance implications
of alternate data layouts [13][27]. Other techniques such as multi-
threading and one-sided communication have also been explored
as a means to improve Linpack
m
fully studied, and new techniques continue to be discovered to
increase its efficiency [12].

Both AMD and Intel now offer quad-core processors with sig-
nificantly greater peak performance than the 1.8 GHz Opteron
host processors in a Roadrunn
3.0 GHz Intel "Harpertown"
DP GFLOPS (1 P
benchmark results for a two processor (8 core) Har
tem that achieves 81 GFLOPS on Linpack [17]. However,
Roadrunner compute node still achieves more than 4x the per
formance of this system.

inally, in the area of programming for CBEA-compliant ac-
cele ators like the PowerXCell 8i processor, a number of efforts
have focused on the development of BLAS and related dense

ar algebra libraries to make the capabilities of the SPUs mo
ssible. The Cell SDK contains implementations of both th

BLAS and LAPACK libraries that allow programs running on the
PPE to transparently utilize the SPUs. Alvaro et al. [2] describe a

ematic approach to developing computational kernels for the
 that are both fast and small in terms of code size, an imp

tant consideration given the limited size of the local store (256
KB) of an SPU. In the area of compilers, IBM has developed an

le source compiler that uses OpenMP [25] directives to iden
regions of a program that can be offloaded to the SPUs [10].

7. Conclusions
have described an implementation of the Linpack benc
a petascale hybrid system called Roadrunner, which combi

celerator processors. We used a combin
ation techniques, highly optimized computational ke

additional parallelism available in hybrid architectures. We foun
the key to high performance in this system lay not only

ting highly efficient kern
memory bandwidth in computational kernels, overlapping compu-

n with host-to-accelerator and host-to-host communications
 utilizing the host processor to perform low efficiency compu-
ns, all

very high efficiency.
ur version of Linpack achieves 350 GFLOPS on a singl

drunner compute node, which is 77.8% of the peak double
ision compute capability. On multi-node configuration
ack demonstrates excellent scalability, achieving 63.2

TFLOPS on a 180-node Connected Unit (CU), and 1.026
PFLOPS on the full 17-CU Roadrunner configuration. The

lts are 78.1% and 74.6% of the peak efficiency for thes
rations, respectively. These res

because they are the first demonstration of a large scale hybrid
em that achieves efficiency on the Linpack benchmark com-

erXCell 8i is a trademark of the International Business M
es Corporation, in the United States, other countries, or

Cell Broadband Engine is a trademark of Sony Computer Ente
ment, Inc., in the United States, other countries, or both and is
 under license therefrom.

References
Advanced Micro Devices, A
http://www.amd.com/acml
W. Alvaro, J. Kurzak, and J.J. Dongarra, Fast and Small Sho
tor SIMD Matrix Multiplication Kernels for the CELL Processor.
UT-CS-08-609, January 2008.
K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S
J.C. Sancho. "Entering the Petaflop Era: The Architecture and Per-
formance of Roadrunner", in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, Nov 2008

[4] K.J. Bowers, B.J. Albright, B.K. Bergen, L. Yin, K.J. Barker, D.J.
Kerbyson, 0.365 Pflop/s Trillion-particle Particle-in-cell Modeling
Laser Plasma Interactions on Roadrunner , in Proceedings of the
2008 ACM/IEEE conference on Supercomputing, Nov 2008
A. Buttari, P. L
Rough Guide to Scientific Computing on the PlayStation 3, Techni-
cal Report UT-CS-07-595, Innovative Computing Laboratory, Uni-
versity of Tennessee Kno

[6] J. Chen, Y. Zhang, L. Zhang, W. Yuan, Performance Evaluation of
Allgather Algorithms On Terascale Linux Cluster with Fast Ethern
Proceedings of the Eighth Inte
Performance Computing in Asia-Pacific Region (HPCASIA'05),
IEEE, 2005
ClearSpeed, Accelerated HPC Cluste
http://www.clearspeed.com/acceleration/accelhpcclusters/

[8] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarlin
Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math.
Soft., 16 (1990), pp. 1--17.

