
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; 17:573–587
Published online 22 February 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.850

Compiling almost-whole
Java programs

Zoran Budimlić∗,† and Ken Kennedy

Center for High Performance Software Research, Rice University, Houston,
TX 77005, U.S.A.

SUMMARY

This paper presents a strategy, called almost-whole-program compilation, for extending the benefits of
whole-program optimization to large collections of Java components that are packaged as a group after
the development phase. This strategy has been implemented in a framework that uses Java visibility
and scoping rules to transform a collection of classes into a package that is amenable to whole-program
optimizations, without precluding extensions to the optimized and compiled code. Thus, it enables the Java
developer to balance performance against flexibility of the program after the development phase, without
compromising the design process. The transformation is shown to incur only modest performance penalties,
which are more than compensated for by the interprocedural optimizations it enables. The paper concludes
with experimental results showing the benefits that can be achieved using this approach. Copyright c© 2005
John Wiley & Sons, Ltd.

KEY WORDS: whole-program compilation; almost-whole-program compilation; incremental compilation; Java;
object-oriented optimization

1. MOTIVATION

In a project to support the use of Java for scientific programming, our investigations have established
that interprocedural optimizations, such as object inlining and class specialization, can yield integer
factor speedups on code that uses the full power of object-oriented programming [1,2]. These results
were obtained in a source-to-source optimization tool called JaMake, which transforms the program
before it is presented for execution to a Java virtual machine (JVM). While the current implementation
of JaMake uses Java source as the input and output file type, there is nothing inherent in the
techniques implemented in JaMake and described here that limits their applicability to source code.
These techniques can just as easily be implemented in work on binary class files.

∗Correspondence to: Zoran Budimlić, Center for High Performance Software Research, Rice University, Houston, TX 77005,
U.S.A.
†E-mail: zoran@cs.rice.edu

Contract/grant sponsor: NSF; contract/grant number: ACI-0234345

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 15 January 2003

Revised 29 August 2003
Accepted 14 October 2003



574 Z. BUDIMLIĆ AND K. KENNEDY

To achieve performance improvements, the JaMake framework needs to see the entire Java program
so that it can perform cross-procedural analysis and optimizations. However, for many contexts, such
as the development of component libraries, it is not convenient to deliver software in whole-program
form. What is needed is a strategy that combines the flexibility of the standard Java compilation model
with the performance improvements of whole-program optimization.

Current Java implementations adopt a simple compilation model: classes are compiled one at a
time and, in the process of compiling one class, the compiler cannot assume anything about the
internals of any other class [3,4]. This gives users great flexibility in the ways they can use the
program—they can add, remove and replace classes in the package at will, without the need for
recompilation. Unfortunately, it also prohibits many interprocedural optimizations that could lead to
significant performance benefits.

A whole-program compilation model, on the other hand, assumes that the whole program is
available at compile time and that the programmer will not add, remove or modify any classes without
recompiling the complete program [5]. This allows the compiler to perform a wide range of aggressive
interprocedural optimizations that can lead to dramatic performance improvements. Unfortunately, the
whole-program compilation model provides little flexibility to the user.

In the real world, the need for flexibility falls somewhere in between these two models. Some parts
of a program are fixed and the user is not expected to modify or augment them, while other parts should
be available to the user for extension. Currently, there are no mechanisms by which programmers can
control this: they can only write the program, compile it and distribute it to the user. Consequently, they
are forced to trade performance for flexibility or vice versa.

A principal reason for this problem is that a single process (compiling the program) is used for two
very distinct purposes: development of the program and its distribution. These two phases often have
conflicting goals.

While developing the program, programmers want maximal code flexibility, so that they can change,
extend and debug it. Also, they want their code to be easily upgraded in later versions of the program.
Consequently, programmers use object-oriented techniques such as encapsulation and polymorphism
when designing their systems. Most of the classes in such a system will be public (enabling their later
extension), most of the methods will be virtual (enabling their overriding) and public.

On the other hand, a main goal during the software distribution process is achieving the
highest possible performance. Many powerful optimizations require cross-procedural analysis and
optimization to achieve the best performance. In most frameworks, carrying out such optimizations
requires that the entire program be fixed at compile time. In the Java framework, this requirement
means that all of the classes have to be made private and final, and that all of the methods are final
and/or static. Only the main class and main method of the program should be made visible to the user
to allow the program to run. Putting the program in this form would permit the static analysis and
optimizations to be effective, but it would overly restrict the potential uses of the program.

