Regular Grammars
Regular Grammars

Grammar

\[G = \{N, \Sigma, R, S\} \]

- \(N \) = non-terminal symbols (upper case)
- \(\Sigma \) = terminal symbols (lower case)
- \(R \) = rules (see below)
- \(S \) = start symbol (non-terminal)

Rules for Regular Grammar

- \(T \rightarrow a \) (non-terminal goes to terminal)
- \(T_1 \rightarrow aT_2 \) (non-terminal goes to terminal followed by non-terminal)
Examples of Regular Grammars

Even Length Bit Strings
• \(S \rightarrow \varepsilon \)
• \(S \rightarrow 0T \)
• \(S \rightarrow 1T \)
• \(T \rightarrow 0S \)
• \(T \rightarrow 1S \)

Bit Strings Ending in 000
• \(S \rightarrow 0S \)
• \(S \rightarrow 1S \)
• \(S \rightarrow 0A \)
• \(A \rightarrow 0B \)
• \(B \rightarrow 0 \)
Examples of Finite State Machines for Regular Grammars

Even Length Bit Strings

Bit Strings Ending in 000
Correspondence Between Finite State Machines and Regular Grammars

Theorem: The regular grammars define exactly the regular languages.

Algorithm: Regular Grammar → Finite State Automata

1. Create a state for each non-terminal symbol
 • Let S correspond to the Start state
2. Create one accepting state #
3. For each Rule $A \rightarrow wB$, add a transition from state A to state B
4. For each Rule $A \rightarrow w$, add a transition from A to #
5. For each Rule $A \rightarrow \epsilon$, mark A as an accepting state

Observations

1. Paths in FSA correspond to sequence of Rules in regular grammar.
2. FSA in state T whenever T is the current non terminal symbol.
Four Models for Regular Languages

1. Deterministic Finite State Automata

2. Non-Deterministic Finite State Automata

3. Regular Expressions

4. Regular Grammars