
COMP 322 Spring 2014

Lab 2: Abstract Performance Metrics
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Coursera Login: visit http://rice.coursera.org and select “Fundamentals of Parallel Programming”

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Important tips and links

NOTE: It is recommended that you do the setup and execution for today’s lab on your laptop computer
instead of a lab computer, so that you can use your laptop for in-class activities as well. The instructions
below are written for Mac OS and Linux computers, but should be easily adaptable to Windows with minor
changes e.g., you may need to use \ instead of / in some commands.

Note that all commands below are CaSe-SeNsItIvE. For example, be sure to use “S14” instead of “s14”.

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2014/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJ-lib Jar File : http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar

HJ-lib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

HelloWorld Project : https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up

1 Measuring Abstract Performance Metrics with Array Sum

1. Update your habanero-java-lib.jar file! (http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.
jar). You need the latest version of the library for the programs provided today to work.

2. Download the ArraySum1.java file from the Code Examples column for Lab 2 in the course web page,
https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

3. Copy the following line of code

System.setProperty(HjSystemProperty.abstractMetrics.propertyKey(), ‘‘true’’);

in the main program before initializeHabanero(); This line enables the generation of abstract metrics.

4. Compile and run this java program.

5. Notice the following statistics printed at the end of program execution for the default array size of 8:

1 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
http://rice.coursera.org
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2014/comp322/home
https://jdk8.java.net/download.html
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
https://wiki.rice.edu/confluence/display/PARPROG/COMP322


COMP 322
Spring 2014

Lab 2: Abstract Performance Metrics

(a) “TOTAL NUMBER OF OPS DEFINED BY CALLS TO doWork()” the total (WORK) in the computa-
tion in units implicitly defined by calls to doWork()

(b) “CRITICAL PATH LENGTH OF OPS DEFINED BY CALLS TO hj.lang.perf.doWork()”, the critical
path length (CPL) of the computation in units implicitly defined by calls to perf.doWork()

(c) “IDEAL PARALLELISM = WORK/CPL”, the ideal parallelism in the computation

6. You can repeat the run for a different array size by clicking open the Run menu at the top and then
choose Edit Configurations. In the popped out window, enter the size in Program arguments and click
OK. Now run the program again.

What WORK, CPL and IDEAL PARALLELISM values do you you see for different array sizes? Enter
these values in a file named lab 2 written.txt in the lab 2 directory. for array sizes that range across
all powers of 2 up to 1024 — 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024.

2 String Search Problem

1. Download the Search2.java file from the Code Examples column for Lab 2 in the course web page,
https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

2. Search2.java contains a sequential program to search for a substring (pattern) in a given string (text),
and return the total number of occurrences found. As discussed in Lecture 4, this program has been
instrumented to count each character comparison as 1 unit of work from the viewpoint of abstract
performance metrics, and ignore everything else.

3. Your lab assignment is to convert it to a parallel program that produces the correct answer with a
smaller critical path length (ideal parallel time) than the sequential version. You can explore alternate
algorithms that reduce the critical path length further than what was discussed in the lecture.

As discussed in the lecture, be sure that your parallel solution avoids “data races” for the shared
variable count e.g., by instead creating an array of 0/1 entries, and then computing its sum.

4. What WORK, CPL and IDEAL PARALLELISM values do you you see for the default input? Enter
these values in the lab 2 written.txt file.

3 Array Sum Revisited

1. Download the ArraySumLoop.java and ArraySumUtil.java file from the Code Examples column
for Lab 2 in the course web page, https://wiki.rice.edu/confluence/display/PARPROG/COMP322.
Make sure you have the ArraySumUtil.java in the same package as ArraySumLoop.java.

2. The main difference compared to ArraySum1.java is that the call to doWork() in ArraySumLoop.java

estimates the cost of an add as the number of significant bits in both operands. Thus, the cost depends
on the values being added.

3. Look at the computeSumReduction function. Insert async and finish statements in appropriate places of
the code to parallelize the summation. Think about what each line is doing in computeSumReduction.
What is a step? What does doOperation() do? Can you parallelize the outer forloop that increments
the step size or the inner forloop incrementing the rightIndex? Why? Feel free to ask the TAs if you
have any question.

4. Verify the correctness of your implementation.

2 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
https://wiki.rice.edu/confluence/display/PARPROG/COMP322


COMP 322
Spring 2014

Lab 2: Abstract Performance Metrics

5. Again, enter WORK, CPL and IDEAL PARALLELISM values in lab 2 written.txt for array sizes
that range across all powers of 2 up to 1024 — 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. While it
is reasonable to see higher WORK and CPL values for ArraySumLoop than ArraySum1, comment on
how the IDEAL PARALLELISM for ArraySumLoop compares with that of ArraySum1.

4 Array Sum Recursive

1. Download the ArraySumRecursive.java file from the Code Examples column for Lab 2 in the course
web page, https://wiki.rice.edu/confluence/display/PARPROG/COMP322. Make sure you have
the ArraySumUtil.java in the same directory.

2. The main difference compared to ArraySumLoop.java is that it recursively calls computeSumReduction
to the left and right subarray. Modify the ArraySumRecursvie.java by inserting async and finish
statements.

3. Verify the correctness of your implementation.

4. Again, enter WORK, CPL and IDEAL PARALLELISM values in lab 2 written.txt for array sizes
that range across all powers of 2 up to 1024 — 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. Compare the
CPL and WORK values for ArraySumRecursive.java with those you measured for ArraySumLoop.java.
Do you notice any difference? Try explain the differences in your lab report.

5 Turning in your lab work

For each lab, you will need to turn in your work before leaving, as follows.

1. Check that all the work for today’s lab is in the lab 2 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

2. Before you leave, create a zip file of your work by changing to the parent directory for lab 2/

and issuing the following command, “zip -r lab 2.zip lab 2”.

3. Use the turn-in script to submit the contents of the lab 2.zip file as a new lab 2 directory in your
turnin directory as explained in the first handout.

NOTE: If the turnin command does not work for you, please email your lab 2.zip file to comp322-
staff@mailman.rice.edu.

3 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
mailto:comp322-staff@mailman.rice.edu

	Measuring Abstract Performance Metrics with Array Sum
	String Search Problem
	Array Sum Revisited
	Array Sum Recursive
	Turning in your lab work

