
COMP 322 Spring 2014

Lab 9: Java Threads
Instructor: Vivek Sarkar, Due: Friday March 28, 2014

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Important tips and links:

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2014/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJ-lib Jar File : http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar

HJ-lib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

HelloWorld Project : https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up

Sugar Login: ssh your-netid@sugar.rice.edu and then login with your password

Linux Tutorial visit http://www.rcsg.rice.edu/tutorials/

On SUGAR, JDK8 is already available at /users/COMP322/jdk1.8.0 and HJ-Lib is already installed at
/users/COMP322/habanero-java-lib.jar. Run the following command to setup the JDK8 path.

source /users/COMP322/hjLibSetup.txt

When you log on to Sugar, you will be connected to a login node along with many other users. To request
a dedicated compute node, you should use the following command from a SUGAR login node:

qsub -q commons -I -V -l nodes=1:ppn=8,walltime=00:30:00

We learned that there may be some issues with SUGAR this week. If you’re unable to obtain a compute node,
please use your laptop for today’s lab instead.

Note that all commands below are CaSe-SeNsItIvE. For example, be sure to use “S14” instead of “s14”.

IMPORTANT: please refer to the tutorial on Linux and SUGAR, before staring this lab. Also, if you and
others experience long waiting times with the “qsub” command, please ask the TAs to announce to everyone
that they should use ppn=4 instead of ppn=8 in their qsub command (to request 4 cores instead of 8 cores).

1 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2014/comp322/home
https://jdk8.java.net/download.html
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/habanero-java-lib.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up
http://www.rcsg.rice.edu/tutorials/


COMP 322
Spring 2014

Lab 9: Java Threads

1 Conversion to Java Threads: N-Queens

1. Download the nqueens hj.java program from the course web site (scroll down to Lab 9). This version
uses finish and async constructs along with AtomicInteger calls.

2. Convert it to a pure Java program by using Java threads instead of finish/async, using the concepts
introduced in Lectures 24 and 25. (The AtomicInteger calls can stay unchanged.) For simplicity, you
can include joins within each call to nqueens kernel(). This is correct, but more restrictive than the
finish/async structure for the given code. But it simplifies parallelization when using Java threads.

If you wish to try and simulate a finish more accurately, you can do so by collecting all thread objects
in a ConcurrentLinkedQueue data structure (see Lecture 24) and calling join() on each of them at
the end of the computation.

3. Compile and run the program as follows to solve the N-Queens problem on a 12×12 board (default
value).
javac nqueens.java

java nqueens

4. Compare the execution time of three versions of NQueens:

(a) java nqueens 14 5 0

This should correspond to the sequential execution of your Java program since the third argument
(= 0) is the cutoff value.

(b) java nqueens 14

This is a parallel Java run with the default cutoff value of 3. Try experimenting with different
values for cutoff value if needed.

(c) java -cp /users/COMP322/habanero-java-lib.jar:. -Dhj.numWorkers=8 nqueens hj 14

This is a parallel HJlib version run with the default cutoff value of 3. (It is recommended that
you use separate directories for compiling the Java and HJ versions so as to avoid any possible
interference among classfiles generated for both versions.)

NOTE: Make sure you have compiled the hj version before running the java command.

2 Conversion to Java threads: Spanning Tree

1. Download the spanning tree atomic hj.java solution from the course web site (scroll down to Lab 9).
This version uses finish and async constructs along with AtomicReference calls.

2. Convert it to a pure Java program by using Java threads instead of finish/async, using the concepts
introduced in Lectures 24 and 25. (The AtomicReference calls can stay unchanged.) As before, you can
include joins within each call to compute() for simplicity, or you can use a ConcurrentLinkedQueue

for a more faithful simulation of a finish construct.

3. Compile and run the programs as follows with the default input size.
javac spanning tree atomic.java

java spanning tree atomic

4. Compare the execution time of three versions of the spanning tree example. You may choose to add
cutoff threshold values for this program as was done for N-Queens, so as to limit the number of Java
threads that will be created:

(a) java spanning tree atomic 50000 1000

This is a parallel Java run. If you add support for a cutoff value, you can experiment with
different cutoff values.

2 of 3



COMP 322
Spring 2014

Lab 9: Java Threads

(b) java -cp /users/COMP322/habanero-java-lib.jar:. -Dhj.numWorkers=8 spanning tree atomic hj

50000 1000

This is a parallel HJlib run. If you used a cutoff value for the parallel Java run above, you should
also add it for this HJlib version. (It is recommended that you use separate directories for compil-
ing the Java and HJlib versions so as to avoid any possible interference among classfiles generated
for both versions.)

NOTE: Make sure you have compiled the hj version before running the java command.

3 Programming Tips and Pitfalls for Java Threads

• Recall that any local variable from an outer scope that is accessed in an anonymous class (e.g., in the
run() method) must be declared final.

• Remember to call the start() method on any thread that you create. Otherwise, the thread’s compu-
tation does not get executed.

• Since the join() method may potentially throw an InterruptedException, you will either need to include
each call to join() in a try-catch block, or add a throws InterruptedException clause to the definition of
the method that includes the call to join().

4 Turning in your lab work

For each lab, you will need to turn in your work before leaving, as follows.

1. Check that all the work for today’s lab is in the lab 9 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

2. Use the turn-in script to submit the lab 9 directory to your turnin directory as explained in the first
handout: turnin comp322-S14:lab 9. Note that you should not turn in a zip file.

NOTE: Turnin should work for everyone now. If the turnin command does not work for you, please talk
to a TA. As a last resort, you can create and email a lab 9.zip file to comp322-staff@mailman.rice.edu.

3 of 3

mailto:comp322-staff@mailman.rice.edu

	Conversion to Java Threads: N-Queens
	Conversion to Java threads: Spanning Tree
	Programming Tips and Pitfalls for Java Threads
	Turning in your lab work 

