
Compiler Optimization
of an Application-specific Runtime

Kathleen Knobe
Intel Corporation

Zoran Budimlić
Rice University

Abstract—Concurrent Collections (CnC) is a high level pro-
gramming model designed to support parallel execution. The
building blocks of CnC are steps (chunks of code representing
units of scheduling or mapping), items (expressing data depen-
dencies between steps), and tags (expressing control dependencies
between steps).

This paper introduces a runtime that views attributes (the
changes in life stage of the CnC components) as events to be
processed by event handlers. A major advantage of such a
runtime is that it makes the state and the partial ordering of
state changes explicit, raising the level at which tool support for
debugging, visualising and checkpointing communicate with the
programmer.

In this paper, we focus on its use as the foundation for a more
advanced runtime that employs application-specific optimizations.
We do this by compiling the CnC spec to generate an application-
specific intermediate representation (IR) of the program. We
introduce several analysis that can be done on the application-
specific IR, along with program optimizations that take advantage
of those analysis.

Other advantage of the attribute-based runtime include en-
abling the addition of now attributes at the low runtime level,
for example to support speculation or demand-driven execution
and enabling the programmers to define their own attributes,

I. INTRODUCTION

In the CnC programming model [4], [3], the domain
expert identifies chunks of code that are the units of schedul-
ing/mapping, and in addition identifies the ordering constraints
among these chunks. There are only two types of constraints.
They correspond to data dependences and control dependences.
Separately, the tuning expert can indicate a tuning plan. One
domain spec might be associated with several tuning specs (for
different platforms or different tuning goals).

Control tags (representing control dependences) indicate
which computation steps will execute (not when). The com-
putation steps in CnC are atomic. The data items (representing

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

data dependences) are dynamic single assignment (and repre-
sented as key/value pairs)1. Instances of steps, items and tags
go through various life stages, each of which can be identified
by an attribute. For example, items and tags can be available
or dead. Steps may be control ready (they will execute), data
ready, ready and executed. The dynamic state of a program is
then simply the set of instances and their attributes together
with the contents of items. We refer to this dynamic state as
the execution frontier [11]. 2.

CnC has been implemented using a wide variety of differ-
ent runtime approaches [1], [2]. The only requirement is that
the control and data dependences are honored. But none of
these implementations are built by explicitly managing these
attributes. Because the CnC specs expose all the available
inter-step parallelism, the existing implementations achieve
very respectable performance [7]. However, there is room for
reducing some of the runtime overheads.

This paper introduces a runtime that views the changes
of life stage (attributes) as events to be processed by event
handlers. A major advantage of such a runtime is that it makes
the state and the partial ordering of state changes explicit. This
“basic” runtime, by itself, can raise the level at which tool
support for debugging, visualising and checkpointing commu-
nicate with the programmer. In this paper, we focus on its use
as the foundation for a more advanced runtime that employs
application-specific optimizations described below. In the basic
runtime, the set of attributes and event handlers is generic and
pertains to all CnC specs. The graph of state transitions can
be considered as a universal Intermediate Representation for
all CnC programs. The basic RT can then be viewed as an
interpreter of this universal IR.

The obvious next step is compiling the CnC spec to
generate an application-specific IR. For example, the universal
IR contains nodes meaning “this computation step is data
ready” or another meaning “this data item is available”. The
specific one might contain nodes for “foo is data ready” or “x
is available”.

Recall that the execution frontier indicate the dynamic state
of a specific run as the execution proceeds. The application-
specific IR allows the compiler to perform static analysis on
the IR, based on propagation of a static/symbolic version of
the execution frontier encapsulating what is statically known

1If the application adheres to these two rules the execution will be
deterministic. We claim that these rules are easier to follow than “avoid race
conditions”.

2This process supports continuous, asynchronous checkpointing with no
user interaction.

at each point in the graph. For example, the compiler could
identify and eliminate handlers for checking whether a step is
data ready by proving statically that if that particular step is
control ready it must also be data ready. As another example,
it might be possible to identify points in this IR where an item
is dead. These transformations result in a statically optimized
application-specific runtime.

In addition, this application-specific attribute-based runtime
provides an opportunity for making decisions (not semantic
requirements) explicit in the IR. For example, in a distributed
system for a specific distribution, it might be the case that an
item is available on one node but not another or that a step
is data ready on one node but not on another. Making these
distinctions explicit allows us to make the communication
explicit. The scheduling constraints then indicate that the
communication of data item x from node A to B must come
after x is available on node A and before it is available on node
B. Because it is explicit, we have an opportunity to statically
schedule the communication itself.

One software engineering advantage of the attribute-based
runtime is that it facilitates the addition of new attributes at
the low runtime level, for example to support speculation or
demand-driven execution. In addition to attributes at the IR
level, we will also describe some advantages of allowing the
application programmers to define their own attributes.

This paper describes an attribute-based application-specific
runtime for CnC and the details of several optimizations on this
runtime. The work described in this paper is currently in the
early stages of the design and implementation as part of the
DOE X-Stack project.