Of course, programmers can choose to transform the code by hand to achieve ‘optimal’ performance.
Alternatively, when the development phase is finished and the program is debugged and ready for
shipping, the developer can manually create another version of the program in which many of the
classes and methods are final and private. This transformation enables the compiler to perform a
better job of optimizing the whole program. However, such a process is tedious and error-prone, even
though it is not uncommon in the software industry. In our personal correspondence with Java JDK
developers, we have learned that many of the classes and methods that were public and extensible in

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



COMPILING ALMOST-WHOLE JAVA PROGRAMS 575

the earlier versions were converted into private and final in the later versions for performance reasons
(for example, String manipulation methods). A significant amount of programmer time has been spent
to manually make this transformation in order to enable javac to inline these modified methods, but
resulting in only modest performance improvements. Furthermore, such a transformation is not even
possible in the general case, since non-leaf classes in Java class hierarchy cannot be final.

Figure 1(a) depicts an abstract relation between the flexibility of the generated code and its
performance. As parts of the code are fixed to enable Java source compiler to perform more
optimizations, the flexibility of the code that is shipped to the end-user is reduced. This reduction
in flexibility is a logical consequence and generally accepted by the end-user. Unfortunately, the
programmer is forced to tolerate the same reduction in flexibility, since there is direct mapping from
the source code to the code that is deployed to the user.

If we observe the current automatic Java compilation systems, the performance versus flexibility
diagram looks more like that in Figure 1(b). There is a precipitous drop in user flexibility when the
systems abandon the class-by-class compilation model and assume a whole-program compilation.
Depending on the number and effectiveness of the optimizations applied, performance of the generated
code improves, but the user flexibility stays the same. The user can run only the generated program and
nothing more.

The almost-whole-program compilation model addresses this problem by bridging the gap between
the whole-program and class-by-class compilation models. It is less flexible than the class-by-class
model, in that the user’s choices are more restricted, but it is nevertheless more flexible than the whole-
program model. Similarly, the range and effectiveness of the interprocedural optimizations that can be
applied are smaller than in the whole-program model, but far greater than in the class-by-class model.
Figure 1(c) shows this relation.

In this paper, we present an almost-whole-program transformation tool that specializes a Java
program based on directives from the programmer. The framework, which can be invoked after the
development phase, makes most of the classes and methods final and inaccessible to the end-user.
It then passes this converted program to the JaMake whole-program optimization system described in
our previous work [2]. The whole-program optimizer can now derive more precise type information
from the program and perform more effective object inlining. These techniques are implemented in our
JaMake compiler infrastructure.

This framework allows the programmer to specify which classes in a partial program are open
(extensible) and thus restricts all supplemental classes to extending those classes. To enforce constraints
on supplemental classes, the system places the compiled partial program in a single Java package and
marks non-extensible classes as package private, relying on Java class visibility rules and run-time
checks to prevent extension of forbidden classes.

This framework is usable in situations when the program (or most of the program) is being
developed, when the program can be transformed with little additional effort into an almost-whole-
program library. This framework is not that useful, however, when applied to existing Java programs,
where a part of the program is subjected to almost-whole-program compilation, since the parts of the
program that are not the part of the almost-whole library would have to conform to certain conventions
described below. Depending on the size and complexity of the program code not in the almost-whole
part, this approach would require some additional programmer effort.

There are other advantages that almost-whole-program transformation provides. Systems that
perform code obfuscation [6] can take advantage of the class repackaging and renaming mechanism

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



576 Z. BUDIMLIĆ AND K. KENNEDY

performance

more optimizations

user flexibility

better

(a)

performance

more optimizations

user flexibility

better

local whole-program

(b)

performance

more optimizations

user flexibility

better

local whole-program

almost-whole-program

(c)

Figure 1. Performance versus flexibility diagrams, showing the trade-off between performance and
flexibility in different systems: (a) manual program transformation; (b) current automatic techniques;

(c) almost-whole-program compilation.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



COMPILING ALMOST-WHOLE JAVA PROGRAMS 577

that almost-whole-program transformation implements to further protect the original code from reverse
engineering. Although it is not its primary goal, almost-whole-program transformation is effective in
compacting the distribution code, as only the reachable methods and classes are included in the distri-
bution package. Other systems such as Jax [7] take this idea even further and perform code compaction
using techniques that are very similar to those applied in almost-whole-program transformation.

