
COMP 322 Spring 2014

Lab 3: Futures
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Important tips and links

As indicated earlier in a lecture, adding this call to the beginning of ArraySum2 will increase the limit on
blocked threads:
System.setProperty(HjSystemProperty.maxThreads.propertyKey(), ”200”);

NOTE: It is recommended that you do the setup and execution for today’s lab on your laptop computer
instead of a lab computer, so that you can use your laptop for in-class activities as well. The instructions
below are written for Mac OS and Linux computers, but should be easily adaptable to Windows with minor
changes e.g., you may need to use \ instead of / in some commands.

Note that all commands below are CaSe-SeNsItIvE. For example, be sure to use “S14” instead of “s14”.

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2014/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJ-lib Jar File : http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar

HJ-lib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

HelloWorld Project : https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up

1 Example Program for Futures: ArraySum2

1. Update your habanero-java-lib.jar file! (http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.
jar). You need the latest version of the library for the programs provided today to work.

2. Download the ArraySum2.java file from the Code Examples column for Lab 3 in the course web page,
https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

3. Compile and run this java program.

4. Notice the following statistics printed at the end of program execution for the default array size of 128:

(a) “TOTAL NUMBER OF OPS DEFINED BY CALLS TO doWork()” the total (WORK) in the computa-
tion in units implicitly defined by calls to doWork()

1 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2014/comp322/home
https://jdk8.java.net/download.html
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
https://wiki.rice.edu/confluence/display/PARPROG/COMP322


COMP 322
Spring 2014

Lab 3: Futures

(b) “CRITICAL PATH LENGTH OF OPS DEFINED BY CALLS TO hj.lang.perf.doWork()”, the critical
path length (CPL) of the computation in units implicitly defined by calls to perf.doWork()

(c) “IDEAL PARALLELISM = WORK/CPL”, the ideal parallelism in the computation

5. You can repeat the run for a different array size by clicking open the Run menu at the top and then
choose Edit Configurations. In the popped out window, enter the size in Program arguments and click
OK. Now run the program again.

What WORK, CPL and IDEAL PARALLELISM values do you you see for different array sizes? Enter
these values in a file named lab 3 written.txt in the lab 3 directory. for array sizes that range across
all powers of 2 up to 128 — 1, 2, 4, 8, 16, 32, 64, 128.

2 Array Sum Revisited with Variable Execution Times: Array-
Sum4

1. Download the ArraySum4.java file from the Code Examples column for Lab 3 in the course web page,
https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

2. The main difference compared to ArraySum2.java is that the call to doWork() in ArraySum4.java

estimates the cost of an add as the number of significant bits in both operands. Thus, the cost depends
on the values being added.

3. Again, enter WORK, CPL and IDEAL PARALLELISM values in lab 3 written.txt for array sizes
that range across all powers of 2 up to 128 — 1, 2, 4, 8, 16, 32, 64, 128. While it is reasonable to
see higher WORK and CPL values for ArraySum4 than ArraySum2, comment on how the IDEAL
PARALLELISM for ArraySum4 compares with that of ArraySum2.

3 Binary Trees using Futures

1. Download the BinaryTrees.java file from the Code Examples column for Lab 3 in the course web
page, https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

2. Compile and run the program and record the WORK and CPL values. (They will be the same since
this is a sequential program.)

3. Now modify the program by replacing “final private TreeNode left;” by “final private HjFuture<TreeNode>

left;’” in line 76 and “final private TreeNode right;” by “final private HjFuture<TreeNode>

right;’” in line 81. After this modification, you will need to replace references to left and right by
using future expressions.

4. After you get your modified program to work, again record the WORK and CPL values, and comment
in lab 3 written.txt if you’ve achieved an increase in parallelism, and, if so, why.

4 Turning in your lab work

For each lab, you will need to turn in your work before leaving, as follows.

1. Check that all the work for today’s lab is in the lab 3 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

2 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
https://wiki.rice.edu/confluence/display/PARPROG/COMP322


COMP 322
Spring 2014

Lab 3: Futures

2. Use the turn-in script to submit the lab 3 directory to your turnin directory as explained in the first
handout: turnin comp322-S14:lab 3. Note that you should not turn in a zip file.

NOTE: Turnin should work for everyone now. If the turnin command does not work for you, please talk
to a TA. As a last resort, you can create and email a lab 3.zip file to comp322-staff@mailman.rice.edu.

3 of 3

mailto:comp322-staff@mailman.rice.edu

	Example Program for Futures: ArraySum2
	Array Sum Revisited with Variable Execution Times: ArraySum4
	Binary Trees using Futures
	Turning in your lab work

