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Abstract—Most state-of-the-art exploratory data analysis
frameworks fall into one of the two extremes: they either focus
on the high-performance computational or the interactive and
open-ended aspects of the analysis. Arkouda is a framework
that attempts to integrate the interactive approach with the
high-performance computation by using a novel client-server
architecture, with a Python interpreter on the client-side for
the interactions with the scientist and a Chapel server for
performing the demanding high-performance computations. The
Arkouda Python interpreter overloads the Python operators and
transforms them into messages to the Chapel server that performs
the actual computation.

In this paper, we are proposing several client-side optimiza-
tion techniques for the Arkouda framework that maintain the
interactive nature of the Arkouda framework, but at the same
time significantly improve the performance of the programs that
perform operations running on the high-performance Chapel
server. We do this by intercepting the Python operations in the
interpreter and delaying their execution until the user requires
the data, or we fill out the instruction buffer. We implement
caching and reuse of the Arkouda arrays on the Chapel server-
side (thus saving on the allocation, initialization, and deallocation
of the Chapel arrays), tracking and caching the results of
function calls on the Arkouda arrays (thus avoiding repeated
computation), and reusing the results of array operations by
performing common subexpression elimination.

We evaluate our approach on several Arkouda benchmarks
and a large collection of real-world and synthetic data inputs and
show significant performance improvements between 20% and
120% across the board, while fully maintaining the interactive
nature of the Arkouda framework.

Index Terms—distributed processing; parallel programming;
client-side optimization; caching; Arkouda; triangle counting;
betweenness centrality

I. INTRODUCTION

In data science, exploratory data analysis (EDA) is a very
common approach, with the scientist interacting with data and
performing several complex operations on it, to attempt to
glean some insight into the meaning of data. The operations
that such EDA applications perform are often very complex
and computationally intensive. It would thus be often desirable
to perform those operations on a high-performance computing
platform. Unfortunately, the interactive nature of EDA does not
lend itself easily to execution on a high-performance platform,
since EDA is most of the time done on the scientist’s laptop
or another low-performance platform.

Arkouda [12], [13] bridges this gap by implementing a
client-server framework, where the client is implemented as a

Python interpreter that can run on a low-performance machine
(such as the scientist’s laptop), while the server is implemented
in Chapel and can run on high-performance distributed plat-
forms. The client uses a simple, NumPy-like API to express
operations on the data, turns those operations into messages
to the server, and the server processes these messages and
executes the corresponding data operations on the actual data
on the server. All the data resides on the server until the
scientist requests some of it (by, for example, plotting the data,
querying it, reducing it to a value, or extracting some part of
it), at which point the server transfers the requested part of the
data to the client. The expectation is that in most of the EDA
applications, the amount of data requested by the client will be
significantly smaller than the total amount of data residing on
the server. Usage of Cray’s Chapel language allows the server-
side of the communication to be easily implemented on any
number of distributed platforms. Because of its higher-level
abstractions in both data and task parallelism [3], it simplifies
changing the server-side API to match the needs of the client,
if necessary.

However, Arkouda implements this framework by imme-
diately translating Arkouda Python commands on the client
into messages to the server to perform the actual server
actions, even if the commands do not result in anything that is
immediately visible to the user. This could potentially lead to
many unnecessary server operations and significantly reduce
the available throughput for the EDA application.

In this paper, we propose several optimizations to the
Arkouda framework that take advantage of the fact that the
results of many server-side operations are not immediately
requested by the user, and their execution could be delayed
up to the point when the user requests to see the results.
For example, in the statement A = B ∗ C, where A, B and
C are Arkouda arrays, the multiplication does not need to
be performed until the user requests to see the data that A
contains (by, for example, plotting it, or finding a maximum,
or indexing into it). If the arrays A, B, or C are used in other
computations in the meantime, this provides an opportunity to
the client to delay the computation, reorganize the server-side
operations, and reduce the necessary server-side computations
needed to provide the user with the requested data.

This client-server architecture presents several unique chal-
lenges to compiler optimizations. First, the optimizations have
to be fast, since they will be executed at runtime. Second,



the interactive nature of the Arkouda framework has to be
maintained. Finally, the client and the server need to agree on
the changes to their respective internal representations.

The remaining of the paper is organized as follows: In
Section II, we discuss the related work, while in Section III, we
describe the architecture of the Arkouda framework. In Sec-
tion IV, we propose the changes to the client and the server to
enable our optimizations. Section V shows a walk-through of
several examples of how these optimizations work. Section VI
presents several benchmarks and the experimental evaluation
of our approach compared to the base Arkouda. Section VII
describes several opportunities for future optimizations, while
Section VIII concludes the paper.