Almost-whole-program transformation is not a replacement for class-by-class compilation and is
not targeted towards compilation of highly dynamic systems that require extensive flexibility. It is
best applied in situations where programmers are forced to use whole-program compilation to get
high performance, but would still like to provide some flexibility to the end-user without sacrificing
much of the performance. By using almost-whole-program transformation they can achieve that goal.
Almost-whole-program transformation is not targeted to provide flexibility that approaches that of
class-by-class compilation by transforming most of the development code into public and visible.
The optimizations (if any) that would remain possible in such a system would likely be negated
by the overhead of the almost-whole-program transformations. In terms of Figure 1(c), almost-
whole-program compilation is most effective in the area close to the whole-program area: very high
performance, but still some flexibility. Thus the term almost-whole, as opposed to partial or modular
compilation.

2. RELATED WORK

Tip et al. [7] use an approach similar to our treatment of private classes in their Jax application extractor
to extract a Java application from a collection of classes. They use class repackaging and renaming to
minimize the size of the extracted application. However, they do not have anything similar to our
transformation of non-extensible or public classes, and as such their approach is not suitable for partial
program compilation. Jax is an excellent whole-program application extractor, but it does not address
the almost-whole-program compilation issues that we concentrate on in this paper.

Zaks et al. [8] used interprocedural analysis to find virtual calls within a package that are guaranteed
to target methods within that package. If that package is sealed [9] those calls can be safely
devirtualized. Their analysis can be viewed as an attempt to exploit the almost-whole properties of
a sealed Java package to gain performance, and as such it is an ‘application of almost whole program
compilation’ [8, Section 1, Paragraph 2].

Dean, Shultz and others [5,10,11] have developed a whole program optimization framework for
object-oriented languages. They have proposed several optimization and analysis techniques for
compilation of such languages when the whole program is known at the compile time. Our work
concentrated on further developing some of their techniques and some new ones in the context of
Java programming language and the unique problems created by Java’s execution model, especially
in the context of high-performance scientific programs written in Java. We also exploit the impact the
almost-whole-program optimization framework has on applicability of their techniques.

3. AN ALMOST-WHOLE-PROGRAM TRANSFORMATION FRAMEWORK

Our approach makes almost-whole-program compilation possible without changing any of the
rules that are currently in effect for Java systems. There are no changes to the Java language.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



578 Z. BUDIMLIĆ AND K. KENNEDY

The JVM specification is respected, so the generated bytecodes may be executed on any JVM. The rules
for Java name visibility are unchanged. In fact, it is the rules of Java package name visibility together
with the run-time checks that make it possible to perform almost-whole-program optimization while
still generating pure Java programs.

To provide the desired flexibility for the programmer, our almost-whole-program transformation
system must exhibit three main properties:

• it must permit the programmer to specify which classes are inaccessible to the end-user,
regardless of the original class layout in the development project;

• it must allow the programmer to specify classes the end-user is permitted to see (instantiate and
run), but not to extend; and

• it must permit the developer to specify which classes from the project are to be made completely
available to the end-users.

In the following sections we show how our framework achieves all three of these goals.

3.1. Private classes

It is easy to imagine a scenario in which some of the classes in the programmer’s project are specified
as public, but the programmer does not want to allow an end-user to access them. These classes are
specified as public for development reasons, perhaps because some classes in other packages may need
to access them. If the original project is translated directly into code for the JVM, the end-user will be
able to access, instantiate and even extend any classes that are specified as public.

The first goal of the almost-whole-program framework is to allow the programmer to specify which
classes are inaccessible to the end-user, regardless of the original class layout in the development
project. Figure 2 shows an example of what happens to the classes the programmer has specified
as inaccessible during the transformation of the development project into the distribution package.
The emphasized classes are the ones that are publicly accessible in both packages—only the Main
class is accessible in the distribution package.

