
COMP 322 Spring 2014

Lab 5: Futures Vs Data-Driven Futures
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Important tips and links:

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2014/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJ-lib Jar File : http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar

HJ-lib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

HelloWorld Project : https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up

Sugar Login: ssh your-netid@sugar.rice.edu and then login with your password

Linux Tutorial visit http://www.rcsg.rice.edu/tutorials/

As indicated earlier in a lecture, adding this call in your program before the call to initializeHabanero()

will increase the limit on blocked threads:
System.setProperty(HjSystemProperty.maxThreads.propertyKey(), ”200”);

On SUGAR, JDK8 is already available at /users/COMP322/jdk1.8.0 and HJ-Lib is already installed at
/users/COMP322/habanero-java-lib.jar. Run the following command to setup the JDK8 path.

source /users/COMP322/hjLibSetup.txt

When you log on to Sugar, you will be connected to a login node along with many other users. To request
a dedicated compute node, you should use the following command from a SUGAR login node:

qsub -q commons -I -V -l nodes=1:ppn=8,walltime=00:30:00

Note that all commands below are CaSe-SeNsItIvE. For example, be sure to use “S14” instead of “s14”.

IMPORTANT: please refer to the tutorial on Linux and SUGAR, before staring this lab. Also, if you and
others experience long waiting times with the “qsub” command, please ask the TAs to announce to everyone
that they should use ppn=4 instead of ppn=8 in their qsub command (to request 4 cores instead of 8 cores).

1 of 4

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2014/comp322/home
https://jdk8.java.net/download.html
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up
http://www.rcsg.rice.edu/tutorials/

COMP 322
Spring 2014

Lab 5: Futures Vs Data-Driven Futures

1 Matrix Expression Evaluation Using Data-Driven Futures

1.1 Matrix Expression Language

We have provided a sequential program, MatrixEval.java, to evaluate matrix expressions consisting of the
following terms and operators:

• The only leaf terms supported are identifiers which can be of two forms:

Identity Matrix: An identifier of the form m〈num1〉 represents a square identity matrix of size
〈num1〉×〈num1〉. For example, m100 represents the 100 × 100 identity matrix. (The expres-
sion language has no variable declarations, so there’s no significance to the name m other than
the fact that it denotes a matrix.)

Random Matrix: An identifier of the form m〈num1〉x〈num2〉s〈seed〉 represents a random matrix of
size 〈num1〉×〈num2〉, for which the elements are generated using java.util.Random starting with
an integer (long) seed, and calling nextInt() to generate successive elements of the matrix. For
example, m100x200s5 represents the 100 × 200 random matrix generated using 5 as the initial
seed.

• The + operator represents matrix addition. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix sum is returned.

• The − operator represents matrix subtraction. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix difference is returned.

• The ∗ operator represents matrix multiplication. An exception is thrown if the number of columns in
the first matrix operand does not equal the number of rows in the second matrix operand i.e., if they
are not compatible for matrix multiplication. Otherwise, the matrix product is returned.

• Usual precedence and evaluation rules apply for the above operators, and parentheses can also be used.

As an example, “m3 + m3 * m3”, will be evaluated as follows:1 0 0
0 1 0
0 0 1

 +

1 0 0
0 1 0
0 0 1

×
1 0 0

0 1 0
0 0 1

 =

2 0 0
0 2 0
0 0 2


1.2 Sequential Matrix Expression Evaluation

1. Download the files MatrixEval.java and test.txt from the Code Examples column for Lab 5
in the course web page, https://wiki.rice.edu/confluence/display/PARPROG/COMP322.The code
in MatrixEval.java performs sequential evaluation of Matrix expressions presented in Section 1.1.
test.txt is an input file containing a simple expression in the matrix expression language.

2. Run the program on SUGAR. You can compile the program as follows:

javac -cp /users/COMP322/habanero-java-lib.jar MatrixEval.java

To run the program using 8 cores, use the following command on a compute node:

java -cp /users/COMP322/habanero-java-lib.jar:. -Dhj.numWorkers=8 MatrixEval

test.txt

(We just run the program on 8 cores for consistency with the procedure used for other results. Since
this is a sequential program, it will only use 1 core.)

