Computable Functions
Part I: Non-Computable Functions
Computable and Partially Computable Functions

Computable Function

• Exists a Turing Machine M
 -- M Halts on All Input
 -- $M(x) = f(x)$

Partially Computable Function

• Exists a Turing Machine M
 -- M Does Not Halt on All Input
 -- If M Halts on x, then $M(x) = f(x)$
Examples

Computable

• $f(n) = n + 1$

• Simple Turing Machine in Unary

Partially Computable

• $steps(<M, w>) = \# \text{ operations performed by } M \text{ on } w \text{ before } M \text{ Halts}$

• Simple Turing Machine

 -- Run M on w

 -- Count Operations

• Not Computable

 -- Otherwise Could Solve Halting Problem
Non Partially Computable Functions

Turing Machines is Countable

• # Turing Machines with N States = # Transition Functions

• Transition Functions = 5-tuples $(State, Symbol, State, Symbol, L/R)$

• # Turing Machines with N States = $2 \mid Q \mid ^2 \mid \Sigma \mid ^2$

• Countable Union of Countable Sets is Countable

Functions $N \rightarrow [0,1]$ is Uncountable

• # Functions $N \rightarrow [0,1] = # Subsets of N$

• # Subset of $N = P(N)$ -- Uncountable

• Most Functions are Not Partially Computable
Busy Beaver Problems

Problems

- \(S(n) = \) Maximum number of operations a Turing Machine with \(n \) states can perform on a Blank tape and then Halt

- \(\Sigma(n) = \) Maximum number of 1’s that a Turing Machine with \(n \) states can write on a Blank tape and then Halt.
Theorem 1: There is no Turing Machine B that computes $S(n)$.

Proof: Suppose such a Turing Machine B did exist.

Let M be a Turing Machine with n States.

To Determine if M Halts on ϵ, Build the following Turing Machine:

- Using B, Compute $S(n)$
- Run M on ϵ
- If M Halts before $S(n)+1$ Steps, Accept
- Otherwise Reject

This Turing Machine Decides $H_\epsilon = \{ <M> | M \text{ Halts on } \epsilon \}$

But H_ϵ is Undecidable. Hence B Cannot Exist.
Theorem 2: There is no Turing Machine B that computes $\Sigma(n)$ (in binary).

Proof: Suppose such a machine B did exist.

Let B_n be the Turing Machine with n states that starts with a blank tape, writes $\Sigma(n)$ 1’s, and Halts. Now define two new machines:

- A -- writes n in binary on a blank tape
- C -- converts binary to unary

Then

- $|A| \approx \log(n)$ (print 1, move to right, go to next state)
- $|C| = \text{constant}$ (there is an algorithm for converting binary to unary)
- $|B| = \text{constant}$

So the machine ABC takes a blank tape and writes n 1’s on the tape. But for large n, we have $|ABC| < |B_n| = n$ Contradiction.

Hence B cannot exist.
Busy Beaver

Values

- \(B(1) = 1 \)
- \(B(2) = 4 \)
- \(B(3) = 6 \)
- \(B(4) = 13 \)
- \(B(5) \geq 4098 \)

Observation

- \(B(n) \neq O(f) \) for any computable function \(f \)
- \(f(B(n)) < B(n+1) \) for all computable \(f \) for arbitrary many values of \(n \)
Busy Beaver and the Halting Problem

Algorithm for Busy Beaver

1. Build all Turing machines with \(n \) states
 -- finite number of lists of 5-tuples
2. Run each machine on a blank tape -- universal Turing machine
3. Take the maximum value of 1’s

Observation

- Algorithm Fails because some Turing machines do not Halt
- Algorithm would work only if we could solve the Halting Problem
Part II: Self Description and Recursion
Theorem: \(\textit{Min} \) is Not Semi-Decidable.

Proof: \(\textit{Min} \) is Semi-Decidable \(\Rightarrow \) Can Enumerate \(\textit{Min} \)

To show \(\textit{Min} \) is not Semi-Decidable:

First build \(M^\# \)

To Run \(M^\# \) on any String \(w \)

1. Construct a Description \(< M^\# >\) of \(M^\# \) (Chapter 25)
2. Find a Turing Machine \(M' \) in the List for \(\textit{Min} \) with \(|< M' >| > |< M^\# >| \).
3. Compute \(M'(w) \).

Then

4. \(M' \) in the List for \(\textit{Min} \) \(\Rightarrow \) \(M' \) is a Minimal Machine
5. \(M^\#(w) = M'(w) \) \(\Rightarrow \) \(M^\# \) is equivalent to \(M' \)
6. \(|< M^\# >| < |< M' >| \) \(\Rightarrow \) \(M' \) NOT a Minimal Machine CONTRADICTION
Self Description and Recursion

Problem

Construct a Turing Machine M that:

1. Writes a Description of M
2. Performs some Operations W

Observations

1. We need to know M to write a Description of M
2. But ... the Definition of M, Depends on M!
Attempts at Self Description

Construction of M -- First Try
1. Write $<W>$
2. Perform W

No! This Machine Describes W, not M

Construction of M -- Second Try
1. Write $\langle <W>, W \rangle$
2. Perform W

No! This Machine Describes the Machine that
 Writes a Description of the Machine that
 Writes a Description of W and Performs W.

