Finite State Automata
Deterministic Finite State Automata

Deterministic Automata (DFSA)

- \(M = \{ Q, \Sigma, \delta, q_0, F \} \)
 - \(\Sigma = \text{Symbols (Input)} \)
 - \(Q = \text{States} \)
 - \(q_0 = \text{Initial State} \)
 - \(F = \text{Final (Accepting) States} \subseteq Q \)
 - \(\delta : Q \times \Sigma \rightarrow Q = \text{Transition Functions} \)
Languages and Finite State Automata

Language of a Machine

- \(L(M) = \{ x \in \Sigma^* \mid M \text{ accepts } x \} \).

- \(M \) accepts \(x_1 \cdots x_n \) if there is any sequence of states \(q_0, q_1, \ldots, q_n \) such that

 \[
 \begin{align*}
 q_i &= \delta(x_i, q_{i-1}) \\
 q_n &\in F
 \end{align*}
 \]
Applications

String Searching

• Finding Keywords

• Pattern Recognition
Examples and Diagrams

Solving Problems

• Dice
• Parity Checker
• More Examples

Recognizing Languages

• Special Strings from $\sum = \{2,3,4,\ldots,12\}$
• Special Strings from $\sum = \{0,1\}$
• More Examples
Variations

Moore Machines
- States have Output
- Traffic Lights

Mealy Machines
- State–Symbol Pairs have Output
- Coder / Decoder

Markov Models
- Transitions Depend on Probabilities
- Computer Games

Buchi Automata
- Strings have Infinite Length -- No Halting State
- Air Traffic Control
Moore Machines -- DFSA where States have Output

Moore Machine

- \(M = \{Q, \Sigma, O, \delta, q_0, F\} \)

 - \(\Sigma = \) Input Symbols
 - \(O = \) Output Symbols
 - \(Q = \) States
 - \(q_0 = \) Initial State
 - \(F = \) Final (Accepting) States \(\subseteq Q \)
 - \(\delta : Q \times \Sigma \rightarrow Q = \) Transition Functions
 - \(D : Q \rightarrow O = \) State Output
Mealy Machines -- DFSA where State–Symbol Pairs have Output

Mealy Machine

- \(M = \{ Q, \Sigma, O, \delta, q_0, F \} \)
 - \(\Sigma = \) Input Symbols
 - \(O = \) Output Symbols
 - \(Q = \) States
 - \(q_0 = \) Initial State
 - \(F = \) Final (Accepting) States \(\subseteq Q \)
 - \(\delta : Q \times \Sigma \rightarrow Q \times O = \) Transition Functions
Examples

Moore Machine

- Traffic Light

Mealy Machines

- Binary Adder
Languages and Finite State Automata

Language of a Machine

- \(L(M) = \{ x \in \Sigma^* \mid M \text{ accepts } x \} \).

- \(M \) accepts \(x_1 \cdots x_n \) if there is any sequence of states \(q_0, q_1, \ldots, q_n \) such that

 -- \(q_i = \delta(x_i, q_{i-1}) \)

 -- \(q_n \in F \)
Designing Finite State Machines

Clustering
- Two strings with the same future fate must wind up in the same state.

Complementary Machines
- Design a machine to accept the complementary language and then swap accepting and rejecting states.

Examples
- Even number of zeros and even number of ones -- 4 states
- $L = \{0^i 1^j 2^k \}$ -- zeros followed by ones followed by twos
- Strings that do not contain 001
Implementing Finite State Machines

Hardware Constructions

Software Simulations
Non-Deterministic Finite State Automata

Main Idea

- Same Symbol may Transition from One State to Several Different States

Two Interpretations

- Guess the Answer
- Follow all Possible Paths Simultaneously
Examples

1. $\Sigma = \{0,1\}$
 - $L = \{x \mid \text{fifth symbol from end is 1}\}$
 - How many states?

2. $\Sigma = \{0,1\}$
 - $L = \{x \mid \text{contains 101 or 110}\}$
 - How many states?

3. $\Sigma = \{0,1\}$
 - $L = \{x \mid \text{has two zeros separated by a nonempty string of length 4} \}$
 - How many states?
Examples

1. $\Sigma = \{0, 1\}$
 - $L = \{x \mid \text{fifth symbol from end is 1}\}$
 - 6 state machine
 -- Stay in first state until you encounter the correct 1.
 -- Then move through 4 more states.