II. RELATED WORK

Our work builds upon the existing Arkouda [12], [13]
framework, which offers an interactive way to perform parallel
data processing on distributed datasets using a Chapel server
and a simple Python client. Our project optimizes this client
by introducing common subexpression elimination, caching,
and lazy evaluation. The client interface exposes a NumPy-
like API to the user. NumPy [15] is a popular Python package
for numerics that implements multidimensional vectors and
supports distributed libraries, providing an effective building
block for Arkouda and our work. Rather than explicitly initial-
izing NumPy arrays, Arkouda and our model create parallel
distributed one-dimensional arrays with functions named in a
very similar manner to that of NumPy. Although Arkouda’s
compatibility with Python extensions that contains array inter-
faces is limited due to the data types that it supports and lack
of support for array iteration, Arkouda supports conversion
between NumPy arrays and Arkouda arrays and uses NumPy
data types. As explained in the Arkouda documentation, the
overall goal of this framework and our proposed model is to
scale existing data science frameworks such as Pandas [17],
a widely used data analysis tool. Arkouda offers a way to
operate on large-scale Pandas-like data frames serving as a
breakthrough for data scientists [12].

One model that our project resembles is Phoenix [19], a
parallel programming model which sends messages between
nodes in the effort of fusing compute resources. We implement
a similar idea but use a client-server model. We have also
investigated the use of lambdas to create a dynamic experience
for users rather than having them rely solely on a predefined
API. [8] similarly allows for custom computational patterns,
by relying on using two functional languages, RISE and
ELEVATE, to produce optimized HPC code. Our work also
builds off of functional patterns, relying on overloading Python
functions and Chapel APIs.

Others have developed projects for improving Chapel-based
systems, such as extending the Arkouda server with a Chapel-
based version of the triangle counting algorithm [7]. Kayrak-
lioglu et al. [11] compare Chapel and OpenMP implementa-
tions of The Parallel Research Kernel and optimize the Chapel
compiler. Our project assumes an optimized Chapel server,

largely influenced by projects similar to the two aforemen-
tioned ones and allows for general algorithm implementations
in Python rather than specialized server-side ones.

JAX [10] is a popular just-in-time compiler that improves
Python code through the use of optimized kernels and GPUs.
Numba [14] is another Python optimization library. It converts
Python code on the fly to optimized machine code using
LLVM. Our approach uses similar optimization tactics in
a unique client-server environment to effectively translate
Python code to high-performance Chapel code.

As opposed to NVIDIA cuNumeric [16], which focuses on
parallelizing code for execution on the GPU, Arkouda instead
focuses on the ease of usage and distributed CPU systems.
This is similar to the Dask [4] library in Python, which
mimics the usage of numpy and pandas libraries for large,
distributed systems. Compared to Dask, Arkouda sacrifices
some of the finer tuning capabilities of memory allocation
on the distributed system in favor of a more user-friendly,
transparent implicit parallelization of basic vector operations.

Lastly, optimizations involving delayed computation have
been done before. DESOLA [18] is an active linear algebra
library that delays the evaluation of library calls and gener-
ates code at runtime, incorporating the removal of unneeded
temporary arrays. Our approach applies similar concepts to
the Arkouda framework to reduce the load on the server and
prevent the creation of unnecessary arrays.

III. CURRENT ARKOUDA FRAMEWORK

A. Client-Server Model

The Arkouda architecture is uniquely split into a Python
client and a Chapel-backed server [12], [13]. The Python client
exposes a simple, Numpy-like API to the user. To represent
arrays, the Python client relies on a pdarray (parallel dis-
tributed array) class as a thin Python proxy for the server-
side arrays. By using operator overloading for common array
functions such as addition, multiplication, and other binary
operations, this approach allows the user to use intuitive
Python expressions for array operations without worrying
about interfacing with the Arkouda server code. The client
transforms each Python pdarray operation into a message
to the server via ZeroMQ [20] and waits for a reply. Thus,
each Arkouda operation is a blocking call. The pdarray class
acts as a proxy to the actual arrays that are created, stored,
and manipulated on the server. Pdarrays only contain the
key metadata from the server-side arrays, such as an ID, size,
and data type. To delete server-side arrays, the client relies
on overloading the pdarray destructor, reference counting,
and the Python garbage collector. When there is no longer
a reference to a pdarray, the garbage collector deletes the
unused object, which invokes the overloaded class destructor.
This, in turn, sends a message to the server to delete the
corresponding distributed array.

On the server-side, the Chapel server receives messages,
parses the message commands, maps them to Chapel func-
tions, and performs computations in parallel and distributed



Fig. 1. Split between Python client and Chapel server [7]

fashion on the server. These computations operate on dis-
tributed arrays. When the command sent to the server results
in a scalar, the server responds to the client with the direct
result of the corresponding computation. For example, a call
to the sum command on an array would result in the server
returning a single value to the client. When the server receives
a command which results in a new array (for example, adding
two arrays), the server creates and stores a new distributed
array and responds to the client with the metadata of the
resulting array, which in turn causes the client to create a
pdarray to store the metadata for the newly created server-
side array. In subsequent operations on that array, the client
can simply send the ID of the proxy object. While this is a
very functional approach that leads to a very simple client-side
interpreter implementation, it could lead to many unnecessary
array creations, deletions, and computations on the server-side.

Figure 1 shows the general Arkouda client-server architec-
ture. This design allows for a clear separation of function
between the client and server. The client acts as a lightweight
tool with a proxy class that overloads key functions and
can be executed on low-performance platforms, such as a
scientist’s laptop. The server, on the other hand, handles
heavy computations and data storage. This paper focuses on
optimizing the client side of the Arkouda framework to reduce
the workload on the server.