II. INTRODUCTION TO CNC

Concurrent Collections (CnC) is a high level programming
model designed to support parallel execution. CnC draws some
ideas from dataflow languages but extends them by adding
control flow as a first class feature, so in a sense it is more of
a data and control flow language than a data flow language. In
addition it draws from tuple spaces, simplifying some of the
compiler analysis referred in this paper. In the CnC model, the
computation is expressed through steps, which are functional
pieces of code. Data is stored in item collections, which are sets
of (key,value) pairs. Keys are called tags and can be anything
(integers, tuples, strings), the only requirement is that each
value has a unique tag within the item collection. The values
are called items and follow the dynamic single assignment rule
(they can be assigned only once during the execution of the
program).

Like data, steps are also organized in collections, called
step collections. Each step instance in a step collection is
identified by a tag. Step collections are prescribed by control
collections, which are sets of unique tags. A control collection
can prescribe one or more step collections An existence of a
specific tag in a control collection indicates that a step iden-
tified by that particular tag in each step collection prescribed
by that control collection will execute at some point.

Steps can put (tag, item) pairs into item collections and
tags into control collections. Puts are atomic operations that
obey the dynamic single assignment rule. Steps can get items

from item collections by providing the tag of that item. A step
can get an item after it has ben put3.

Steps can put tags into control collection. Putting a specific
tag into a control collection only indicates that the steps
prescribed by that tag will execute at some point, it does not
have any bearing on when will those steps execute.

Figure 1 shows an example of a CnC program that detects,
from a collection of images, those that contain a face. For pre-
sentation purposes, CnC programs are represented as graphs,
although in practice they can be written in text form, or as
C++ APIs.

image[F]

face<F>

Classifier1(F)

C1Tag<F>

Classifier3(F)

C3Tag<F>

Classifier2(F)

C2Tag<F>

Fig. 1. Example of a face detection program written in CnC

Item collections (in our example there is only one called
Image) are represented as squares. Step collections are ovals,
while control collections are diamonds. Producing and con-
suming items and tags are shown as arrows, while prescriptions
are shown as dotted lines. In the face detection example shown
on Figure 1, all images are stored in the item collection
Image, and identified by the tag F. The images are processed
with a series of classifier steps. Classifier1 uses a fast
algorithm that can detect if an image is definitely not a face.
If it detects that an image is not a face, it does nothing. If
the results is inconclusive, Classifier1 puts out a tag
of the image into control collection C2Tag, ensuring that a
Classifer2 will run on the same image. Classifier2
uses a different (more precise, but not as fast) algorithm
that also determines if the image is definitely not a face. If
the result is inconclusive, Classifier2 puts a tag of the
image into control collection C3Tag, which prescribes the
final classifier, Classifier3. Classifier3 uses a slow
and precise algorithm that detects whether an image is a face
or not. If the image is a face, Classifier3 puts out a tag
of that image into control collection face.

3How this is ensured is implementation-dependent. For example, the runtime
can suspend the execution of a step that is trying to perform a get on a non-
existing item until that item appears. Or it can delay starting the execution of
a step until all the items that the step is getting are available.

The squiggly lines going into item collection image,
control collection C1Tag and out of the control collection
face represent the interaction of the CnC program with the
outside world, which we call environment. The environment
initializes the data by putting the images to be analyzed into
the item collection image, and initializes the computation by
putting the tags of all the images into the control collection
C1Tag, which ensures that an instance of Classifier1
will run on every image. The environment also reads the
results of the computation by reading the tags from the control
collection face. Every tag present in the control collection
face identifies an image that has been determined to represent
a face.

If the programmer follows some simple rules, the resulting
CnC program is deterministic [3]. The rules are:

• The items have to obey the dynamic single assignment
rule. Each tag needs to be associated with a unique
item value during the execution of a program.

• The steps have no side-effects

These requirements are easier for the user to follow than
the vague dont allow race conditions requirement found in
most other concurrent programming models. Of course, these
rules also restrict the class of applications that CnC can
handle. In addition, these requirements are also much easier to
dynamically check during the execution of a CnC program than
checking for race conditions. Many of the existing CnC appli-
cations follow these rules. Many dont. For those that dont, CnC
is used primarily for asynchronous scheduling, leaving the user
with total responsibility for correctness. For applications that
obey the contract, CnC shoulders some of the responsibility
for correctness. One big advantage of deterministic programs
is that they are much more analyzable and optimizable. This
paper only considers such programs.

Another attractive feature of CnC is serializability. If the
user ensures that within each step there are no puts before all
the gets have completed, then steps can be serialized, that is,
the runtime can execute the steps one at a time, with each step
being executed from start to end. Ensuring that all the gets
are performed before all puts within a step is also trivial to
implement in a CnC runtime.

A typical CnC step gets some input items, computes based
on the input, then puts some output items. If instead, a step
would perform some puts before some gets, then it is possible
to create co-routines, multiple steps that need to be active at
the same time. Such co-routines are not serializable, and can
also lead to deadlocks.

The granularity of the computation performed within each
step might be expressed as one or more parameters, leaving
the static graph looking the same. For example, one might
implement a tiled matrix computation (such as Cholesky
decomposition) in CnC, with the tile size being the determining
factor for the amount of computation done in each step. On
the other hand, one can change the granularity of the com-
putation by taking a step and decomposing it into a subgraph
with smaller steps, resulting in a very different CnC graph.
Naturally, the absolute performance of the application when
running on a parallel system will depend on the granularity
of the CnC steps in the application. However, for a given

granularity, CnC will expose all the parallelism semantically
available in the application.