2. $\Sigma = \{0, 1\}$
 - $L = \{x \mid \text{contains 101 or 110}\}$
 - 6 state machine

3. $\Sigma = (0 + 1)^*$
 - $L = \{x \mid \text{has two zeros separated by a nonempty string of length 4p}\}$
 - 7 state machine

Observation: Finite State Automata can do Modular Arithmetic.
More Examples

1. Missing Letter

2. Recognizing the Union of Two Languages

3. Recognizing a Specific Pattern or Sequence
Non-Deterministic Finite State Automata

Non Deterministic Automata (DFSA)

- $M = \{Q, \Sigma, \delta, q_0, F\}$
 - Σ = Symbols
 - Q = States
 - q_0 = Initial State
 - F = Final (Accepting) States $\subseteq Q$
 - $\delta : Q \times \Sigma \rightarrow P(Q)$ = Transition Functions
 - $P(Q)$ = set of all subsets of Q
 - Transition to Next State is NOT Unique
 - Empty Transitions Permitted
Finite State Automata

Deterministic Automata (DFSA)

- \(M = \{Q, \Sigma, \delta, q_0, F\} \)
 - \(\Sigma = \text{Symbols} \)
 - \(Q = \text{States} \)
 - \(q_0 = \text{Initial State} \)
 - \(F = \text{Final (Accepting) States} \subseteq Q \)
 - \(\delta : Q \times \Sigma \rightarrow Q = \text{Transition Functions} \)

Non-Deterministic Automata (NDFSA)

- \(M = \{Q, \Sigma, \delta, q_0, F\} \) -- Same as DFSA
- \(\delta : Q \times \Sigma \rightarrow P(Q) = \text{Non-Determinism of Next State} \)
Meta Theorems

Nondeterminism Does Not Help

- Nondeterminism does NOT add Recognition Power to Finite State Automata
- Any Language that can be Recognized by a Nondeterministic Finite State Automata, can also be Recognized by a Deterministic Finite State Automata.

Nondeterminism Does Help

- Nondeterminism simplifies many proofs about Finite State Automata
- Nondeterministic machines are often simpler (many fewer states) than their deterministic counterparts
- Every Nondeterministic Finite State Machine is equivalent to a Deterministic Finite State Machine.
 -- There is an Algorithm to convert from Nondeterministic Machines to Deterministic Machines
Theory vs. Practice

Nondeterministic Machines are NEVER Built into Hardware

- Theoretical Devise -- Computer Science
- NOT a Practical Machine -- Electrical Engineering

 BUT

 - Can be Converted into Deterministic Machines
 OR

 - Can be Simulated Directly in Software
DFSA from NDFSA

Theorem: L is accepted by NDFSA, N, then exists a DFSA, M, that also accepts L.

Proof:

Main Idea: State in M \iff Set of states in N.

- $N = \{ Q, \Sigma, \delta, q_0, F \}$
- $M = \{ P(Q), \Sigma, \delta^*, q^*_0, F^* \}$

 -- $q^*_0 = \{ q_0 \}$

 -- $F^* = \{ R \in P(Q) \mid F \cap R \neq \phi \}$

 -- $\delta^*(r, c) = \cup_{q \in R} \delta(q, c)$

Claim

By construction

$\delta^*(\{ q_0 \}, w) = R = \text{State in } M \iff \delta(q_0, w) = R = \text{set of reachable states in } N$
Claim

By construction
\[\delta^* (\{q_0\}, w) = R = \text{State in } M \iff \delta(q_0, w) = R = \text{set of reachable states in } N \]

Proof: By induction on \(|w|\).

Base Case: \(|w| = 1\).
Immediate from the definition of \(\delta^*\).

Inductive Case: \(|w| > 1\).

\[|w| > 1 \Rightarrow w = u v \quad |u| \geq 1, \quad |v| = 1 \]

By inductive hypothesis

\[\delta^* (\{q_0\}, u) = \text{set of states } R \text{ in } N \text{ reachable by } u \]

Hence it follows that

\[\delta^* (\{q_0\}, uv) = \delta^* (R, v) = \text{set of states in } N \text{ reachable by } w \]

Hence \(M\) accepts \(w \iff w\) can reach an accepting state in \(N\).
QED
Minimal DFSA

Problems

- Find a Minimum DFSA M that accepts a language L.

