Halting Problem
Halting Program

Halting Program

- $H(M, I)$ -- prints YES, if M HALTS on input I
- $H(M, I)$ -- prints NO, if M LOOPS FOREVER on input I
- Note: $H(M, I)$ halts for all input M, I.

Negation of Halting Program

- $K(P)$
 -- Run $H(P, P)$
 -- If Output is YES, then LOOP FOREVER
 -- If Output is NO, then HALT
Halting Problem

Paradox

• $K(K)$
 -- Run $H(K,K)$
 -- If Output is YES, then LOOP FOREVER
 -- If Output is NO, then HALT

• $H(K,K)$
 – If Output is YES, then $K(K)$ LOOPS FOREVER
 -- If Output is NO, then $K(K)$ HALTS

Therefore H FAILS to solve the Halting Problem!
Diagonalization

\[
\begin{array}{cccccc}
TM/I & I_1 & I_2 & \cdots & I_n & \cdots \\
M_1 & H & L & \cdots & L & \cdots \\
M_2 & L & L & \cdots & L & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
M_n & H & L & \cdots & H & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\end{array}
\]

Diagonalization Argument

- \(M \) Halts on Input \(I_k \) \(\iff \) \(M_k \) Loops on Input \(I_k \)
- \(M \) Differs from Each Machine in the List.
- Therefore Any List of Turing Machine is Incomplete -- Contradiction
<table>
<thead>
<tr>
<th>TM/I</th>
<th>I_1</th>
<th>I_2</th>
<th>\cdots</th>
<th>I_n</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>H</td>
<td>L</td>
<td>\cdots</td>
<td>L</td>
<td>\cdots</td>
</tr>
<tr>
<td>M_2</td>
<td>L</td>
<td>L</td>
<td>\cdots</td>
<td>L</td>
<td>\cdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\cdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>M_n</td>
<td>H</td>
<td>L</td>
<td>\cdots</td>
<td>H</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Chatter

- Each Input can be Regarded as a Description of a Turing Machine.
- Each Output Tape can be Regarded as a Statement about a Turing Machine.
Decidable and Semi-Decidable Languages

Decidable

A language L is **Decidable** if for every string w, there is a Turing Machine M that correctly decides whether $w \in L$.

- M Halts and Accepts if $w \in L$
- M Halts and Rejects if $w \notin L$

Semi-Decidable

A language L is **Semi-Decidable** if for every string w, there is a Turing Machine M that semi-decide whether $w \in L$.

- M Halts and Accepts if $w \in L$
- M Either Loops or Rejects if $w \notin L$
Theorems

Theorem 1

There exist Semi-Decidable languages that are not Decidable.

Theorem 2

The Language
\[
L = \{ < M, I > | M \text{ Halts on } I \}
\]

is Semi-Decidable, but not Decidable.
Theorem 2

The Language

\[L = \{ < M, I > | M \text{ Halts on } I \} \]

is Semi-Decidable, but not Decidable.

Proof: Let \(M_{SD}(< M, I >) \) be the following program:

• Run Machine \(M \) on Input \(I \).
• If \(M \) Halts on \(L \), then Accept \(< M, I > \).

\(M_{SD} \) Semi-Decides \(L \) because:

• \(< M, I > \in L \iff M \text{ Halts on } I \iff M_{SD} \text{ Accepts } < M, I > \).
• There are pairs \(< M, I > \) for which \(M \) never Halts on \(I \), so \(M_{SD}(< M, I >) \) does not Halt if \(< M, I > \not\in L \).

\(L \) is not Decidable because the Halting Problem is Undecidable.
Halting Problem and Semi-Decidability

Observation

If the Halting Problem were Decidable, then every Semi-Decidable Language would be Decidable.

Proof: Suppose that O were a Machine that Decides the Halting Problem. Let $M_{SD}(<M,I>)$ Semi-Decide L.

Let $M_D(<M,I>)$ be the following program:

• If O say that $M_{SD}(<M,I>)$ does not Halt, then Reject $<M,I>$.

• Otherwise Run $M_{SD}(<M,I>)$:
 -- If $M_{SD}(<M,I>)$ Accepts, then Accept $<M,I>$.
 -- If $M_{SD}(<M,I>)$ Rejects, then Reject $<M,I>$.