B. Optimization opportunities

We propose an integration of several client-side optimiza-
tions such as lazy evaluation, common subexpression elimina-
tion, and array caching into this unique Arkouda framework.
When combined, these optimizations reduce command and
message traffic, the number of array allocations, and the
computational overhead of operating on distributed arrays. To
better understand what can be optimized, let us walk through a
simple Arkouda example. Assume we have the piece of Python
code from Figure 2. Figure 3 displays the object allocation
scheme that the current Arkouda framework would take for
this piece of code. In the figure, client-side Python proxy
objects are green and server-side arrays are red.

When the second line of code from Figure 2 executes, the
client would send the server a message to create a server-side
one-dimensional distributed array S1 of length 10 randomly

1 import a rkouda as ak
2 A = ak . r a n d i n t ( 0 , 10 , 10)
3 B = (A * A) + (A * A)
4 C = ak . r a n d i n t ( 0 , 10 , 10)
5 p r i n t (B)

Fig. 2. Sample Arkouda code with room for optimization

Fig. 3. Object allocation of Figure 2 code with the current Arkouda framework

filled with integers ranging from 0 to 10. The server would
use Chapel to create this array and respond to the client with a
message containing the metadata for the newly created array.
Finally, the client would store these details inside a proxy
pdarray object C1, and the Python interpreter would assign
this object to A.

When the third line of code from Figure 2 executes, the
Python interpreter would interpret the expression (A∗A)+(A∗
A), which will in turn call the overloaded pdarray operators
∗ and +. This will result in a total of 5 messages being sent
to the server:
1) First, the client would send a message to the server to

multiply S1 by itself. This would result in a creation of a
new temporary distributed array S2 on the server-side, and
of a proxy pdarray object C2 on the client-side.

2) The same process would happen again to complete the
rightmost part of the expression which also multiplies A
by itself. This would result in a server-side array S3 and
client-side pdarray object C3.

3) Finally the client sends a message to the server to add
server-side arrays S2 and S3. This results in another
temporary server-side distributed array S4, and a client-
side pdarray object C4, which is assigned to B.

4) Eventually, two more messages will be sent to the server
to delete S2 and S3 since they are no longer needed to
compute B. When this is done will depend on the imple-
mentation of the Python garbage collector, but most Python
implementations will delete temporaries immediately after
the statement B = (A ∗A) + (A ∗A) is executed.

The fourth line on Figure 2 creates another server-side array
S5 and client-side pdarray proxy object C5 assigned to C.
Finally, the proxy pdarray object C4 will be used to create
a message that the client sends to the server to retrieve the
contents of the distributed array S4. The server would respond
to the message with the contents of that array which will be
printed to the user.

The code in Figure 2 presents several optimization opportu-
nities. First, the computation of A∗A does not need to be done



Fig. 4. Object allocation of Figure 2 code with the optimized Arkouda
framework

twice. Rather than computing both S2 and S3, we could only
compute S2 and reuse it. Additionally, this same temporary
can be reused to store the result of S2+S2. Finally, since the
user is only printing the contents of B, which is independent
of C, we can delay the server call on line 4. Figure 4 shows
object allocations in the optimized Arkouda framework.

With these optimizations, the server would only need to
create two arrays (S1 and S2) and respond to four messages
(create S1, multiply S1 with S1 and store into new temporary
S2, add S2 and S2 and store into S2, and retrieve the
contents of S2). This would be a major improvement over
the five arrays and eight messages that the current framework
produces. While this is a simple example designed to illustrate
the opportunities, in the next section we describe the changes
to the client architecture to enable the implementation of these
optimizations.

IV. PROPOSED MODEL

To enable client-side optimizations, we use an abstract
syntax tree (AST) based command buffer in the client, mem-
oization to keep track of available expressions and results of
reductions, and an extension to the server-side API that allows
overwriting of existing distributed arrays. The following sub-
sections describe these components and how our optimizations
target Arkouda’s unique client-server architecture.

A. AST-Based Command Buffer

To enable on-the-fly analysis and optimization, we introduce
a command buffer of abstract syntax trees (AST’s) for Arkouda
expressions. For example, an expression

B = (A+A) ∗ (A+A)

will be represented by the following binary tree:

*

+

AA

+

AA
AST’s for expressions are represented implicitly, through

the use of a command buffer that stores a sequence of Arkouda
commands. This imposes an order amongst commands and
allows for a simple and fast analysis. Additionally, we impose

a size constraint on this buffer to avoid unbounded delays in
computation. In our model, each pdarray holds a reference to
its corresponding buffer command which needs to be executed
for the array to have a server-side value. When the value
of a pdarray is needed, we search through the buffer for
any dependencies and anti dependencies and then execute the
corresponding pdarray’s buffer command. This naturally leads
to the on-demand lazy evaluation of Arkouda expressions.

