
Runtime Tuning of STM Validation Techniques

Rui Zhang, Zoran Budimlić, William N. Scherer III, Mackale Joyner
Department of Computer Science, Rice University, Houston, TX 77005

{ruizhang, zoran, scherer, mjoyner}@rice.edu

Abstract
Since the end of the megahertz race in the processor industry and
the switch to multicore processors, Software Transactional Mem-
ory (STM) has sparked ample interest as a programming model
for the now mainstream parallel processing systems. Unfortunately,
STM systems still exhibit significant performance overhead over
the more traditional, lock-based programming models. A large part
of this overhead is due to the STM systems spending significant
amount of time validating the state of the shared memory that is
visible to a transactions.

Significant improvements to the validation systems for STM
have been published recently. Transactional Locking II and Lazy
Snapshot validation are two time-based validation techniques that
have so far shown the most promising performance for a wide va-
riety of applications. Unfortunately, the performance of these tech-
niques depends heavily on the application: number of concurrent
jobs, length of the transaction and the read/write ratio of the shared
objects can significantly favor one technique over the other. More-
over, for long-running applications that change their behavior over
time, neither of these two techniques is optimal.

In this paper, we present a runtime tuning strategy that uses
profiling to determine the most profitable validation technique.
Our runtime tuning strategy can behave as an arbitrary mix of
Transactional Locking II and Lazy Snapshot techniques depending
on the state of the STM system. We evaluate our technique on
a set of STM benchmarks and show that our strategy performs
within a couple of percent of the best validation strategy for a given
static workload scenario, and that it outperforms both of the above
techniques by up to 18% in long-running, dynamically-changing
scenarios.

1. Introduction
The performance of existing software transactional memory (STM) [2,
3, 4, 5, 6, 8, 11] systems is far from satisfactory. The main factors
causing the poor performance of transactional memory systems in-
clude bookkeeping and validation [12]. In order to reduce the over-
head of bookkeeping and validation, several time-based strategies
have been proposed recently [1, 9, 12]. The validation overhead is
greatly reduced by introducing the time information into the sys-
tem. Unfortunately, the performance of these heuristics depends
heavily on the state of the system: contention levels, number of
concurrent jobs, type of application, lengths of individual trans-
actions etc. Any given static heuristic might perform very well in
some situations, but quite poorly in others [13].

Moreover, current time-based software transactional memory
implementations face the scalability problem due to the contention
over the shared counter that is read and written by contending trans-
actions. The software counter implementation incurs substantial
overhead when contention is high. Riegel, Fetzer and Felber pro-
pose [10] to use one physical counter or multiple synchronized
physical counters to address this problem, which can remove the

overhead of updating the counter and reduces the contention com-
pared with a software counter.

In this paper, we propose a profile-driven runtime tuning strat-
egy that changes the behavior as the system performance changes.
We compare our strategy with two state-of-the-art time-based
strategies: Transaction Locking II and Lazy Snapshot [1, 9]. We
show that our strategy achieves performance that is on par with
the better of these two given any constant system state. We also
demonstrate that in a system that changes behavior over time, our
strategy outperforms both of these validation techniques. We also
present some experimental results on performance comparison be-
tween STM systems using hardware counter and software counter
on two dual core systems.

There are three main contributions of this paper. First, we eval-
uate a threshold hybrid strategy of time-based validation technique
and show its performance space characteristics. Second, we design
a novel runtime validation tuning strategy based on our observation
of the performance characteristics of the threshold hybrid strategy.
Our strategy can effectively improve the system throughput in a dy-
namically changing environment. Third, we present performance
comparison of time-based validation using a hardware counter and
a software counter on a set of different benchmarks.

The next section discusses existing validation strategies. Sec-
tion 3 describes the design and implementation of our threshold
hybrid validation strategy and discusses its performance charac-
teristics. It also describes the design and implementation of our
profile-driven runtime tuning technique. In Section 4 we present the
experimental results comparing the performance of our technique
against Transactional Locking II and Lazy Snapshot algorithms
over a set of benchmarks in varying scenarios (low/high contention,
low/high number of concurrent jobs, static/dynamic workload). We
also present the performance comparison of hardware counter and
software counter in this section. The last section presents the con-
clusions and some directions for future research.

