Decision Procedures for Regular Languages
Decidable Questions

1. Set Membership: \(w \in L(M) \)?
 - Run \(M \) on \(w \)

2. Emptiness: \(L(M) = \emptyset \)?
 - Find minimal machine \(Min(M) \) corresponding to \(M \).
 \(L(M) = \emptyset \iff Min(M) \) has only one (nonaccepting) state
 - Test \(M \) on all strings of length < number of states of \(M \)
 \(L(M) = \emptyset \iff M \) does not accept any such string (Pumping Theorem)

3. Totality: \(L(M) = \Sigma^* \)?
 - \(L(M) = \Sigma^* \iff L(M)^c = \emptyset \)
More Decidable Questions

4. **Finiteness:** $|L(M)| < \infty$?

 - Find minimal machine $\text{Min}(M)$ corresponding to M.
 $|L(M)| < \infty \iff \text{Min}(M)$ has no Loops

 - Test M on all strings w, where
 \[\text{number of states} \leq \text{length}(w) < 2(\text{number of states}) - 1 \]
 (Pumping Thm)

5. **Equivalence:** $L(M_1) = L(M_2)$?

 - Find minimal machines $\text{Min}(M_1)$ and $\text{Min}(M_1)$
 $L(M_1) = L(M_2) \iff \text{Min}(M_1) = \text{Min}(M_2)$

 - $L(M_1) = L(M_2) \iff (L(M_1) - L(M_2)) \cup (L(M_2) - L(M_1)) = \emptyset$
Finite State Automata vs. Turing Machines

Observation

- Such Decision Procedures do NOT Exist for Turing Machines -- Later
 -- Finite State Automata -- Bounded (Finite) Storage
 -- Turing Machines -- Unbounded (Infinite) Storage