All classes that are written as private in the original class layout remain private in the distribution
package (class top.sub1.class2 in the example in Figure 2). The tool converts all the classes that were
public in the development package and marked as inaccessible by the programmer into package private
(classes top.class1, top.sub1.class1, top.sub2.class1, top.sub2.class2 in Figure 2). The framework
renames and repackages all the classes from the development project into a single distribution package.
This transformation is necessary to allow the mutual access of the classes that were originally public
and in different packages but are now package private.

Only the Main class of the whole development project remains public (but final, and thus non-
extensible) in the distribution package. The end-user will only be able to run the program by calling
Main.main() and nothing else.

3.2. Non-extensible classes

The second goal of the almost-whole-program framework is to allow the programmer to specify classes
the end-user is allowed to see (instantiate and run), but not to extend. This case arises in situations in
which a class should be made available to the user first to instantiate the class and then to call its public

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



COMPILING ALMOST-WHOLE JAVA PROGRAMS 579

�
Package top.sub2:
public class1
public class2
public Main

Package top:
public class1

�
Package top.sub1:
public class1
private class2
package private class3

package private sub2_class1
package private sub2_class2
public final Main

Package top:

package private class1

package private sub1_class1
private sub1_class2
package private sub1_class3

Development project Distribution project

�
Package top.sub2:
public class1
public class2
public Main

Package top:
public class1

�
Package top.sub1:
public class1
private class2
package private class3

package private sub2_class1
package private sub2_class2
public final Main

Package top:

package private class1

package private sub1_class1
private sub1_class2
package private sub1_class3

Development project Distribution project

Figure 2. The development-to-distribution transformation of private classes.

method, but the programmer wants to preserve the class hierarchy for performance reasons. A logical
approach would be to convert these classes into final; unfortunately this is not always possible. Some of
these non-extensible classes may have sub-classes already defined in the development project, and the
back-end compiler will not allow the compilation of the sub-classes if their super-classes are declared
as final.

We propose an alternative approach. JaMake converts all the classes that the developer specifies
as visible but non-extensible into private. It then creates auxiliary public interfaces (implemented as
abstract Java classes) that summarize the member information of the non-extensible classes. Figure 3
shows the structure of this transformation.

Figures 4 and 5 display an example of the development-to-distribution project conversion. Foo on
Figure 4 is a class that the developer has marked as public but non-extensible. The almost-whole-
program framework converts this class into the class Foo on the right-hand side of Figure 4. All of the
public methods and fields are converted to be package private, the same as for private classes described
in Section 3.1.

The end-users need a mechanism for instantiation of objects of type AFoo. Since the class Foo
is package private, they cannot directly create objects of type Foo. Instead, the abstract class AFoo
provides static Create methods, which serve as an abstract factory [12] for obtaining new instances
of Foo. For each constructor of Foo, class AFoo contains a corresponding method Create. The only
way the end-users can create new instances of Foo is by calling the AFoo.Create() method. Since the
generated factory methods Create are static, most of the current JVM implementations are able to
perform run-time inlining of these calls, making them as fast as if the original constructors were called
directly.

The almost-whole-program framework ensures the non-extensibility of the classes the developer
marked as non-extensible through a run-time mechanism. When converting the project from the

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



580 Z. BUDIMLIĆ AND K. KENNEDY

public
class
Foo

Extends
private 
class
Foo

Extends

public 
abstract
AFoo

Extends

Extends

Extends

Figure 3. The development-to-distribution transformation of a part of the class hierarchy.

public class Foo extends Goo{
public T field1;
public static T field2;
private T field 3;
public Foo(T arg){

/*implementation*/
}
public Foo(T1 arg1, T2 arg2){

/*implementation*/
}
public T Meth1(T2 arg){

/*implementation*/
}
static public T Meth2(){

/*implementation*/
}

}

��

��

class Foo extends AFoo{
private T field 3;
Foo(T arg){

/*implementation*
}
Foo(T1 arg1, T2 arg2){

/*implementation*/
}
T Meth1(T2 arg){

/*implementation*/
}

}

Figure 4. Original class Foo, marked as non-extensible, and the generated class Foo.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