B. Array Cache

In our scheme, there is no longer a one-to-one correspon-
dence between pdarrays and server-side arrays. Instead, we
maintain a cache of server-side arrays that can be reused once
their corresponding client-side pdarray is killed by a Python
operation. For example, consider the following piece of code:

1 import a rkouda as ak
2 f o r x in range ( 1 0 0 0 ) :
3 A = ak . r a n d i n t ( 0 , 10 , 10)
4 B = ak . r a n d i n t ( 0 , 10 , 10)
5 C = A + B
6 p r i n t (C)

For every iteration of the loop, the server creates and later
destroys temporaries for A, B, and A + B. However, we
could instead use only 3 temporaries rather than 3000. To
do so, our model uses a finite cache of server arrays on the
client-side. Once the Python interpreter invokes the destructor
of a pdarray instance, rather than sending a delete message
to the server to delete the server’s instance of that array,
we instead cache the server’s id of that array instance. This
cache is partitioned by array sizes and data types. When an
Arouda command needs to create a server-side array, rather
than immediately sending a message to the server to do so,
we first check to see if a cached temporary array is available,
and if so, use that. We maintain a map of client IDs to server
IDs on the client-side. This design also allows for a one server
with multiple clients framework, with each client with their
own virtual space of IDs. We can consequently save on the
overhead of constant server array initializations.

C. Command Result Caching

In addition to array caching, our model caches the results of
reductions. Specifically, when the client initiates a reduction
function, such as sum, max, or min, on an array, it saves the
function result on the client-side. By doing so, the server only
needs to compute each reduction function up to one time for
each array. Additionally, our model caches the results of binary
operations and stores those results in a table. Before sending
a computational message to the server, the client first checks
the function cache table to see if the command has already
been performed, and uses the cached result if so. When an
array is modified, then all the cached expressions transitively
using that array are evicted from the cache. Command result
caching directly allows for caching of the results of reducing
common subexpressions, opening opportunities for common
subexpression elimination.



D. Server Side Function Additions

To allow the reuse of temporary server-side arrays, we
extend the server-side APIs with an additional argument to
hold the array into which the result should be stored. For
example, the Arkouda binary operator command accepts an
operator and two array ids as its arguments. The Arkouda
server always creates a new array to store the results of
executing the operation. With our improvements, we extend
this API with an additional array id to specify where to store
the result. This enables the client to send messages to the
server which reuses the arrays on the server-side. These ”store”
functions can be created for any function where using a cached
array is possible.

These functions integrate well with the design of the com-
mand buffer. Take for example the following piece of code
where A, B, C, and D are Python variables corresponding to
Arkouda pdarrays C1, C2, C3, and C4, respectively:

1 C = B + A
2 p r i n t (C)
3 C = ak . r a n d i n t ( 0 , 10 , 10)
4 A = D + A

Once A is reassigned to D + A, the pdarray C1 which A
used to point to will be up for deletion. However, our model
maps client IDs to buffer commands in which that ID was last
referenced. In the case above, we can determine that C1 can
be used to store the result of D+A since it was last referenced
in this line. We can then use a ”store” function and specify
that the server-side array to which C1 is mapped can be used
to store the result of D +A.

E. Deleted Array Caching

One potential issue with the model proposed so far is that
we can prematurely delete pdarrays. For example, assume
that we alter the piece of code from the previous example to
the following:

1 C = B + A
2 A = D + A
3 p r i n t (A)
4 p r i n t (C)

We cannot simply overwrite the contents of A in line 1 when
we reassign A in line 2.

Our model solves this problem by introducing shallow
copies of pdarrays for any distributed arrays which are still
in use at the time of reassignment. These shallow copies hold
metadata and instructions, similar to pdarrays, but do not use
function overloading since the copies will never be used again
by the user. In this example, we know the client array ID C1
of the array represented by A before A gets reassigned. Since
we can traverse the command buffer and validate that C1 is
still in use in the instruction set for C, we can opt to create
a shallow copy of A in A’s destructor and map C1 to that
copy. By doing so, when we need to compute the value of C,
we still have access to the metadata and instruction set of the
previous version of A.

V. PUTTING IT ALL TOGETHER

We will now walk through a few concrete examples of how
this architecture works and improves the client-server interac-
tion, in contrast to other just-in-time compilation frameworks.

A. Example 1

The first example makes use of every piece of our model,
including array caching. Assume we have the following block
of Python code where ak refers to the Arkouda library.

1 A = ak . r a n d i n t ( 0 , 10 , 10)
2 B = ak . r a n d i n t ( 0 , 10 , 10)
3 C = ak . r a n d i n t ( 0 , 10 , 10)
4 C = B + A
5 A = C + A
6 p r i n t (A)

In Line 1, the client would create a pdarray C1 and assign
that to A. C1 would hold onto a reference to a new item
in the buffer, which simply encapsulates the instructions of
how to create A on the server-side. The same process would
occur again for Lines 2 and 3, but the client-side IDs for
the pdarrays assigned to B and C would be C2 and C3,
respectively.

When Line 4 executes, a fourth pdarray C4 and corre-
sponding buffer item would be created and assigned to C. The
buffer item would hold the information that the newly created
pdarray needs: the result of performing a binary operation
between C2 and C1. This buffer item only needs to remember
the command name and client-side ids of any command inputs.