2. Related Work
Validation is a technique designed to prevent a transaction from
observing an inconsistent state in shared data. Validation is closely
related to conflict detection. While an exhaustive conflict detec-
tion system that detects all possible write/write, read/write, and
write/read conflicts does not need validation, it is unfortunately pro-
hibitively expensive.

To increase concurrency, different conflict detection strategies
have been developed.Invisible reads [6] hide the read of an object
from concurrent transactions which are thereafter able to modify
the object. This postpones the detection of write after read conflicts
to a later time such as in the commit phase.Lazy writes [2] hide the
write from other transactions and allows modifications to them by
other transactions, delaying the detection of read after write con-
flicts and write after write conflicts to a later time point. The dif-
ferences among places chosen to detect conflicts also lead to dif-
ferent outcomes of whether a transaction is aborted. But delaying



the detection of conflicts creates the possibility of allowing a trans-
action to observe inconsistent states. To avoid entering an inconsis-
tent state, a transaction needs to validate the objects it has read at
appropriate times in program execution.

Incremental validation [6] is a validation strategy that validates
all past invisible reads and lazy writes every time the transaction
opens a new object. If any change in the past is detected, the vali-
dation fails. This strategy guarantees a consistent state but imposes
a substantial overhead [12], since it is essentially aO(n2) operation
where n is the number of objects opened in a transaction.

Lev, Moir and Nussbaum [7] propose a Phased Transactional
Memory (PhTM). Their system supports switching between differ-
ent ”phases” that represent different forms of transactional memory
support. Our runtime tuning strategy uses a similar approach by
adapting the transactional memory system to different workloads.
PhTM targets transactional memory systems with hardware sup-
port, while our runtime tuning strategy targets validation in time-
based STM systems.

Time-based validation strategies guarantee the consistency of
the past reads by simply checking whether the timestamp of the
object being opened is in the transaction’s validity range. This
reduces the validation to a couple of comparisons, greatly reducing
the overhead introduced by incremental validation.

2.1 Existing Time-based Validation Strategies

In Spear, et al.’s [12]Global Commit Counter (GCC) heuristic, a
transaction does not perform a validation if no writes were com-
mitted in the entire system since the last object was opened. This
scheme can avoid many unnecessary validations, leading to perfor-
mance improvement for situations where writes happen rarely in
the system. However, this strategy is still very conservative since
a write to a shared object does not affect a particular transaction’s
consistency if that object is never used in that transaction.

Dice, et al.’s [1]transactional locking II (TL II) algorithm is an-
other time-based STM implementation. Their algorithm associates
a timestamp with every shared object at the time of its modification.
A transaction acquires its own timestamp once at the beginning of
execution, and commits successfully if none of the objects opened
during the execution has a timestamp newer than the timestamp of
the transaction. A transaction aborts if it encounters an object with
a newer timestamp. An advantage of this algorithm is that it can
completely eliminate the bookkeeping overhead of read-only trans-
actions since it never validates opened objects, making it attractive
to situations where contention is low and most transactions commit
successfully. Figure 1 shows the major steps of TL II’s validation
strategy.

For convenience, we explain the meaning of the variables used
in figure 1, 2 and 3 here.T is a transaction.Oi is an object.
READ ONLY indicates whether the transaction is a read-only
transaction or not.T.ts is the transaction’s timestamp. It is used to
reason about the ordering of the transaction and the objects.TS is
the variable to save the timestamp to be written into the objects
being updated.TSC is the shared timestamp counter.T.O is a
list of objects that need to be verified when doing a validation.
V ALIDATE(T ) checks if the invisible reads and lazy writes
have been modified or acquired by other transactions. If they are,
transaction T is aborted, otherwise it proceeds forward.