COMPILING ALMOST-WHOLE JAVA PROGRAMS 581

public abstract class AFoo extends Goo{
public T field1;
public static T field2;
public static final AFoo Create(T arg){

return new Foo(arg);
}
AFoo(T arg){

super();
if(!(this instanceof Foo)) throw new Error(‘‘Not Foo!’’);

}
public static final AFoo Create(T1 arg1, T2 arg2){

return new Foo(arg1, arg2);
}
AFoo(T1 arg1, T2, arg2){

super();
if(!(this instanceof Foo)) throw new Error(‘‘Not Foo!’’);

}
abstract public T Meth1(T2 arg);
static public T Meth2(){ /*implementation*/ }

}

Figure 5. Generated auxiliary abstract class AFoo.

development to the distribution form, this tool inserts run-time tests in all of the constructors of the
auxiliary abstract class. In the example from Figure 5, all of the constructors have a test of whether
the object being currently instantiated is of type Foo. If not, the constructor will throw a run-time
exception. This technique prevents the end-user from instantiating his own version of sub-classes of
AFoo. The end-user can still write and compile sub-classes of AFoo, but cannot do anything else with
those classes. This restriction ensures that there cannot be any instances of AFoo that are not also
instances of Foo at run-time. The whole-program optimization techniques [1,2,5] can take advantage
of this fact and optimize the code that uses Foo.

The development-to-distribution implementation as described above (marking whole classes as
either private, public or non-extensible) would extract all of the public methods from the class that
is being converted into the auxiliary abstract class. It would also generate wrapper methods for all of
the public static methods. Such an implementation would require less effort from developers, since
they would only have to specify the classes which are non-extensible, but it would be less flexible.
In contrast, our implementation allows developers to specify precisely which methods and fields
should be exported in each class, in addition to the per-class specification. This approach allows more
flexibility to developers, although requiring more input from them. This approach also generates shorter
code, since it only converts the requested methods and fields.

This development-to-distribution conversion completely hides the class Foo from the end-users, but
still enables them to create instances of it, call its public methods and access its public fields. The end-
users cannot extend the class Foo, since it is not visible outside the generated package. They can create
new classes that extend the class AFoo, but cannot create instances of those new classes.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



582 Z. BUDIMLIĆ AND K. KENNEDY

It is important to note that this framework does not provide complete protection of the inaccessible
and non-extensible classes from the misuse by the end-users. The users can breach these measures by
decompressing and unpacking the generated JAR file, and replacing some of these unpacked classes
with their own. Alternatively, they can mimic the directory structure of the package and create their
own classes with the same name as some of the classes from the package, and put their own classes
before the package on the classpath. Even if their classes conform to the interfaces of those they have
replaced and have the same functionality, the program created in such a way would still be incorrect.
If the end-users wish to make such changes, they need the whole-program or almost-whole-program
recompilation framework.

3.3. Public classes

Finally, the developers can specify which classes from the development project are to be made
completely available to the end-users. These classes are declared as public and can be used by end-users
in any way that regular public Java classes can be used. They can instantiate them, call their methods
and (for the non-final classes) write their own classes that extend them. The conversion process from
the development project into the distribution project is trivial: these classes are simply declared as
public.

However, the implementation details in the context of the concrete type analysis [13,14] and whole-
program optimization are more complex. The JaMake system has to capture the information that these
classes could be extended by the end-users and pass it to the set-based type analysis tool as well as to
the optimizing back-end of the compiler.

The almost-whole-program framework achieves this behavior by inserting ‘unknown’ classes, which
represent the portion of the program that the end-user can add to the final package. Let us assume
that the developer marked the class Foo as available. The almost-whole-framework will create the
type UnknownFoo, which is a subtype of Foo. The set-based analysis which computes the concrete type
information for the program inserts this information into the analysis. For every public method (public
methods of public classes and public methods of the non-extensible classes described in the previous
section) that takes an argument of the type Foo, it will add UnknownFoo to the set of types of that
argument. The analysis then proceeds as usual.

Interprocedural optimization techniques [2,5,15] are aware of this special type and limit the
transformations that they perform on the program accordingly. Class specialization can specialize
the classes based only on the polymorphic data that do not contain the unknown type. It will keep
a default implementation (basically the original code of the class) for the classes that do contain
the unknown type. After class specialization, object inlining will inline only objects of a precise
(and known) type. These restrictions ensure that the program that the end-user creates by using the
distribution package and extending the available classes from it is observationally equivalent to the
program in which the distribution package is replaced with the development package.