At this point, C no longer refers to C3. Since the reference
count to C3 would be decremented to 0, the Python interpreter
would execute C3’s destructor. In most Python implemen-
tations, the interpreter invokes the destructor immediately.
Using the overloaded pdarray destructor, our model would
first traverse through the buffer, processing the most recent
entries first, and make sure that no command uses C3 as an
input. After verifying that C3 is not in use anywhere and that
its server-side value was never computed, our model would
remove C3’s corresponding buffer item from the buffer and
delete C3.

When Line 5 executes, our model creates a fifth pdarray
C5, adds a corresponding buffer item to the command buffer
containing instructions to perform a binary operation on C4
and C1, and assigns C5 to A. Similar to before, the Python
interpreter would invoke C1’s destructor since A is assumed
to be reassigned. However, in this case, C1 still needs to be
used to compute C4’s value in Line 4 and C5’s value in Line
5. Thus, as detailed in Section IV, we would create a shallow
copy of C1 for later use and allow C1 to be deleted. We would
also keep track of where C1 is used for the last time, which
in this case is in the command to compute C5.

When Line 6 executes, our client realizes that it needs
to return the value of C5 which is only possible through
the computation of C5’s server-side value. Our client would
then look at C5’s corresponding buffer item which holds the
computation instructions for this array, recursively resolve any
dependencies and anti-dependencies, and return a value. Since



Fig. 5. Liveness analysis conducted by our model

C5 is dependent on C4 and the shallow copy of C1, we would
traverse through the buffer and look for any commands that
write to C4 or C1 or read from C1. This traversal would first
result in the computation of the shallow copy of C1 which
would involve the client sending a message to the server and
the creation of the server-side array S1. The next relevant
buffer item would be the one that contains instructions for
computing C4. We can see that C4 is dependent on C2
and the shallow copy of C1. The client recursively computes
the value of C2, using a similar method to the dependency
resolving algorithm for C5. This would result in the creation
of S2, the server-side representation of C2. Since all of
C4’s dependencies are now resolved, the client then proceeds
to compute S3, the server-side value of C4, and the result
of adding S1 and S2. We have now resolved all of C5’s
dependencies and can overwrite S1 to store the server-side
value of C5 and the result of adding S1 and S3. Our model
overwrites S1 since we kept track of the information that C1
is used for the last time to compute C5. Finally, we would
ask the server for the contents of S1 and print that out to the
user.

Figure 5 illustrates the live ranges of client-side and server-
side temporaries from this example. The current Arkouda
framework would have created 5 pdarrays and 5 server-
side arrays for this example. While our model also creates
5 pdarrays, it only creates 3 server-side arrays.

B. Example 2: Delayed Computations

This example illustrates the effect of lazy evaluation:
1 C = B + A
2 D = E + F
3 p r i n t (D)

Assume A, B, E, and F have been respectively assigned
to the client-side pdarray objects C1, C2, C3, and C4.
Their corresponding arrays have yet to be initialized on the
server. The first line of code would result in C5, a new
pdarray being assigned to C, and a corresponding buffer item
being placed in the buffer. Similarly, the second line of code
would result in C6 being assigned to D and a corresponding
buffer item being placed in the buffer. When the third line of
code executes, since the value of D is needed by the user,
our model will find the buffer item that C6 points to and
execute the instructions stored there. In this case, that would
involve computing C3 and C4’s server-side values using their

respective buffer items. Once these dependencies have been
resolved, our model simply retrieves the contents of the server-
side array that was created for C6.

The main takeaway here is that C1, C2, and C5 still
do not have corresponding server-side values. Our model
thus reduced the number of messages sent by the client and
the number of arrays created by the server by 3, assuming
computing the server-side value of each of C1, C2, and C5
involve the client sending one message and the server creating
one array. Effectively, delayed evaluation implements dead
code elimination, since the values will be computed only when
(if) they are needed.

C. Example 3: Common Sub-expression Elimination

Let’s look at the following example to illustrate common
sub-expression elimination:

1 B = A * A
2 C = A * A
3 D = B + C
4 p r i n t (D)

Assume A points to the pdarray C1 which has yet to be
computed on the server. C1 holds onto a reference to a buffer
item. The first line of code would assign a new pdarray, C2,
to B which contains a reference to a buffer item that contains
the instructions to multiply C1 by itself. A similar process
would occur on Line 2 when C3 gets assigned to C. In the
third line of code, a fourth pdarray C4 would be created and
assigned to D. C4 would hold a reference to a buffer item
that contains the instructions to add C2 and C3. Finally, the
fourth line acts as a trigger to execute the instructions stored
by the buffer item that C4 references.

The first step in executing that instruction set is resolving
any dependencies, which in this case would be on C2 and
C3. First, our model will look at the buffer item that C2
references and resolve its dependencies, which would be C1.
After sending a message to create C1 on the server-side and
store it as S1, our client would then proceed to compute C2,
which involves multiplying S1 by itself. This would result in
the creation of S2, C2’s server value. However, our client will
also cache the three address instruction set that the resulting
server-side array corresponds to. In other words, our client
will record that S2 is the result of multiplying S1 by itself.
When computing C3’s server-side value, the client checks the
cache and realizes that S1∗S1 has already been computed, and
represents C3 as S2 on the server-side. Finally, after resolving
all dependencies, the client will create a final server-side array
S3, which is the result of adding S2 to itself. This corresponds
to C4. To finish this program, Line 4 will cause the client to
query the server for the contents of S3 and print that to the
user.