For a given grain, however, it is possible to express the
graph more or less explicitly. For example, the face detector
example described above can be expressed with each classifier
as a distinct collection or with the classifier number as part of
the tag 4. If we distinguish the classifiers via collection name, it
becomes explicit that only the last classifier can emit isFace¡¿.
If the classifiers are all part of the same collection, this
detail is lost. This decision has no impact on the granularity
(parallelism) of the domain spec 5. However, it might have
a significant impact on analysis and optimization. With more
actual distinctions explicit in the spec, the analyzer/optimizer
have more potential to take advantage of these distinctions.

In the paper we assume the program is written by a
programmer but it might be the output of compiler analysis.
There is an effort underway to generate CnC from polyhedral
compiler analysis.

III. THE MEANING OF A CNC PROGRAM

A. Abstract model

Here we describe the abstract model for a CnC program
in terms of state and how that state evolves. First, in this
section, we will show the abstract state and the evolution of
that state. This is how we think about the meaning of the
program. For an actual implementation we need a bit more, as
described in Section IV. The abstract mode presented here
is the basis of the implementation, the static analyses and
the optimizations described in the remainder of the paper.
As a CnC program executes, instances of steps, items and
tags transition through various states. We identify these state
transitions by attributes. For example, an item may be available
and it may be dead. We write this as x[j].available and
x[j].dead for example. At any point in the execution, the
various instances within a collection typically have different
states. There is a partial ordering among the state transitions
within a single item, step or tag instance. An item must become
available before it becomes dead, for example. The state of a
tag or step instance is the set of attributes it has acquired.
So the state monotonically increases. For available items, the
state includes not only its attributes but also the contents of
the item. Once an instance has acquired a set of attributes, the
actual order in which these attributes were acquired becomes
irrelevant. They are just sets.

Abstract attributes are those required to describe the ab-
stract model, available for example. Table I shows the abstract
attributes. Notice that dead is not one of these.

Figure 2 shows how the program state evolves and exposes
the partial ordering requirements. Some tags and items are
available as program inputs. An available tag will cause
one or more steps to become controlReady (it will execute).

4In the extreme case, one may create what we call The Universal CnC graph,
which consists of only a single step collection, single item collection and a
single control collection, and can be used to express any kind of computation

5it might make a difference with tuning or with appropriate depends
functions.

item available
tag available
step controlReady, dataReady, ready

TABLE I. ATTRIBUTES IN THE ABSTRACT MODELExecu&on)model)

Item)
avail

step)
controlReady

step)
ready

step)
dataReady

step)
executed

tag)
avail

tag)
dead

Item)
dead

Execu&ng)a)step)

Fig. 2. Evolution of a program state

An available item may cause one or more steps to become
dataReady (all its input data items are available). When a step
is both controlReady and dataReady it becomes ready and it
may execute. The execution of a step may make more tags and
items to become available and the process continues. There
are no synchronizations other than those corresponding to
producer/consumer and controller/controllee so many of these
events may be happening concurrently and asynchronously.
There are many legal orderings of execution and many points
in each legal execution. Each has a corresponding state. This
is also true before any step has executed, before all the input
is available, and after the program terminates.

B. Execution frontier and the CnC runtime

Here we extend the abstract model to address the limited
time and space for an actual execution. For example, items and
tags come into existence, are used for a while, then at some
point they become irrelevant and are never accessed again.
An actual execution will, of course, need to remove these.
Similarly, the abstract model does not distinguish between
an executed step and one that needs to be executed. This is
irrelevant because the abstract model is declarative and the
steps are functional. But this will not do for a real execution.

To address these practical requirements we add several
more attributes as shown on the right side of Figure 2.

• dead as an attribute of items

• dead as an attribute of tags and

• executed as an attribute of steps.

Notice also that in the abstract model, there are an infinite
set of possible instances that have empty state. This is fine for

an abstract state but the execution frontier must be finite. The
actual state therefore begins as empty. An instance is added to
the state only when it acquires its first attribute. Maintenance
of the actual state, involves adding instances to the leading
edge as they acquire their first attribute. Attributes are added
to the leading edge as described for the abstract model. But in
addition, instances are removed from the trailing edge as they
are no longer relevant.

• An item is dead and can be removed when all its uses
have occurred. Removing an item from the trailing
edge includes removing its contents.

• A tag is dead and can be removed when all steps it
controls are executed.

• A step is executed when it completes. It can then be
removed.

This process now tracks the relevant frontier of the execu-
tion. The resulting state, called the execution frontier, describes
everything necessary to continue the execution 6. Figure 2
indicates how execution frontier evolves dynamically.

CnC has been implemented in a wide variety of very
different runtime approaches but this description is very close
to a specification of a runtime. One can implement a fully
functioning general CnC runtime this way. For an actual
implementation, there are a few issues relating to management
of the execution frontier that need to be considered. Examples
include: how to determine when all the data is available (ddf,
codelets), how to reuse memory efficiently [10] and how
to determine when an item is dead [5]. The first two are
important but are orthogonal to this paper. We use dead item
detection as an example of an application-specific optimization
in section VI.

The intermediate form described above is general and
works for all CnC programs. In the next section, we show
how to create an intermediate form for representing a specific
application. This intermediate form is then used to implement
several application-specific optimizations.

C. Termination

A program is quiescent when the following two conditions
hold:

• no legal forward progress is possible. This means that:
◦ all legal attribute propagation has occurred
◦ there are no ready to run steps

• no step is currently executing. (Notice that an execut-
ing step many result in more possible progress.)