[9] J. J. Dongarra, R. A. van de Geijn, D. W. Walker, Scalability Issues
Affecting the Design of a Dense Linear Algebra Library, Journal of
Parallel and Distributed Computing, Vol 22, Number 3, pp 523--537
1994
 A. E. Eichenberger, J. K. O'Brien, K. M. O'Brien, P. Wu, T. Chen, P.
H. Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T.
Zhang, P. Zhao, M. K. Gschwind, R. Archambault, Y. Gao, and R.
Koo, Using advanced compiler technology to exploit the perform-
ance of the Cell Broadband Engine architecture, IBM S

248

[11] E. Gabriel, G. Fagg, G. Bosilca, et al, Open MPI: Goals, Concept,
and Design of a Next Generation MPI Implementation, Euro
PVM/MPI, September, 2004.
 K. Goto and R. A. van de Geijn, Anatomy of [12] High-Performance

re,

3] F. G. Gustavson, High-performance linear algebra algorithms using
new generalized data structures for matrices, IBM Journal of Re-
search and Development, Vol. 47, Number 1, 2003, pp 31-55

[14] P. Husbands and K. Yelick, Multi-Threading and One-Sided Com-
munication in Parallel LU Factorization, in Proceedings of the 2007
ACM/IEEE conference on Supercomputing, Nov 2007

[15] IBM, The IBM Software Kit for Multicore Acceleration Version 3.0
http://www.ibm.com/chips/techlib/techlib.nsf/products/IBM_SDK_f
or_Multicore_Acceleration

[16] IBM, Data Communication and Synchronization Library for Hybrid-
x86 Programmers Guide and API Reference, October 2007.

[17] Intel Corp, Intel® Xeon® Processor 5000 Sequence: HPC Bench-
marks: Dense Floating-point,
http://www.intel.com/performance/server/xeon/hpcapp.htm

[18] C. R. Johns and D. A. Brokenshire, Introduction to the Cell Broad-
band Engine Architecture, IBM Journal of Research and Develop-
ment, Vol 51, Number 5, 2007, pp 503-520

[19] D. J. Kerbyson and A. Hoisie, Analysis of Wavefront Algorithms on
Large-scale Two-level Heterogeneous Processing Systems, Work-
shop on Unique Chips and Systems (UCAS2), IEEE Symposium on
Performance Analysis of Systems and Software (ISPASS06), Austin,
TX, Mar 2006

[20] M. Kistler, J. Gunnels, D. Brokenshire, B. Benton, Programming the
Linpack Benchmark for Roadrunner, IBM Journal of Research and
Development, to appear

[21] utines
ead, UT-

[22]

Math. Soft., 5 (1979), pp. 308--323.
[23] Message Passing Interface Forum. MPI: A Message Passing Inter-

face Standard, June 1995. http://www.mpi-forum.org.
[24] Message Passing Interface Forum. MPI-2: Extensions to the Message

Passing Interface, July 1997. http://www.mpi-forum.org
[25] OpenMP Specifications, http://www.openmp.org/drupal/node/view/8
[26] G. Quintana-Orti, F.D. Igual, E.S. Quintana-Orti, R. van de Geijn,

Solving Dense Linear Algebra Problems on Platforms with Multiple
Hardware Accelerators, The University of Texas at Austin, Depart-
ment of Computer Sciences. Technical Report TR-08-22. May, 2008.

[27] Panziera J.-P. and Baron J. A Highly Efficient Linpack Implementa-
tion Based on Shared-Memory Parallelism. In Proceedings of the
2005 International Supercomputer Conference, 2005.

[28] A. Petitet, R. C. Whaley, J. J. Dongarra, and A. Cleary. HPL - A
portable implementation of the high-performance linpack benchmark
for distributed memory computers.
http://www.netlib.org/benchmark/hpl/, 2006

[29] S. Swaminarayan, K. Kadau, T.C. Germann, 350-450 Tflops Mo-
lecular Dynamics Simulations on the Roadrunner General-purpose
Heterogeneous Supercomputer, in Proceedings of the 2008
ACM/IEEE conference on Supercomputing, Nov 2008

[30] V. Volkov and J. Demmel, LU, QR, and Cholesky Factorizations
using Vector Capabilities of GPUs, University of California at
Berkeley Technical Report UCB/EECS-2008-49, May 2008

Matrix Multiplication, ACM Transactions on Mathematical Softwa
to appear.

 J. Kurzak and J. Dongarra, Implementing Linear Algebra Ro
on Multi-Core Processors with Pipelining and a Look Ah

[1

CS-06-581, September 2006.
 C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic
Linear Algebra Subprograms for FORTRAN usage, ACM Trans.

249