Naturally, marking too many classes as public in the distribution package severely limits the range
of interprocedural optimizations and reduces their effectiveness. In the extreme case, marking all of
the classes available will completely prevent global object inlining (although some limited local object
inlining will still be possible). The developer has to have this fact in mind when creating the distribution
package, and balance its flexibility and performance.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



COMPILING ALMOST-WHOLE JAVA PROGRAMS 583

Table I. Execution times (in ms) for OwlPack using JDK 1.4.2, javac -O.

Development package Distribution package

Fortran ‘Lite’ OO OO Dev. − Dist. Optimized
style OO style style OO % increase OO *

dpofa 180 220 6860 7421 8.2 550
dposl 261 360 3585 4456 24.3 461
dpodi 350 511 27 029 27 610 2.1 1012
dgefa 120 150 8512 8643 1.5 320
dgesl 81 130 1322 1452 9.8 231
dgedi 170 281 13 549 13 960 3.0 661
dqrdc 1142 1221 48 319 51 504 6.6 2674
dqrsl 531 561 5949 7020 18.0 1192
dsvdc 290 400 18 877 21 411 13.4 581

Average 1.000 1.327 36.504 41.173 9.7 2.647

4. PERFORMANCE RESULTS

The almost-whole-program transformation may incur some additional overhead over the original
program. This transformation adds a level of indirection to the classes declared as non-extensible.
All the method calls on the non-extensible class become virtual. The most significant effect in the
performance is that every instantiation has an added constructor call (to the constructor of AFoo in our
example) in the chain of super() calls in the constructors. In addition, that constructor is performing a
run-time check to determine whether the object being instantiated is of a proper type (Foo in our case).

All performance figures in this section are obtained on Sun’s HotSpot VM 1.4.2, on an 800 MHz
Athlon PC with Windows XP SP1 and 256 MB of memory, with the -O option for javac 1.4.2 and using
the fastest of three runs for all the tests.

Table I shows the execution times for our standard set of OwlPack benchmarks, described in great
detail elsewhere [16], both for the original (development) and the almost-whole-program (distribution)
package.

The Fortran style column shows the execution times for a version of Linpack written in Java style
that very closely resembles Fortran [17] (all methods are static, arrays are passed directly as arguments,
the data are accessed directly and there is a version of the code for each primitive number type). We like
to think of this code as ‘Fortran programming using Java syntax’.

‘Lite’ OO is a version of the Linpack library that makes an attempt of introducing objects to
the Linpack library without compromising the performance of the Fortran style version. We suspect
that this is the version performance-conscious programmers without access to advanced compilation
frameworks such as JaMake would most likely be inclined to write today—all of the data are still stored
in two-dimensional arrays, there are four versions of the code for four data types, but the arrays are
wrapped in objects that represent matrices, vectors and similar data structures.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



584 Z. BUDIMLIĆ AND K. KENNEDY

The OO style version of the Linpack library uses the full power of object-oriented programming.
This code uses polymorphic classes to represent numbers, and there is only one version of the code that
operates on generic numbers. Numbers are rarely mutated; most of the number operations instantiate a
new object for the result. The OO style version of the code is about four times shorter than the ‘Lite’OO
version, with the same functionality.

We choose to mark the classes LNumber and LDouble as non-extensible for the distribution
package, simulating a situation where the programmer anticipates that the end-user might directly
use these classes in their program extensions, but not to extend their hierarchy. Another reason is
that these classes are extensively used by the benchmarks from Table I, and we wanted to show the
performance penalties that would occur from revealing critical classes in this way. All of the elements
of matrices in these benchmarks are of type LNumber and are instantiated to the type LDouble. Table I
shows the execution times for Fortran style, the ‘Lite’ OO version and the object-oriented version of
the benchmarks in its first three columns. The fifth column shows the execution time of the OO version
of the code after it has been transformed by our almost-whole-program framework. The sixth column
shows the percentage increase in the running time of the OO version of the code in the distribution
package. Since they do not utilize LNumber and LDouble classes, the numbers for ‘Lite’ OO style and
for Fortran style computation exhibit only the measurement noise and are not shown in Table I.