3. Record in lab 5 written.txt the best execution time observed.

2 of 4

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322
Spring 2014

Lab 5: Futures Vs Data-Driven Futures

1 public void eva l (HjDataDrivenFuture<MatrixEval . Matrix> d) {
2 HjDataDrivenFuture<Matrix> l f t d d f = newDataDrivenFuture () ;
3 HjDataDrivenFuture<Matrix> r g t dd f = newDataDrivenFuture () ;
4 l f t . eva l (l f t d d f) ;
5 rg t . eva l (r g t dd f) ;
6 Matrix r e s u l t = null ;
7
8 switch (opr) {
9 case Lex i ca l . p lus :

10 r e s u l t = MatrixEval . matrixAdd (l f t d d f . get () , r g t dd f . get ()) ;
11 d . put (r e s u l t) ;
12 break ;
13 case Lex i ca l . minus :
14 r e s u l t = MatrixEval . matrixMinus (l f t d d f . get () , r g t dd f . get ()) ;
15 d . put (r e s u l t) ;
16 break ;
17 case Lex i ca l . t imes :
18 r e s u l t = MatrixEval . matr ixMult ip ly (l f t d d f . get () , r g t dd f . get ()) ;
19 d . put (r e s u l t) ;
20 break ;
21 default :
22 e r r o r (”Unhandled binary operator ”) ;
23 }
24 }

Listing 1: Sequential implementation of eval() method in class Binary

1.3 Parallelization of MatrixEval using Data-Driven Tasks

The sequential code in MatrixEval.java parses the input expression, and then calls different eval() methods
to evaluate unary and binary operators in the expression. The major potential for parallelism is in the
eval(HjDataDrivenFuture<MatrixEval.Matrix> d) method in class Binary, shown in Listing 1. Given
the semantics of expression evaluation, the calls to lft.eval(lft ddf) and rgt.eval(rgt ddf) can execute
in parallel.

Note that the sequential implementation uses HjDataDrivenFuture as a container to return the result of
evaluating the expression. Your assignment is to parallelize the evaluation of lft and rgt using data-driven
tasks. The fact that the sequential version uses HjDataDrivenFuture containers will simplify this conversion.

1. Write a parallel version of MatrixEval.java in MatrixEvalDDF.java using data-driven tasks with calls
to asyncAwait().

2. Run the program on SUGAR. You can compile the program as follows:

javac -cp /users/COMP322/habanero-java-lib.jar MatrixEvalDDF.java

To run the program using 8 cores, use the following command on a compute node:

java -cp /users/COMP322/habanero-java-lib.jar:. -Dhj.numWorkers=8 MatrixEvalDDF

test.txt

3. Record in lab 5 written.txt the best execution time observed and the speedup w.r.t to MatrixE-
val.java.

3 of 4

COMP 322
Spring 2014

Lab 5: Futures Vs Data-Driven Futures

1.4 Parallelization of MatrixEval using Futures

An alternate approach to data-driven tasks is to use futures with get() operations instead of asyncAwait().

1. Write a parallel version of MatrixEval.java in MatrixEvalFuture.java using futures. You can replace
HjDataDrivenFuture by HjFuture wherever needed.

2. Run the program on SUGAR. You can compile the program as follows:

javac -cp /users/COMP322/habanero-java-lib.jar MatrixEvalFuture.java

To run the program using 8 cores, use the following command on a compute node:

java -cp /users/COMP322/habanero-java-lib.jar:. -Dhj.numWorkers=8 MatrixEvalFuture

test.txt

3. Record in lab 5 written.txt the best execution time observed and the speedup w.r.t to MatrixE-
val.java

2 Turning in your lab work

For each lab, you will need to turn in your work before leaving, as follows.

1. Check that all the work for today’s lab is in the lab 5 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

2. Use the turn-in script to submit the lab 5 directory to your turnin directory as explained in the first
handout: turnin comp322-S14:lab 5. Note that you should not turn in a zip file.

NOTE: Turnin should work for everyone now. If the turnin command does not work for you, please talk
to a TA. As a last resort, you can create and email a lab 5.zip file to comp322-staff@mailman.rice.edu.

4 of 4

mailto:comp322-staff@mailman.rice.edu

	Matrix Expression Evaluation Using Data-Driven Futures
	Matrix Expression Language
	Sequential Matrix Expression Evaluation
	Parallelization of MatrixEval using Data-Driven Tasks
	Parallelization of MatrixEval using Futures

	Turning in your lab work