By introducing caches of function results, our model reduces
the number of messages sent between the server and client and
the number of operations computed by the server.



VI. EXPERIMENTAL EVALUATION

A. Algorithms

To test the results of optimizations, we ported two algo-
rithms from GraphBlas [2] to Arkouda, on both the Chapel
and Python sides, so that the results could be compared. We
performed all experiments on a single shared memory node
with a Xeon E3-1220 [9] processor.

1) Triangle Counting: The first benchmark is graph triangle
counting [1], using both the sparse and dense matrix repre-
sentation of a graph. This application utilizes a high number
of basic pdarray operations that our optimized framework
targets. Also, it has a real-world usage [1], validating that our
optimizations will be beneficial to the users of the Arkouda
platform.

a) Dense matrices: Given a lower triangular matrix L
which represents an undirected graph, the number of triangles
can be counted by the formula given by [5]:

num triangles = sum((L ∗ L). ∗ L)

Here, ∗ denotes regular matrix multiplication, and .∗ denotes
element-wise matrix multiplication.

Since Arkouda does not support two-dimensional arrays
on the server-side, we implement dense matrices as an array
of pdarrays on the client-side. Thus, the Chapel server has
no notion of the dimensionality of the problem. Also, we
implement regular matrix multiplication, which the Chapel
Arkouda server doesn’t implement, as the summation of a
vector that is given as the result of element-wise multiplication
of rows in matrix L and its transpose LT . To be more precise,
given matrices A and B, their matrix product can be calculated
as:

C(i, j) = sum(A(i) ∗BT (j))

where A(i) and B(j) denote their respective rows. This maps
the problem to the Arkouda APIs.

b) Sparse matrices: In this example, we consider sparse
matrices in both the CSR (Compressed sparse row) and CSC
(Compressed sparse column) format. Since Arkouda already
supports set operations, we use those to count the number of
triangles based on the Algorithm 1 which is applied on the
neighborhood matrix of an undirected graph A, requiring both
its CSE and CSR form [2].

Algorithm 1: Triangle count for sparse matrices
(p1, c)← CSC(A)
(p2, r)← CSR(A)
s = 0
for i in 1..size(p1) do

for j in p[i]..p[i+1] do
S+ = |c[p1[k]..p1[k + 1]] ∩ r[p2[c[j]]..r[p2[c[j] + 1]

return S

Since splices of arrays given above can be represented as
sets, we use the already existing Arkouda intersect operation.

min()→ max()→ mean()→ std()→ min()→ min()

Fig. 6. Order of operations in the Taxi Cab example

2) Betweenness Centrality: Another important algorithm in
graph theory is the Betweenness Centrality algorithm, which
calculates the betweenness measure of a certain node in a
graph. This represents the measure of ”centrality” of a node,
given by the number of shortest paths that go through the
node divided by the number of shortest paths in general in
the graph. As per GraphBlas [2], the algorithm for returning
a betweenness centrality vector from a given node source
is given in Algorithm 2. As we can see from Algorithm 2,

Algorithm 2: Betweenness Centrality algorithm
(n, n)← shape(A)
delta← zeroes(n)
sigma← zeroes(n, n)
q[source]← 1, p← q, d← 0, sum← 0
while True do

sigma[d]← q
p← p+ q
q ← (q ∗A) ∗ p
sum = sum(q)
d+ = 1
if s=0 then

break

for i in d-1..0 do
t1← 1 + delta
t2← t1

sigma[i]
t3← t2 ∗A
t4← t4 ∗ t3
delta← delta+ t4

return delta

the temporary variables t1, t2, t3, t4 are overwritten in each
iteration of the second loop and should be amenable to our
temporary reuse optimization.

3) NYC Taxi Example: The NYC Taxi example is one of
the Jupyter notebooks for exploratory data analysis from the
Arkouda repository, which consists of Arkouda operations
applied to the database of NYC taxi trips in January 2020
[12]. This example can be summarized as a series of unary
operations applied to a single immutable Arkouda array. The
sequence of Arkouda operations is shown in Figure 6.
As such, it presents an excellent target for memoization of
function results.

It is important to point out that some of the redundancies
in this example are not apparent to the user. Some Arkouda
operations internally have to call other Arkouda operations
to complete the task. For example, both mean() and std()
(standard deviation) internally call sum(). The user would not
be able to simply rewrite the Taxi Cab example to avoid all
redundant computation. However, our function memoization
optimization eliminates these kinds of redundancies as well.