Valid termination occurs when the program is quiescent
and all control ready steps are also executed steps. In this case
some input to a controlReady step has not been produced. The
assumption is that this constitutes a programmer error.

The abstract state is sufficient to understand the meaning
of an application. It is almost but not quite adequate for
execution on an actual plattorm.The next section acknowledges
constraints imposed by an actual execution on an actual
platform.

6This execution frontier is sufficient to restart the application [11]

IV. APLICATION-SPECIFIC RUNTIME

We will use the face detection example to illustrate the
process of constructing the nodes and edges an the application-
specific intermediate form using the CnC application specifi-
cation and the general intermediate form.

a) Step collections: For each step collection in
the application, Classifier1(), Classifier2() and
Classifier3() for example, create explicit nodes and edges
corresponding to the transitions among state elements within
that collection, for example:

Classifier2().dataReady
Classifier2().controlReady
Classifier2().ready
Classifier2().executed

Classifier2(). dataReady,
Classifier2().controlReady →
Classifier2().ready → classifier2().executed

b) Item collections: For each item collection, image[]
in our case,

1) create a node corresponding to the items available
state, image[].available in our example

2) For each step() that consumes the item[] connect
item[].available with step().dataReady

3) For each step() that produces the item[] connect
the step().ready with item[].available

4) create a node corresponding to the items dead state,
image[].dead in our example

5) For each step() that consumes the item[] connect
step().executed with item[].dead

c) Tag collections: Now, for each tag collection,
C1Tag〈〉, C2Tag〈〉, C3Tag〈〉 and face〈〉 in our case:

1) create a node corresponding to the tags available
state, tag〈〉.available in our example

2) For each step() that produces the tag〈〉 connect
tag〈〉.available with step().controlReady

3) For each step() controlled by the tag〈〉 connect
step().executed with tag〈〉.dead

4) create a node corresponding to the tags dead state,
tag〈〉.dead in our example

d) I/O: Add the relationships with the environment.
These are the connections between the outside world and the
CnC program, usually used to set up the computation, perform
I/O to input/output the data into and out of the CnC programs.

e) Application-specific dataReady states: We can make
this graph even more application-specific. Instead of sim-
ply indicating whether the step is dataReady or not,
we go into more detail and distinguish between the dif-
ferent item collections that are read by the step. That
is, if the application has x[] → foo() and y[] →
foo() then, we will replace foo().dataReady with
foo().xReady and foo().yReady. Then foo().xReady,
foo().yReady → foo(dataReady)7. The relationship be-
tween controlReady, dataReady and ready remain as
before.

7We stop at collection names and do not expand further to distinct gets
from the same item collection.

This process creates an application-specific runtime in
which each state transition of each attribute during the execu-
tion of a specific CnC program is made explicit and processed
by a runtime handler. Figure 3 shows the application-specific
intermediate representation for the Face Detection example.

In addition to this application-specific graph, annotations
might be supplied by the user or generated from an analysis
of the graph and the step code. This meta-data can improve
the result of our anlayses and optimizations. Produces and
consumes tag functions start with the tag of a step and generate
the tag of instances it produces or consumes. Produced-by and
consumed-by functions start with the tag of an item or a control
tag and generate the tag of instance of step that produce or
consume it.

The function relating a control tag to the step it controls
does not need to be included because it is always the identity
function.

Other annotations may indicate whether an edge is a must
or a may edge, e.g., foo() may produce barTag〈〉 or bar()
must consume z[]. Further, anotations might indicate that one
step produces exactly one of two control tags.

These all form the input to the flow analyses in the
following sections.

V. ANALYSES

In this section we show how to use the application-specific
intermediate representation to propagate information along the
edges in this graph. In Section VI will show some examples
of how this information can be used for optimizing the graph
and therefore the runtime.

We follow the graph IR in Figure 3 for the our face
detection example. The analysis propagates information among
these nodes in the application-specific IR. The information
associated with a node in the graph is a set of state elements
where each element is a collection name, its static tag repre-
sentation and an attribute, e.g., foo(j, k).controlReady.
Of course, we dont include the contents of data items for these
static analyses.

We will develop the ideas through a series of scenarios:

• acyclic graphs where each collection contains just a
single instance

• acyclic graphs where collections contain multiple
tagged instances

• cyclic graphs where each collection contains just a
single instance

• cyclic graphs where collections contain multiple
tagged instances

A. acyclic graphs - single instance collections

We introduce the concepts via the simplest case: acyclic
graphs where each collection contains just a single instance.

We use the term state element, e.g., foo().dataReady,
in several different ways in the following discussion. First, it
refers to a node in our application-specific IR. The IR node

Applica'on*compiled*to**
applica'on/specific*run'me*

image[F]
avail

Classifier1(F)
ready

C1Tag<F>
avail

Classifier1(F)
dataReady

Classifier1(F)
controlReady

Classifier2(F)
ready

C2Tag<F>
avail

Classifier2(F)
dataReady

Classifier2(F)
controlReady

Classifier3(F)
ready

C3Tag<F>
avail

Classifier3(F)
dataReady

Classifier3(F)
controlReady

Classifier1(F)
executed

Classifier3(F)
executed

Classifier2(F)
executed

face<F>
avail

Fig. 3. The application-specific intermediate representation for the Face Detection example

stands for the runtime processing associated with that state
element. Second, sets of state elements are used to identify
the collection of facts, that we know when the runtime arrives
at this node. Consider forward must processing. We know state
element S, that is a fact, at a given node, X, exactly because
the runtime, in arriving at this node X, must have passed
another IR node, say Y. This node Y is, of course, the node
corresponding to the state element S. For example, assume
node X corresponds to foo().dataReady. On arrival at X
we know the following (must/forward) facts: A[].available,
A[].dead, B[].available, bar().controlReady. This
means exactly that to get to the foo().dataReady IR node
it was necessary to go through an IR node corresponding
to A[].dead. So when the runtime arrives at the IR node
foo().dataReady it knows that X[] is dead. So these two
uses of state element are consistent.