- Show that the minimal DFSA is unique.

- Determine whether a particular machine M is minimal.

- Find a minimal machine that accepts the same language as a machine M.
Indistinguishable Elements

Equivalence Relation

- \(x \approx_L y \) if and only if for ALL \(w \), \(xw \) and \(yw \) are either both in \(L \) or both not in \(L \)
- \(x \approx_L y \iff \forall w \ (xw \in L \iff yw \in L) \)

- \(x \approx_L y \) is an equivalence relation
 - Reflexive: \(x \approx_L x \)
 - Symmetric: \(x \approx_L y \) implies \(y \approx_L x \)
 - Transitive: \((x \approx_L y \text{ and } y \approx_L z) \) implies \(x \approx_L z \)

Equivalence Classes

- \([x] = \) the equivalence class of \(x \)
- If \([x] = [y] \), then \(x \) and \(y \) are **indistinguishable** in \(L \)
Examples

Equivalent Classes

• Even number of zeros and even number of ones -- 4 equivalence classes

• Strings where fifth symbol from end is a 1 -- 6 state machine

• Strings with zeros followed by same number of ones -- ? equivalence classes

• Strings that do not contain 001 -- ? equivalence classes
Lower Bound on Number of States

Theorem

Let $M = \text{DFSA}$ that Accepts L

Then

Number of States of $M \geq$ Number of Equivalence Classes of L

Proof: Pigeonhole Principle
Non-Recognizable Languages

Corollary 1

There is no DFSA that recognizes:

Strings with zeros followed by same number of ones.

Corollary 2

DFSA cannot count!

Corollary 3

There must be stronger computers that DFSA -- Later
Existence of Minimal DFSA

Theorem

If the number of equivalence classes of L is finite, then there exists a DFSA M, where

\[
\text{number of states of } M = \text{number of equivalence classes of } L
\]

Therefore M is minimal.

Proof:

$M = \{Q, \Sigma, \delta, q_0, F\}$

-- $Q = \text{Equivalence Classes } [x] \text{ of } L = \text{States}$

-- $q_0 = [\varepsilon] = \text{Initial State}$

-- $\delta([x], y) = [xy] = \text{Transition Functions}$

-- $[x] \in F \iff x \in L = \text{Accepting States}$
Myhill-Nerode Theorem

Corollary

There exists a DFSA M that accepts a language L if and only if the number of equivalence classes of L is finite.

Proof

\Rightarrow: Number of equivalence classes of $L \leq$ Number of states of M

\Leftarrow: By previous theorem
Minimizing Existing DFSA

Splitting Algorithm

• Initialize $Q = 2$ States:
 -- Accepting = List of all Accepting States
 -- Rejecting = List of all Rejecting States

• Split the States
 -- If there is a symbol c for which two or more elements in a state transition to different states
 $$\delta(p,c) \neq \delta(q,c)$$
 then split the state into new equivalence classes of states

• Continue until no further splitting occurs
Minimizing Existing DFSA

Reasons

- Existing DFSA may be our only description of L.
- Two DFSA are equivalent -- recognize the same language -- if and only if they have the same minimal DFSA.

Example

- See Page 93.
- See tennis example (Rosen?).
Minimizing Existing DFSA

Theorems

- The machine generated by the algorithm accepts the same language as the original machine.

 -- A string s winds up in a state $\{q_1, \ldots, q_n\}$ in the new machine if and only if s winds up in one of the states q_1, \ldots, q_n in the original machine -- induction on the length of the string.

 -- A string winds up in an accepting state in the new machine if and only if the string winds up in an accepting state in the original machine.

- The algorithm generates a minimal DFSA

 -- number of states of $M = \text{number of equivalence classes of } L$

 -- $x \approx_L y \iff \forall w (xw \in L \iff yw \in L) \iff \delta(\text{start, } x) = \delta(\text{start, } y)
Construction of Minimal DFSA

Steps

1. Construct a NDFSA

2. Construct a corresponding DFSA

3. Construct the Minimal DFSA