B. Results

We evaluate the above mentioned algorithms for Triangle
counting and Betweenness Centrality using both dense and



TABLE I
MATRICES USED IN THE EXPERIMENTS

Size Non - zeros Name
47 x 47 472 mycielskian6
62 x 62 318 dolphins
105 x 105 882 polbooks
124 x 124 12068 Journals
191 x 191 4720 mycielskian8
352 x 352 458 GD00 a
366 x 366 2440 dermatology 5NN
400 x 400 5656 Olivetti norm 10
453 x 453 4065 celegans metabolic
492 x 492 2834 Erdos991
571 x 571 9668 micromass 10NN
1024 x 1024 6112 delaunay n10
1133 x 1133 5451 Email
2048 x 2048 12254 delaunay n11
4096 x 4096 24528 delaunay n12
8192 x 8192 49049 delaunay n13
16384 x 16384 98244 delaunay n14
18772 x 18772 396160 ca-AstroPh
22499 x 22499 87716 cs4
23133 x 23133 186,936 cond-mat
32768 x 32768 196548 delaunay n15
114599 x 114599 239332 luxembourg osm
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Fig. 7. Dense Triangle Count: performance improvements (percentage)

sparse matrices in the SuiteSparse Matrix collection [6], which
provides matrices of varying sizes. The dimensions of each
matrix used, as well as the number of non-zeros, are given in
Table I.

1) Triangle Counting:
a) Dense matrices: Matrices of small size (up to ≈

1000 rows) were used in testing triangle count for dense
matrices since the algorithmic complexity of this algorithm
is O(n3). The execution times comparison (speedup) is given
in Figure 7.

Since these matrices are dense, the number of non-zeros
does not impact the performance. From Figure 7, we can
observe consistent improvements between 30% and 60% from
our optimizations, across different sizes and numbers of non-
zeros for different matrices. Notably, our improvements are
larger for larger matrices.

Since the major part of our optimization focuses on reducing
the number of created and destroyed distributed arrays on the
Chapel server, the ratio of created server-side arrays between
the base and optimized version was also tracked and shown in
Figure 8. We can observe a large reduction in the number of
created arrays on the server-side for our optimized Arkouda.
In base Arkouda, each operation creates a new server-side
array as a result, and the algorithm has O(n3) operations.
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Fig. 8. Dense Triangle Count: Ratio of created arrays between base and
optimized Arkouda
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Fig. 9. Sparse Triangle Count: performance improvements (percentage)

This results in many more arrays being created, compared to
our optimized version, where temporary arrays are reused. The
ratio of created arrays on the server-side is larger for larger
matrices since they provide more reuse opportunities.

b) Sparse matrices: Triangle count for sparse matrices
can be applied to larger matrices, and the results of such
computations are shown in Figure 9.

From these results, we can observe that the speedup is
heavily dependent on the number of non-zeros, since the
size of the arrays in CSR format, as well as the sizes of
the intersections of sets, depend on it. This also correlates
with execution time, as the matrices with a larger number
of non-zeros take more time. Because of the nature of the
optimizations, which are reliant on reusing server-side arrays
of the same size, if there is a large number of non-zero-rows,
there is a smaller impact of temporary reuse, as most of the
execution time is spent on set operation computation. Thus,
the more sparse, Delaunay matrices, are susceptible to larger
performance improvements.

As before, we tracked the ratio of created arrays on the
server-side, and the results are given in Figure 10.

Here, it is also shown that the number of non-zeros does
not have an impact on the number of created arrays. Since
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Fig. 11. Betweenness Centrality: performance improvements (percentage)

0

5

10

15

20

25

30

35

40

45

m
yc
ie
lsk
ia
n6

Jo
ur
na
ls

Er
do
s9
91

de
la
un
ay
_n
10

Em
ai
l

de
la
un
ay
_n
11

de
la
un
ay
_n
12

de
la
un
ay
_n
13

de
la
un
ay
_n
14

de
rm
at
ol
og
y_
5N
N

ce
le
ga
ns
_m
et
ab
ol
ic

do
lp
hi
ns

Fig. 12. Betweenness Centrality: Number of created arrays in base Arkouda
over optimized Arkouda (percentage)

most of the reuse of the temporaries happens inside the loop
of Algorithm 1 which represents the non-zero part of each
row in the matrix, there is almost a fixed ratio between the
numbers in the optimized and base case (approximately 3).

2) Betweenness Centrality: Since the complexity of the
Betweenness Centrality algorithm is at most O(n2), for ex-
periments, we evaluate larger dense matrices compared to the
ones used in dense triangle count. The execution times for this
algorithm, as well as the speedup, are given in Figure 11.

From Figure 11 we can derive that the performance im-
provement is relatively consistent (between 20% and 65%) and
not dependent on the size of the matrix or the number of non-
zeros. This is because the opportunities for reusing server-side
arrays do not change with either of these parameters, since the
size of all arrays that are in the algorithm is the same.

In Figure 12, we see that the difference between the
number of created server-side arrays in base Arkouda and the
optimization is not as large as in the triangle count example,
simply because there are not as many temporary arrays being
created. The bulk of the performance improvements comes
from reducing the number of messages that are sent to the
server and their serialization and deserialization.

3) NYC Taxi Example: In this example, mostly due to the
omission of unnecessary operations, which would calculate
already known values, the performance was improved by 35%
by both reducing the number of messages to the server, and
by avoiding the operations themselves, as shown in Table II.