There are two basic kinds of information to propagate: must
and may. There are two directions of propagation, forward and
backward. The result is four distinct analyses. In all cases we
are referring to what is happening on a path. We dont consider
what might be happening concurrently but elsewhere in the
graph. Our optimizations based on these results only depend
on path information.

The may set for a node is the set of state elements that
may exist when the execution arrives at the node. For forward
may propagation, consider a junction, say node A and node B
join at node C. Any state element that may be true at A or B
may be true at C. So the resulting may set at node C is the
union of the sets at A and B together with the state element
corresponding to the node C.

Backward may propagation determines for each node what
state elements may occur on paths from that node. Backward
may propagation also uses the union operation. If node A and

node B follow from node C than facts that may follow from
either A or B also may follow from C.

The must set for a node is the set of state elements that must
exist when the execution arrives at the node. Must processing
is more interesting than may processing.

Below we discuss some of the propagation rules. In all
cases, when computing a state set for node N, it is assumed
that we include the state element associated with node N itself.

These analyses do not view the IR as an arbitrary graph
with anonymous nodes. Different types of IR nodes have
different semantics and therefore different propagation rules.
For some, the resulting state during forward propagation is
the union of the states of the predecessors. For others it is the
intersection. In either case after the intersection or union, we
add in the state element associated with the node itself.

One aspect of our graph that we rely on for the
analyses below is that step().executed node is not
on the path from step().ready to item[].available
or tag<>.available. Even before the step completes,
the items and tags it produces may cause other steps
to execute. The predecessor of item[].available and
tag<>.available is therefore step().ready and not
step().executed. step().executed is, however, the pre-
decessor for item[].dead and tag<>.dead.

As an example, suppose we are dealing with a junction
where nodes foo().controlReady and foo().dataReady
join at the node associated with foo().ready. If some state
element, say x[].available, is in the must set of one of the
inputs to the junction, say foo().controlReady, then it is
in the must set for foo().ready regardless of whether it was
in the must set for the other input, foo().dataReady in this
case.

must(foo().ready) =
union (

must(foo().dataReady)
must(foo().controlReady)

)

For other attributes, we need to compute the intersection.
For example, consider an item x[] that might be produced
by either foo() or bar(). Because of our single assignment
requirement, each dynamic instance of x[] is produced either
by one or the other but not both. X[].available is reached
through exactly one of the foo().ready branch or the
bar().ready branch. In this case a state element is in the
must state of X[].available only if it was in the must state
on both branches. At this type of junction an intersection, not
a union, is required.

must(x[].available) =
intersection(

must(foo().ready)
must(bar().ready)

)

For our current scenario with only acyclic graphs we
can process a node when all its inputs have been processed.
Forward must processing begins with input from the environ-
ment.The only type of nodes with input from the environment
are of the form item[].available or tag 〈〉 .available.
We start with the envionment as an empty set of facts. Since,
at each node, we add the nodes own state element to its set
of state elements, the state at these input IR nodes includes
exactly one state element corresponding to itself. We then
process nodes all of whose inputs have been processed until
the graph is completly processed.

We categorize nodes into the categories below and show
the style of processing for each. Mostly they are distinguished
by the associated attribute but in the case of available items
and tags we distinguish futher between those with a single
producer (possibly the envirnoment) and those with more.

Pass through junctions. Has exactly one input. (Some but
not all of the item[].available and tag[].available
nodes fall into this category.) Just add in current node

step().controlReady
step().executed
item[].available
tag[].available

Union junctions. These have more than one input. They all
must occur.

step().dataReady
step().ready
item[].dead
tag<>.dead

For step().dataReady we are assuming here that all
the inputs are required. Some of our implementations have
this constraint. Others allow for data-dependent gets where
a get may depend on the contents of a previous get. In this

more general situation, we may have meta-data about which
inputs will definetly occur and which are optional. We use this
information to create an appropriate expression of unions and
intersections to ensure correctness.

Intersection junctions. Could have multiple inputs (includ-
ing the environment) but for any specific instance only one
occurs.

item[].available
tag<>.available

Backward must propagation is as follows: (Note: In the
backward flow case inputs to the propagation are outputs as
the graph executes.)

Initialization. Have no outputs. Just initialize with this node
itself

step().executed
item[].dead
tag<>.dead

Pass through junctions. Has exactly one output. Just add
in current node.

step().controlReady
step().dataReady

Union junctions. These have more than one output. They
all must occur.

tag<>.available
step().ready
item[].available

tag<>.available could have multiple outputs, each of
the form step().controlReady. All will be taken.

step().ready has multiple outputs, step().executed,
multiple item[].available, and multiple
tag<>.available. Similarly, item[].available may
have multiple outputs, one for each step that uses the item.
For this diescription we assume here that we know they will
all occur. But in some of our implementations this isn’t a
requirements. For these we would rely on user annotation or
compiler analysis for better information.

