COMP 322 Spring 2014

Lab 4: Real Performance from Loop-Level Parallelism
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322
Staff Email: comp322-staff@mailman.rice.edu

Clear Login: ssh your-netidQ@ssh.clear.rice.edu and then login with your password

Important tips and links:

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2014/comp322/home

Java 8 Download : https://jdk8. java.net/download.html

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJ-lib Jar File : http://www.cs.rice.edu/~vs3/hjlib/habanero-java-1lib.jar

HJ-lib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
HelloWorld Project : https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up
Sugar Login: ssh your-netid@sugar.rice.edu and then login with your password

Linux Tutorial visit http://www.rcsg.rice.edu/tutorials/

As indicated earlier in a lecture, adding this call in your program before the call to initializeHabanero()
will increase the limit on blocked threads:
System.setProperty (HjSystemProperty.maxThreads.propertyKey(), ?200”);

Note that all commands below are CaSe-SeNsItlvE. For example, be sure to use “S14” instead of “si4”.

IMPORTANT: please refer to the tutorial on Linux and SUGAR, before staring this lab. Also, if you and
others experience long waiting times with the “gsub” command, please ask the TAs to announce to everyone
that they should use ppn=/ instead of ppn=8 in their qsub command (to request 4 cores instead of 8 cores).

1 One-time Setup on SUGAR

You should have an account on SUGAR (http://www.rcsg.rice.edu/sugar), which is a cluster of Intel
Xeon machines, similar to CLEAR. The main difference is that SUGAR allows you to gain dedicated access
to compute nodes (see gsub command below) to obtain reliable performance timings for your programming
assignments. On CLEAR, you have no control over who else may be using a compute node at the same time
as you.

e Login to SUGAR.

ssh (your-netid)@sugar.rcsg.rice.edu
(your-password)

1of


https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2014/comp322/home
https://jdk8.java.net/download.html
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up
http://www.rcsg.rice.edu/tutorials/
http://www.rcsg.rice.edu/sugar

COMP 322 Lab 4: Real Performance from Loop-Level Parallelism
Spring 2014

You should have received an email with the default password convention for Sugar. Use that password
when you login the first time. You will be asked to set a new password immediately. Note that this
login connects you to a login node.

e On SUGAR, JDKS is already available at /users/COMP322/jdk1.8.0 and HJ-Lib is already installed
at /users/COMP322/habanero-java-1lib. jar. Run the following command to setup the JDKS8 path.

source /users/COMP322/hjLibSetup.txt
e Check your installation by running the following commands:
which java
You should see the following: /users/COMP322/jdk1.8.0/bin/java
java -version
You should see the following:

java version ‘€1.8.07°
Java(TM) SE Runtime Environment (build 1.8.0-b128)
Java HotSpot(TM) 64-Bit Server VM (build 25.0-b69, mixed mode)

e When you log on to Sugar, you will be connected to a login node along with many other users. To
request a dedicated compute node, you should use the following command from a SUGAR login node:

gqsub -q commons -I -V -1 nodes=1:ppn=8,walltime=00:30:00
When successful, it will give you a command shell on a dedicated 8-core compute node for your use for
30 minutes at a time. Your home directory is the same on both the login and compute nodes.

For now, just type “exit” immediately after you obtain the compute node. We will repeat this command
later.

We only have 12 nodes available for dedicated use for COMP 322. When this limit is exceeded, your
request for compute nodes will be pooled with other requests at Rice, which may result in delays.
Therefore, it is very important that you restrict your use of compute nodes to performance timings.
General edit, compile, and debug of HJ-Lib programs can be done on any other computer, or on the

SUGAR login nodes. However, please make sure that you don’t run any long jobs (> 1 minute) on a
SUGAR login node.