Riegel, et al.’s [9]Lazy Snapshot algorithm maintains multiple
versions for each shared object and uses the global timestamp
information to guarantee that the view observed by a transaction
is consistent. In their algorithm a transaction can choose the object
version to satisfy consistency. When a transaction encounters an
object with a newer time stamp, its validity range is extended by
doing a full validation. Figure 2 shows the major steps of Lazy
Snapshot’s validation strategy.

if READ ONLY = TRUE then1
if Oi.ts > T.ts then2

ABORT (T );3

else4
if Oi.ts > T.ts then5

ABORT (T );6

else7
T.O ← T.O ∪Oi;8

Figure 1. TL II Validation

if Oi.ts > T.ts then1
T.ts← TSC;2

V ALIDATE(T );3

T.O ← T.O ∪Oi;4

Figure 2. Lazy Snapshot Validation

2.2 Comparison of Existing Time-based Validation Strategies

Global Commit Counter has the least memory overhead since it
only adds a shared commit counter. The sizes of objects are un-
changed. However, it will perform a full validation every time there
is a write in the entire system, even if that write does not affect the
current transaction. These unnecessary validations can sometimes
lead to a relatively poor performance when compared to the other
two algorithms.

Transactional Locking II eliminates both validation and book-
keeping overhead, but it can sometimes be too conservative and
abort transactions that could commit successfully. It has the addi-
tional memory requirement of adding a timestamp to every object.

In this paper we refer to a variant of the Lazy Snapshot algo-
rithm that only keeps a single version of an object. Compared to
GCC, Lazy Snapshot eliminates a superset of full validations. Com-
pared with TL II, Lazy Snapshot extends a transaction’s validity
range when it encounters an object with a newer timestamp. Lazy
Snapshot needs bookkeeping of all its past reads for the purpose
of validation. It can execute a transaction to a point closer to the
commit than either GCC or TL II. However, this is not always ben-
eficial: it potentially increases the amount of wasted work being
performed by a transaction that is doomed to abort. The bookkeep-
ing overhead of Lazy Snapshot is the same as for the GCC, and
larger than TL II. The memory overhead of Lazy Snapshot is the
same as with TL II and larger than GCC.

The major difference between TL II and Lazy Snapshot is in
deciding when a transaction should be aborted. When encountering
a new object, Transaction Locking II assumes aborting the current
transaction benefits the system the best and aborts it right away,
while Lazy Snapshot validates the read set and gives the transaction
a further chance to commit.

3. Runtime Tuning of Validation Techniques
Global Commit Counter, Transactional Locking II and Lazy Snap-
shot all reduce the validation overhead of the incremental validation
by leveraging the global time information. They effectively reduce
the number of times the transactional system has to perform full
validations and thus improve the overall performance. But none
of these techniques consistently outperforms the other two in all
scenarios. In this section we first present a hybrid time-based vali-
dation technique that is essentially a combination of Transactional



Locking II and Lazy Snapshot, and show its performance charac-
teristics. Then we present a runtime tuning technique based on our
observations of the performance space characteristics of our thresh-
old hybrid technique.

3.1 Threshold Hybrid Validation Strategy

In Lazy Snapshot, a transaction can conduct several validations
before its final commit. In Transactional Locking II, a transaction
never performs a full validation for read-only transactions and only
performs a full validation for update transactions that reach their
commit phase. Our hybrid validation consists of two phases. In
the first phase it behaves as Lazy Snapshot: it performs a full
validation every time it opens an object with a timestamp newer
than the current transaction’scandiadate linearization point (CLP).
It keeps a count of the number of open objects since the start of
the transaction, and when this count reaches a certain threshold,
it switches to the second phase. In the second phase, our strategy
behaves as Transaction Locking II. It does not perform any more
bookeeping, and aborts if it encounters a new object.

The behavior of our threshold strategy is controlled by a simple
threshold. If this threshold is 0, our hybrid strategy behaves as
Transactional Locking II. When the threshold is a large number,
it behaves similar to Lazy Snapshot. For a threshold in between, it
behaves as a arbitrary mix of Transactional Locking II and Lazy
Snapshot. Figure 3 shows the major steps of our threshold hybrid
validation strategy.

if Oi.ts > T.ts then1
if OPEN COUNT < THRESHOLD then2

T.ts← TSC;3

V ALIDATE(T );4

T.O ← T.O ∪Oi;5

else6
ABORT (T );7

Figure 3. Threshold Hybrid Validation

We have experimented with different heuristics for deciding
when to switch to the second phase in our validation strategy. One
method is to count all open objects and compare the count with
the threshold on every full validation or on every object open.
Another method is to count all full validations and compare that
count to the threshold before doing a full validation. Since we
found little difference in the performance of these heuristics, in this
paper we assume a method that counts all open objects and does a
comparison at every full validation.