Intersection junctions. Could have multiple outputs but for
any specific instance only one occurs.

This might occur via annotations. For example, we might
be given the fact that only of two possible control tag outputs
are emitted by a particular step.

B. acyclic graphs - multi-instance collections

Now we consider acyclic graphs where collections contain
multiple tagged instances. If the tags are all identical, as is the
case in our face detection example, the propagation is similar to
the scalar case. But more interesting cases can arise. Consider
an application containing bar(j,k) → y[j’, k’]. In cases
like this where we have no knowledge of the relationship
among the tag components. We have to be conservative. But we

might have access to functions that map the tag of bar() to the
tag of y[]. Suppose with tag functions we know that bar(j,k)
→ y[j+1, k]. The state at the IR node bar(j, k).ready
includes the state element for itself, bar(j, k).ready. Now
when we propagate the state at IR node bar(j, k).ready
to the state at IR node y[j’, k’].available, we want the
tag components of its state elements to be functions of [j’,
k’], that is, the indices for y[] not those for bar(). So at IR
node y[j’, k’].available, we need to apply the reverse
tag function as we propagate the state forward. So the state
at IR node y[j’, k’].available will contain bar(j’-1,
k’).ready

C. cyclic graphs - single instance collections

Next consider cyclic graphs where each collection contains
just a single instance. Here we can not assume that when
processing a node the state of its inputs are already known.
The state coming from a back edge may be empty when it
participates in a union or intersection. In both cases, the set
might appear to be smaller than it actually is. If we iterate
the process and state elements are added to back edges the
sets at any given node will become monotonically larger. (of
course, between one IR node and its successor the state may
be smaller at the successor.) As processing proceeds any state
element already in either a must or a may set is valid but some
state elements that belong in such a set may not yet have been
identified. We can iterate the propagation process until there
are no changes.

Since we are popagating until done, we have to consider the
possibility that the process does not terminate. Notice first that
the sets (at both intersection style and union style nodes) will
grow monotonically over the repeat-until-no-change process.
This is true for must and may processing and for forward
and backward processing. It is not the case that a successor
has a larger set than its predecessors. Rather the claim is
that the set at a given node never shrinks. We know that the
number of distinct collections is fixed. The number of tag
components per collection is fixed. A process of producing
monotonic increasing sets where the sets have a bounded size
must terminate.

D. cyclic graphs - multi-instance collections

Now we integrate the issues of cyclic graphs and the
issue of collections containing multiple tagged instances. The
propagation along the back edge is exactly as the propagation
along any edge. This includes adjusting the perspective from
the tag at the source of the back edge to the perspective of the
tag of the target of this edge. We continue propagation until
no changes can occur. At this point the analysis is done.

Again we have to ensure termination. The only additional
possibility for this case that could lead to non-termination
(beyond those of the cyclic single instance case) is that the
tag component expression might keep changing forever. Here
we can terminate early as long as we are careful to end with a
conservative result. For must analyses (forward and backward)
having too few state elements may be overly conservative
but it is correct. So in fact, we could even ignore cycles
altogether. For may analyses (forward and backward) having
too many state elements may be overly conservative but is

correct. In this case, in fact, we could use a wildcard for that
tag component. We propose that for each tag component we
constrain the number of possibilities to some fixed number,
say one. Consider the following three:

1) A simple component name, e.g., x[j].available
2) A simple function of the component, e.g.,

x[2*j+1].available
3) A wild card, x[*].available

Because we handle at monst one functions, wwhen the
process is about to modify the first function by applying
another, the process simply stops. For a must analysis we leave
it as was. For a may analysis we use the wildcard. This leaves
us with exactly 3 possibilities for each tag component. The
number of possible state elements that can be added is finite.
Therefore the process terminates.

VI. OPTIMIZATIONS

The application-specific graph represents the work of the
runtime. The previous section, provided some analyses that
propagate information along the lowered application-specific
IR graph. That graph specifies the work of the runtime. Here
we use that information to optimize that graph, reducing the
work of the runtime. We show just a few optimizations to give
a flavor of what is possible.

A. Lowering step().dataReady

We first lower the dataReady attribute for each step in
order to distinguish among different inputs. For example, if
foo() has two different inputs x and y, we will replace
foo().dataReady with foo().xReady and foo().yReady
attributes. This will allow us to apply independent optimiza-
tions to these nodes.

B. Remove singletons

Any IR node that has a single input can be
removed. For example, this is always be the case for
step().controlready attribute. Using control collections
to mediate between the controller and the controllee has real
software engineering benefits. Because the controller and
the controllee are not directly connected, controllees can
be added to or removed from the graph without modifying
the step code of the controller. Similarly controllers can
be added to or removed from the graph without modifying
the code of the controllee. However, we would like to
maintain the software engineering benefits without overhead.
Naively, after the application-specific put of tag〈〉 emits
tag〈〉.available. Then processing of tag〈〉.available
emits ControlledStep1().controlReady,
ControlledStep2().controlready, etc. In an
application-specific implementation the put can
directly emit ControlledStep1().controlReady,
ControlledStep2().controlready, etc.