TABLE II
EXECUTION TIME AND THE NUMBER OF SENT MESSAGES WHEN

EXECUTING THE TAXI CAB EXAMPLE FROM THE ARKOUDA NOTEBOOKS
REPOSITORY

Base [s] Optimization [s]
Execution time 0.25 0.16
Number of sent messages 36 30
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Fig. 13. Dense Triangle Count: cost breakdown
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Fig. 14. Sparse Triangle Count: cost breakdown

4) Cost breakdown: To better understand the nature of our
individual optimizations and how they affect the execution
time, we divided the execution into several parts:
• Overhead Python - time spent on the setup needed for the

Arkouda classes and storing the client side arrays
• Time spent marshalling - time spent on marshalling and

unmarshalling the arguments of messages sent and received
on the Python side

• Creating on Chapel - time spent creating and adding to the
symbol table on the Chapel server

• Deleting on Chapel - time spent deleting the server-side
arrays on the server

• Computations on Chapel - time spent doing computational
work on the Chapel server (adding, multiplying arrays, etc.)

• Chapel overhead - time spent on marshalling and unmar-
shalling the arguments of messages sent and received on
the server-side

• Sending of messages - time spent sending messages from
the server to the client and vice versa

The cost breakdown of the algorithms Dense Triangle Count,
Sparse Triangle Count and Betweenness Centrality is shown
in figures 13, 14 and 15, respectively.

From Figures 13, 14 and 15 we can observe that, as
expected, the time saved on creating the arrays is proportional
to the ratios given in Figures 8, 10, and 12. As the number of
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Fig. 15. Betweenness Centrality: cost breakdown
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Fig. 16. Taxi example : cost breakdown

messages is reduced with the elimination of delete messages,
the time spent marshalling and unmarshalling parameters on
both the client and server sides decreases significantly. Python
overhead increases in optimized Arkouda, as expected, but that
increase is negligible compared to the overall decreases of the
execution time. We can also observe minor improvement in the
computations on the chapel server. We suspect that this comes
from the temporary reuse, which in turn lowers the pressure
on the data caches on the server.

The impact of memoization on the time of execution can
be better understood by a similar graph in Figure 16) for the
Taxi Cab example.

As there is a small number of messages that are sent
between the client and the server, most of the execution time
is spent doing computations on the Chapel server. We can
observe that, by doing memoization, we reduced the time spent
on that computation significantly, which represents the bulk of
the overall time saved.

VII. FUTURE WORK

For future work, we plan on further reducing the number of
messages that the client sends to the server by abstracting away
a piece of Python code containing several Arkouda commands
into a single Python lambda function. This lambda can be sent
as one message to the server which will then be executed on
the server-side. This approach will serve as a basis for future
optimizations, including batching Python loop commands in
one message. Determining how to send Python lambdas in
messages and interpreting those messages on the Chapel side
is a necessary prerequisite to this approach. For example,
consider the snippet of code used in the counting sort of large

arrays, specifically the one that counts the number of elements
that have a certain digit in a certain place (code shown below).

Algorithm 3: Snippet from the counting sort algorithm
for i in 0, len(array) do

b = floor(((array[i]−m)/e)%r)
buckets[b]+ = 1

We can abstract the for loop in this code, and migrate it to
the Chapel server, where it can be parallelized, as opposed to
the sequential execution as specified above. The client would
send a single message, which would look similar to the line
of code below, where array and b are the arrays in question,
followed by the number of needed parameters for the lambda
and the lambda function itself. The last parameter would be a
list consisting of all the parameters that the lambda function
needs to successfully execute.

count buckets(array, b, 3, f, [m, e, r])

By using this or a similar API, and generalizing it so that
it can be used with many different types of for loops, it
would be easier for the user to write programs that execute in
parallel, without the need for a deeper knowledge of Chapel
loop parallelization mechanisms.

Another feature we plan on adding is the support for
asynchronous messages. The current Arkouda framework only
supports blocking operations on the client-side, which can in-
fluence the ability of the client to quickly process lines of code.
Through asynchronous message sending, the client can simply
send a large series of messages and be notified of results
when the server has finished its computation. Additionally,
this optimization will maximize the parallel functionality of
the server and will allow the server to process iterations of
a sequential Python loop containing Arkouda commands in a
pipeline fashion.

VIII. CONCLUSIONS

In this paper, we have presented several optimizations
for the Arkouda client-server data analysis framework. By
intercepting and buffering the Arkouda commands inside of
the Python client interpreter, we were able to perform live-
ness analysis of the Arkouda server-side Chapel distributed
arrays and implement several optimizations, namely temporary
reuse, lazy evaluation, common sub-expression elimination,
and memoization. Our optimizations significantly reduce the
number of temporaries created on the Chapel server, reduce
the number of messages sent between the client and the
server, and avoid redundant computations on the Chapel server
by both caching the results of the reduction operations on
the client-side, and by tracking the results of the evaluated
subexpressions on the server-side.

We evaluated our optimizations on several relevant bench-
mark applications, and a large number of inputs, and showed
significant performance improvements over base Arkouda, be-
tween 20% and 120% across the board. All our optimizations



still maintain the fully interactive nature of Arkouda as a
platform for exploratory data analysis.
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