The Average row shows the average slowdown factor of different versions of the code, relative to the
Fortran style version. The exception is the sixth column where the average row shows the average of
that column for each of the given platforms.

Table I shows some performance degradations for the object-oriented version of the benchmarks
in the distribution package. On average, these benchmarks took about 9.7% more time to execute
than their equivalents in the development package. This is because every element of every matrix
involved in the computation now has a level of indirection for all method calls and two added levels of
constructor calls (both for ALNumber and for ALDouble) for every instantiation of a new number. Since
the object-oriented version of OwlPack utilizes copy-in, copy-out semantics for number computation
(i.e. every operation on two numbers creates a new instance), these added constructors are called very
frequently. Modern JVMs such as the HotSpot JVM used in obtaining results in Table I do a much better
job of optimizing away this overhead than the older JVMs as previously reported, where the relative
performance degradation was up to 40%. We expect that further improvements in JVM optimization
technology will bring the performance of development and distribution packages even closer.

Table II shows the performance of a different application, Parsek from the Los Alamos National
Laboratory [18]. In this case, we have marked the class Particle from the package as visible but
non-extensible. Particle is a particle implementation, and represents the finest grained object-oriented
element of the Parsek package, and as such should encounter the largest performance penalty from
almost-whole-program transformation. However, Table II shows that the performance overhead from
transforming the development version of Parsek into a distribution version is minimal. Since Parsek
does not create any new objects during the computation once the initial object creation is done, the
virtual machine in HotSpot 1.4.2 is able to almost completely eliminate any overhead caused by almost-
whole-program transformation.

The results from Tables I and II suggest that the developer should utilize the almost-whole-program
infrastructure carefully. If a key component of the program (a class that is involved in most of the
computation and is extensively instantiated during the computation) is made non-extensible, the added
overhead of extra constructor calls may increase the execution time. This is exactly what has happened

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



COMPILING ALMOST-WHOLE JAVA PROGRAMS 585

Table II. Execution times (in ms) for Parsek using JDK 1.4.2, javac -O.

Distribution package
Development package

Number of particles OO style OO style Dev. − Dist. OO % increase

1000 190 190 0
2000 340 340 0
5000 721 731 1.3

10 000 1622 1633 0.7
20 000 5418 5417 0
50 000 14 060 14 080 0.2
10 000 27 931 27 770 −0.6

Average 0.2

with our benchmark package. Unless the end-user really needs to see the classes LNumber and
LDouble, these classes should be left as private. On the other hand, if the program does not extensively
instantiate it, even the key class in the computation such as Particle in Parsek can be made visible to
the end-user with virtually no performance penalty.

The almost-whole-program transformation and whole-program optimizations are fully implemented
in our JaMake framework. The last column in Table I shows the execution times of the OO version of
the development code, optimized with our whole-program optimization framework. JaMake has not yet
implemented the details of the interaction between the almost-whole-program transformation and the
whole-program optimizations, so we are unable to report the performance results for the optimized
distribution package. Nevertheless, we believe that the last column closely reflects its expected
performance, as the added constructor calls will not prevent LDouble and LNumber classes from being
object-inlined, which is the major optimization in JaMake. Additionally, we do not have the Fortran
style and ‘Lite’ OO style versions of Parsek available to compare the performance improvements of our
whole-program optimizations, but it is reported elsewhere [18] that JaMake optimized object-oriented
Parsek is right on par with hand-optimized Fortran style and Lite object-oriented versions of Parsek.

As Table I shows, our optimizations are extremely effective. They were able to reduce the execution
times of object-oriented programs by an order of magnitude and bring the performance of the object-
oriented version of the code to within a factor of two to three of the Fortran-style, hand-optimized
code. Moreover, as is reported elsewhere [18], our optimizations can bring the performance of the
object-oriented version of Parsek to within a few per cent of the performance of the Fortran-style,
hand-optimized Parsek.

5. SUMMARY AND CONCLUSIONS

We have presented a transformation framework which is designed to make it possible to apply
whole-program optimizations to collections of components that do not form a whole program.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



586 Z. BUDIMLIĆ AND K. KENNEDY

The framework makes it possible for a programmer to finalize significant portions of a Java program
so that, after the development phase, the finalized program may be optimized using powerful
interprocedural techniques. Unlike previous whole-program optimization frameworks, our approach
permits selected classes to be used outside of the compiled code and after the program has been
compiled. It also permits the programmer to select the classes that will still be extensible after being
compiled.