2 Experimenting with the asyncSeq clause

The asyncSeq() clause is used in Nqueens.java to limit parallelism when depth >= cutoff-value. The default
cutoff is 4, but it can be changed via command line arguments. First you need to compile the Nqueens.java
program as follows:

javac -cp /users/COMP322/habanero-java-lib.jar Nqueens.java
For example, to run the program with 8 workers and a cutoff value to 4, type:
java -cp /users/COMP322/habanero-java-lib.jar:. -Dhj.numWorkers=8 Nqueens 12 3 4

since the default arguments were “13 4 6”.

Rerun the program with 8 workers with different cutoff values in the range 0...12 and see which one yields
the best time for 8 workers.

As in past labs, create a text file named lab_4 written.txt in the lab_4 directory, and enter your timings
and observations there.

20f



COMP 322 Lab 4: Real Performance from Loop-Level Parallelism
Spring 2014

3 Omne-Dimensional Iterative Averaging Example

1. Download the OneDimAveraging. java file from the Code Examples column for Lab 4 in the course
web page, https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

2. The code in OneDimAveraging. java performs the iterative averaging computation discussed in the
lectures. This code performs a sequential version of the computation in method runSequential ().

3. Your first assignment is to create a parallel version of the sequential version in runForkJoin(). This
method has already been provided for you, but its code is the same as runSequential () which needs to
be edited. The API documentation available on the website explains how to use forall the construct.
Remember that forall (...) ce is the same as finish forasync (...) ..., you may
also choose to use the forasync construct. Hint: you should have the following structure in your
parallel version: for-forall-for.

4. Your second assignment is to create a parallel chunked version of the sequential version in runChunkedForkJoin().
This method has already been provided for you, but its code is the same as runSequential () which needs
to be edited. Remember that forallChunked (...) ... 1sthesame asfinish forasyncChunked
(...) ..., you may also choose to use the forasyncChunked construct. Hint: you should have the
following structure in your parallel version: for-forallChunked-for.

5. The input arguments for the main method in this program are as follows:

(a) tasks = number of chunks to be used for chunked parallelism. The default value for tasks is
numWorkerThreads (), which is the number of workers w specified with the “-Dhj.numWorkers=w"
option (default is w = 8 on SUGAR).

(b) n = problem size. Iterative averaging is performed on a one-dimensional array of size (n+2) with
elements 0 and n+1 initialized to 0 and 1 respectively. The final value expected for each element
iisi/(n+1). The default value for n is 200,000.

(c) iterations = number of iterations needed for convergence. The default value is 20,000. This
default was set for expediency. For this synthetic problem, you typically might need many more
iterations to guarantee convergence.

(d) rounds = number of repetitions for the entire computation. As discussed earlier, these repetitions
are needed for timing accuracy. The default value is 5. For 5 repetitions, a reasonable approach
is to just report the minimum time observed.

6. You should run your program on SUGAR, to evaluate the parallelization. As before, you can compile
the program as follows:

javac -cp /users/COMP322/habanero-java-1lib.jar OneDimAveraging.java
To run the program using 8 cores, use the following command on a compute node:
java -cp /users/COMP322/habanero-java-lib.jar:. -Dhj.numWorkers=8 OneDimAveraging

7. Record in lab 4 written.txt the best execution times observed for the default inputs (using 8
cores) for the three variants, and then compute their ratio as the speedup. Compare your results
for runForkJoin() and runChunkedForkJoin() against the running times for runSequential ().

4 Turning in your lab work

For each lab, you will need to turn in your work before leaving, as follows.

30f


https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lab 4: Real Performance from Loop-Level Parallelism
Spring 2014

1. Check that all the work for today’s lab is in the 1ab_4 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

2. Use the turn-in script to submit the lab_4 directory to your turnin directory as explained in the first
handout: turnin comp322-S14:lab_4. Note that you should not turn in a zip file.

NOTE: Turnin should work for everyone now. If the turnin command does not work for you, please talk
to a TA. As a last resort, you can create and email a lab_4.zip file to comp322-staff@mailman.rice. edu.

40f


mailto:comp322-staff@mailman.rice.edu

	One-time Setup on SUGAR
	Experimenting with the asyncSeq clause
	One-Dimensional Iterative Averaging Example
	Turning in your lab work