Does NOT Describe M
Solution: Part I

The Turing Machine B

• On Tape #2, Write a Description of the Turing Machine A that Writes the Symbols Already on Tape #1.
 -- Tape #1: \(s_1 s_2 \cdots s_n \)
 -- Tape #2: \(s_1 R s_2 R \cdots s_n R \)

• Copy the Contents of Tape #2 in Front of the Contents of Tape #1.
 -- Tape #1: \(s_1 R s_2 R \cdots s_n R s_1 \cdots s_n \)

• Observations
 -- The Output of B Depends on the Content of Tape #1
 -- The Program for B is Independent of the Contents of Tape #1
 -- The Description of B is Independent of the Contents of Tape #1.
Solution: Part II

The Turing Machine A

- Write $<B,W>$ on Tape #1
- Observations
 - The Program for A Depends Only on W; B is Fixed
 - The Description of A Depends Only on W.

The Solution

- Write $<A>, , <W>$
- Perform W
Analysis of Solution

Analysis of A, B, W

• A: Writes , <W>
• B: Writes <A> in front of , <W> ⇒ Writes <A>, , <W>
• W: Perform W.

Conclusion

• A, B, W Writes a Description of A, B, W
• Performs W
Virus

Virus Program

• Write a Description of the Virus Program

• For Each Address in the Address Book

 -- Mail a Description of the Virus Program to the Address

 -- Perform Some Malicious Operations
The Recursion Theorem

Let T be a Turing Machine that Computes a Partially Computable Function

$$t(a,b) = T(a,b).$$

Then there is a Turing Machine R that Computes a Partially Computable Function

$$r(x) = T(<R>,x).$$

Proof: Description of $R(x)$:

- Write a Description $<R>$ of R
- Perform $r(x) = T(<R>,x)$
The Fixed Point Theorem

Let

• \(S = \{ < M > \mid M \text{ is a Turing Machine} \} \)

• \(f : S \to S \) be a Computable Function

Then there exists a Turing Machine \(F \) such that

• \(f(< F >) = < G > \)

• \(F \Leftrightarrow G \) \((F \text{ and } G \text{ Behave the Same on All Inputs})\)

Proof: Description of \(F(x) \):

• Write \(< F > = \) a Description of \(F \)

• Compute \(< G > = M_f (< F >) = f(< F >) \)
 -- \(M_f = \) Turing Machine that Computes \(f \)

• Run \(G \) on \(x \)
Symbols for Encoding Turing Machines

<table>
<thead>
<tr>
<th>Eleven Symbols</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>Non-Halting State</td>
</tr>
<tr>
<td>y</td>
<td>Accepting State</td>
</tr>
<tr>
<td>n</td>
<td>Rejecting State</td>
</tr>
<tr>
<td>a</td>
<td>String</td>
</tr>
<tr>
<td>L</td>
<td>Move Left</td>
</tr>
<tr>
<td>R</td>
<td>Move Right</td>
</tr>
<tr>
<td>(</td>
<td>Grouping for Transition Functions</td>
</tr>
<tr>
<td>)</td>
<td>Grouping for Transition Functions</td>
</tr>
<tr>
<td>,</td>
<td>Separator for Transition Functions</td>
</tr>
<tr>
<td>0</td>
<td>Symbol for Encoding States and String</td>
</tr>
<tr>
<td>1</td>
<td>Symbol for Encoding States and Strings</td>
</tr>
</tbody>
</table>
Godel Numbering for Special Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Godel Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>0000</td>
</tr>
<tr>
<td>y</td>
<td>0001</td>
</tr>
<tr>
<td>n</td>
<td>0010</td>
</tr>
<tr>
<td>a</td>
<td>0011</td>
</tr>
<tr>
<td>L</td>
<td>0100</td>
</tr>
<tr>
<td>R</td>
<td>0101</td>
</tr>
<tr>
<td>(</td>
<td>0110</td>
</tr>
<tr>
<td>)</td>
<td>0111</td>
</tr>
<tr>
<td>:</td>
<td>1000</td>
</tr>
</tbody>
</table>
Godel Numbering for Turing Machines

Godel Function

- \textit{Godel : Turing Machine} \rightarrow N

 -- \textless M \textgreater = \text{Encoding of } M = \text{Encoding of Transition Functions}

 -- \textless M \textgreater = \text{Long Binary String (Use Godel Numbering for Special Symbols)}

- \textit{Godel(M)} = \text{Number Represented by Long Binary String Encoding} \textless M \textgreater

- \textless M \textgreater \neq \textless N \textgreater \Rightarrow \textit{Godel(M)} \neq \textit{Godel(N)}
Godel Numbering for Partially Computable Functions

Godel Function

- \textit{Godel} : \textit{Partially Computable Functions} → \textit{N}

 -- \textit{F} = Partially Computable Function

 -- \textit{M}_F = Turing Machine with Lowest Godel Number that Computes \textit{F}

- \textit{Godel}(\textit{F}) = \textit{Godel}(\textit{M}_F)

- \phi_k = Partially Computable Function with Godel Number \textit{k}
The s–m–n Theorem

Let \(k = \text{Godel Number of a Partially Computable Function with } m+n \text{ arguments.} \)

Then there Exists a Computable Function \(s_{m,n} \) such that

1. \(j = s_{m,n}(k,u_1,\ldots,u_n) \) is the Godel Number of a Partially Computable Function

2. \(\phi_j(y_1,\ldots,y_n) = \phi_k(u_1,\ldots,u_n,y_1,\ldots,y_n) \)

Proof: Define Turing Machine \(M_{m,n} \) to Compute \(s_{m,n} \):

\[M_{m,n}(k,u_1,\ldots,u_m) : \]

- Construct \(M_j(w) \):
 -- Write \(u_1,\ldots,u_m \) to the Left of \(w \)
 -- Move Head to Left of \(u_1 \)
 -- Apply \(\phi_k \)
- Return \(j \)