Some items are consumed by exactly one step. In this
case the item[].available node has exactly one successor
so it can be removed in a similar way. Similarly, some
step().executed IR nodes might have exactly one succes-
sor.

Also, after lowering the dataReady attribute to distingush
between, say xReady and yReady, each of these has exactly
one input, x[].avail or y[].avail.

C. Redundant computations

In Figure 3 we see that image[f].available leads
to classifier1(F).dataReady. This is required.
But now the state element image[f].available is
propagated forward as a must state element through
classifier1(F).Ready, C2Tag〈F〉.available on to
Classifier2(F).controlReady. Here we see that
when the RT arrives at Classifier2().controlReady
we know that it must be dataReady as well. We
can remove the Classifier2(F).dataReady node.
Now Classifier2().controlReady goes directly to
Classifier2().ready. This is now a singleton and can
be removed. These same two optimizations apply to all the
subsequent classifiers in this example.

D. Dead computations

If a state element does not appear in any backward may
set for any output to the env, then it is not necessary to
compute it. This might be considered a bug, for example
when an item collection should but does not get consumed
by the environment. But it also might occur during application
development when, for some reason, the output is intentionally
restricted. Such state element need not be produced, and can
be eliminated from the program.

E. Dead items

A system using DSA form has to deal effectively with
dead data. We currently provide a get-count facility to track
the number of gets performed on an item. The user provides
a function that maps an item tag to the number of references
it will have. For example, in a five point stencil, tiles in the
middle will have a get count of five, those on an edge will have
a get count of four, and corner tiles will have a get count of
three. When an item is produced this function is invoked and
the number of gets is associated with the item. When gets are
executed the count is decremented. The item can be eliminated
when the count reaches zero. While get counts are useful in
many cases, their applicability is limited to programs where
get count can be determined at the time of the put. If the get
count depends on the paths taken in the program, then it cannot
be used to collect dead items. For example, consider Figure 4.
Here nodes A B and C are nodes in the application-specific
IR. There is a path from node A to B and one from A to
C. Let A represent a step that emits exactly one of 2 control
tags. This is a one or the other fork. This information might
be user-provided or it might come from analysis of the step
code.

Let us assume that the following facts hold for this piece
of the graph:

1) There is definitely a use of x[i] in the B path (Use
in B is in the backward must set for B)

2) This use of x[i] always comes through A (A is in
the backward must set for the use at B)

3) There is definitely not a use of x[i] on the C path
(use is not in the backward may set of C)

Node%A%

Node%C%

Node%B%

There%are%path%from%node%A%going%to%B%and%C%
For%example%node%A%could%be%a%step%that%emits%exactly%one%of%2%control%tags.%
This%is%a%“one%or%the%other”%fork%(user%provided%or%analysis%of%the%step%code)%
%
1)%There%is%definitely%a%use%of%x[i]%in%the%B%path%(Use%in%B%is%in%the%backward%must%set%for%A)%
2)%This%use%of%x[i]%always%comes%through%A%(A%is%in%the%backward%must%set%for%the%use)%
3)%There%is%definitely%not%a%use%of%x[i]%on%the%C%path%%
%%%%%(use%is%not%in%the%backward%may%set%of%C)%
%
Use%conservaKve%get%counKng,%i.e.,%1%in%this%case%
If%the%ANC%path%is%taken%decrement%the%get%count%immediately%
If%the%ANB%path%is%taken%wait%for%the%get%to%actually%occur%and%decrement%the%count%as%usual%

Use%of%x[]%

Rule%1%avoids%
this%possibility%

Rule%2%avoids%
this%possibility%

Rule%3%avoids%
this%possibility%

Fig. 4. Eliminating dead items

Traditional get counting does not help in this case, since
the programmer does not know which path will be taken at the
time the put of x[i] is done. But in the application-specific
runtime, the get count for x[i] can get initialized to the
conservative value (1 in our example). If the A-C path is taken,
then the runtime can decrement the get count immediately. If
the A-B path is taken, then the runtime will wait for the get to
actually occur and decrement the count as usual. Either way,
x[i] can get collected after the last use.

F. Cloning

If an optimization is possible on some paths through a node
or region in the graph but not on all paths we can clone the
region and optimize one path but not the other. Consider a
variant of our face detector with a single classifier collection
where the classifier number, instead of distinguishing among
collections, apears as a tag component. The optimization we
described above (removing dataReady) would not apply in
this case because the classifier is not known to be dataReady.
If we transform the classifier collection into two collec-
tions, classifierFirst() and classifiersRest(), then
we can leave classifierFirst().dataReady but remove
classifierRest().dataReady.

G. Node-specific primitive attributes

We can extend the idea of removing singletons. Consider
an IR node corresponding to primitive attribute, put of an item
processed resulting in item[].available node, put of a tag
resulting in tag〈〉.available node, or the completion of a
step resulting in step().executed node. As application-
specific primitives, these actions could, in fact, continue the
processing, for example, through step().controlReady and
even through step()ready. This optimization should be
applied last so that it can incorporate the results of the other
transformations. There are some trade-offs to be considered
here. It might not always be wise to perform this transforma-
tion.