Our almost-whole-program transformation framework enables the developers to take advantage of
the fact that most of the code they are writing will be finalized before the distribution by allowing the
whole-program optimizations on the finalized part of the code. Our preliminary experiments show that
almost-whole-program transformation results in modest performance penalties for programs that are
significantly extended after the compilation, while allowing optimizations of the finalized parts of the
code that can yield an order of magnitude performance improvement.

These methods have been implemented in the JaMake Java optimization framework, which performs
source to source transformations before a program is presented to javac for class-by-class compilation
and the JVM for execution. Along with other technologies in the JaMake compiler, the almost-
whole-program transformation framework creates a programming environment that enables high-
level, object-oriented programming without sacrificing performance, flexibility, extensibility, safety
or reliability.

ACKNOWLEDGEMENT

This work was supported by NSF grant ACI-0234345.

REFERENCES

1. Budimlić Z, Kennedy K. Optimizing Java: Theory and practice. Concurrency: Practice and Experience 1997; 9(6):445–
463.

2. Budimlić Z. Compiling Java for high performance and the Internet. PhD Thesis, Rice University, 2001.
3. Gosling J, Joy B, Steele G. The JavaTM Language Specification. Addison-Wesley: Reading, MA, 1996.
4. Lindholm T, Yellin F. The JavaTM Virtual Machine Specification. Addison-Wesley: Reading, MA, 1996.
5. Dean JA. Whole program optimization of object-oriented languages. PhD Thesis, University of Washington, 1996.
6. Low D. Protecting Java code via code obfuscation. ACM Crossroads 1998; 4(3).
7. Tip F, Laffra C, Sweeney PF. Practical experience with an application extractor for Java. Proceedings of the Conference on

Object-Oriented Programming, Systems, Languages and Applications. ACM Press: New York, 1999.
8. Zaks A, Feldman V, Aizikowitz N. Sealed calls in Java packages. Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages and Applications. ACM Press: New York, 2000.
9. Sun Microsystems. Java 2 software development kit version 1.2.2, July 1999.

http://java.sun.com/products/jdk/1.2. Documentation: docs/guide/extensions/specs.html#sealing.
10. Dean J, Chambers C, Grove D. Selective specialization for object-oriented languages. Proceedings of the SIGPLAN ’95

Conference on Programming Language Design and Implementation. SIGPLAN Notices 1995; 30(6):93–102.
11. Shultz U, Lawall J, Consel C. Automatic program specialization for Java. ACM Transactions on Programming Languages

and Systems. ACM Press: New York, 2003.
12. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley: Reading, MA, 1999.
13. Flanagan C, Felleisen M. Modular and polymorphic set-based analysis: Theory and practice. Technical Report TR96-266,

Rice University, 1996.
14. Agesen O. Concrete type inference: Delivering object-oriented applications. PhD Thesis, Stanford University, 1995.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587



COMPILING ALMOST-WHOLE JAVA PROGRAMS 587

15. Dolby J. Automatic inline allocation of objects. Proceedings of the SIGPLAN ’97 Conference on Programming Language
Design and Implementation. SIGPLAN Notices 1997; 32(6):7–17.

16. Budimlić Z, Kennedy K, Piper J. The cost of being object-oriented: A preliminary study. Scientific Programming 1999;
7(2):87–95.

17. FPL Statistics Group. Linear algebra for statistics Java package. http://www1.fpl.fs.fed.us/linear algebra.html.
18. Markidis S, Lapenta G, VanderHeyden WB, Budimlić Z. Implementation and performance of a particle-in-cell code written

in Java. Concurrency and Computation: Practice and Experience 2005; 17:821–837.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:573–587


	1 MOTIVATION
	2 RELATED WORK
	3 AN ALMOST-WHOLE-PROGRAM TRANSFORMATION FRAMEWORK
	3.1 Private classes
	3.2 Non-extensible classes
	3.3 Public classes

	4 PERFORMANCE RESULTS
	5 SUMMARY AND CONCLUSIONS