H. Sceduling Communication

In systems with distributed memory, we can extend our
model by defininng communication dependencies. For exam-
ple, let’s assume that : x[] is available on node 3 but not
on node 4. We can add explicit communication operation and
communication dependencies. “x[] is available on node 3”
→ “x[] is communicated from node 3 to node 4” → “x[]

is available on node 4”. Because the communication is now
explicit, we can decide to schedule it early or late depending
maybe on memory pressure on each node. A runtime will also
want to schedule communication in such a way as to balance
communication and computation.

I. Speculative or Demand-Driven execution

By adding attributes such as “speculatively available”
and “speculatively executed”, we can support a runtime that
executes a data-ready step that is not control-ready. Items
produced by such a step would be speculatively available.
Once the speculatively executed step becomes control-ready,
it will be converted to executed step, and all the speculatively
available items it produced will be converted to available.

For demand-driven execution, we can use the reverse
situation. When a step becomes control-ready, but is not data-
ready, we can mark the items it wants to read as “demanded”.
We can then use the “produced-by” tag function to find which
steps should be producing those items and mark those as
“demanded”.

An optimized runtime system will give the highest priority
to the demanded work, normal priority to the “normal” work
(the steps that are both data-ready and control-ready), and
lowest priority to the speculative work.

VII. SUMMARY
A. Future work

Implementation of CnC on the Open Community Runtime,
a deliverable for the DOE X-Stack project (exascale software
stack) will be an generic attribute-driven runtime. On this
foundation, we plan to develop the analyses and optimizations
presented here. The lowered IR with explicit communication
is very relevant in The X-Stack project.

That system will support a range of attribute-based tools
that provide information at the level the domain expert is
thinking, that is their steps, items and tags. These tools include
support for visualization, performance monitoring, tracing,
debugging, interactive execution, etc.

B. Related work

CnC itself draws from dataflow [8], tuple spaces [6] and
task graphs [9]. Conceptually, CnC is close to iprogram
dependence graphs [9] as an intermediate representation, than
it is to other parallel languages. Our flow analyses and opti-
mizations are similar in flavor to classical flow analyses and
optimizations. The differences arise from the fact that we apply
them to the higher level coordination graph rather than to lower
level instructions.

C. Conclusions

In this paper, we introduced a runtime that views at-
tributes (the changes in life stage of the CnC components)
as explicit events to be processed by event handlers. This
approach enables the compiler to create an application-specific
intermediate representation by combining the application graph
with the runtime events. This application-specific intermediate
representation allows us to implement several analysis and

optimization techniques, including removal of singleton events,
eliminating redundant and dead computation and more precise
garbage collection.

In addition to analyses and optimizations, this application-
specific runtime supports user-defined attributes, checkpoint-
ing, demand-driven execution, as well as providing higher-
level mechanisms for visualization, performance monitoring,
debugging etc.

ACKNOWLEDGMENTS
We would like to thank Frank Schlimbach, Vivek Sarkar,

Sanjay Chatterjee and Sağnak Taşırlar for offering valuable
comments and insights while we worked on this paper. This
work was supported in part by the Department of Energy
(Office of Science) under Award Number DE-SC0008717, and
by the National Science Foundation Expedition in Computing
Program, Award CCF-0926127.

REFERENCES

[1] Intel concurrent collections. http://software.intel.com/en-
us/articles/intel-concurrent-collections-for-cc, 2012.

[2] Rice university cnc research project.
https://wiki.rice.edu/confluence/display/HABANERO/CNC, 2012.

[3] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff
Lowney, Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar,
Frank Schlimbach, and Sağnak Taşırlar. Concurrent collections. Scien-
tific Programming, 18:203–217, August 2010.

[4] Zoran Budimlić, Aparna Chandramowlishwaran, Kathleen Knobe, Ge-
off Lowney, Vivek Sarkar, and Leo Treggiari. Multicore Implemen-
tations of the Concurrent Collections Programming Model. In CPC
’09, Proceedings of the 2009 Workshop on Compilers for Parallel
Computing, 2009.

[5] Zoran Budimlić, Aparna Chandramowlishwaran, Kathleen Knobe, Ge-
off N. Lowney, Vivek Sarkar, and Leo Treggiari. Declarative aspects
of memory management in the concurrent collections parallel program-
ming model. In DAMP’09: Proceedings of the POPL 2009 Workshop
on Declarative Aspects of Multicore Programming, pages 47–58. ACM,
Jan 2009.

[6] Nicholas Carriero and David Gelernter. Linda in context. Communica-
tions of the ACM, 32(4):444–458, 1989.

[7] Aparna Chandramowlishwaran, Kathleen Knobe, and Richard Vuduc.
Performance evaluation of concurrent collections on high-performance
multicore computing systems. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1–12, 2010.

[8] Jack B. Dennis. First version of a data flow procedure language. In
Programming Symposium, Proceedings Colloque sur la Programma-
tion, pages 362–376, London, UK, UK, 1974. Springer-Verlag.

[9] Jeanne Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The
program dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 9(3):319–
349, 1987.

[10] Dragoş Sbı̂rlea, Kathleen Knobe, and Vivek Sarkar. Folding of tagged
single assignment values for memory-efficient parallelism. In Proceed-
ings of the 18th international conference on Parallel Processing, Euro-
Par’12, pages 601–613, Berlin, Heidelberg, 2012. Springer-Verlag.

[11] Nick Vrvilo, Kathleen Knobe, and Vivek Sarkar. Execution frontiers
as checkpoints in cnc. In CnC-2012: The Fourth Annual Concurrent
Collections Workshop, 2012.