One potential danger associated with time-based validation
techniques is starvation. There is a possibility that a transaction
keeps being aborted because it keeps observing inconsistent state
of the shared memory. This will happen more often in TL II than
in Lazy Snapshot, since TL II aborts the transaction as soon as it
opens a newer object. Our hybrid validation fits in between TL II
and Lazy Snapshot as far as possibility of starvation is concerned.

3.2 Implementation

Our implementation is based on Rochester Software Transactional
Memory (RSTM) [8] Release 2, which in general offers significant
performance gains relative to its predecessor [12]. It supports both
visible and invisible reads, and both eager and lazy acquires, and
uses deferred updates.

RSTM is a fast, nonblocking C++ library built to support trans-
actional memory in C++. It accesses an object through its header.
The header has a clean bit to indicate whether the object is owned

New Data

Visible Reader 1

Visible Reader n

Time Stamp

…

Status Transaction Descriptor

Owner

Old Data

Data Object –

new version
Data Object –

old version

Clean Bit

Candidate 
Linearization 

Point

Figure 4. Metadata

by a transaction. The object header points directly to the current
version of the object. Each thread maintains a transaction descrip-
tor that indicates the status of the thread’s most recent transaction.
The transaction descriptor also maintains lists of objects opened
for read-only and read-write access. We extend RSTM by adding
a timestamp field to the object header and adding a candidate lin-
earization point field to the transaction descriptor. Figure 4 depicts
our modification to the RSTM metadata.

The timestampTS of each shared object indicates the time
when the object is last modified. Closely related to timestamps are
candidate linearization points. Each transaction keeps its own can-
didate linearization point which indicates the last time this trans-
action has observed a consistent state. This data allows the trans-
action to explicitly know where a potential linearization point lies
relative to all the writes that have happened in the system. Having
this knowledge enables the transaction to quickly decide to skip
validation if it knows that the object it is trying to open has not
been modified since its current CLP. When a transaction starts, its
candidate linearization point is initialized to the beginning of the
transaction. In Lazy Snapshot,CLP is updated each time a trans-
action opens a younger object and successfully validates past reads.

We use a global counterTSC to reflect the current time relative
to the start of the program.TSC can be read concurrently by all
the transactions in the system. The experiments are executed on
a SunFire 6800 cache coherent multi-processor machine, with gcc
4.1.2 compiler.

3.3 Benchmarks

We use six benchmarks in our experiments. They include a sorted
linked list (LinkedList), a sorted linked list with hand-coded early
release mechanism (LinkedListRelease), a red black tree (RBTree),
a hash table (HashTable), a web cache simulation using the least-
frequently-used page replacement policy (LFUCache), and an ad-
jacency list-based undirected graph (RandomGraph). All of these
benchmarks are taken from the RSTM Release 2 distribution; how-
ever, it should be noted that we have added a read-only lookup op-
eration to RandomGraph.

LinkedList, LinkedListRelease and RBTree contain values from
0 to 255. HashTable has 256 buckets with overflow chains. LFU-
Cache tracks page access frequency in a simulated web cache using
an array-based index and a priority queue. RandomGraph connects



LinkedList

90%

100%

110%

120%

130%

140%

150%

160%

0 2 4 8 16 32 64 128 256 512

Threshold

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LinkedListRelease

90%

100%

110%

120%

130%

140%

150%

0 2 4 8 16 32 64 128 256 512

Threshold

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

RBTree

90%

95%

100%

105%

110%

115%

120%

125%

130%

135%

0 2 4 8 16 32 64 128 256 512

Threshold

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

RandomGraph

95%

97%

99%

101%

103%

105%

107%

0 2 4 8 16 32 64 128 256 512

Threshold

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LFUCache

95%

96%

97%

98%

99%

100%

101%

102%

103%

104%

105%

0 2 4 8 16 32 64 128 256 512

Threshold

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

HashTable

90%

95%

100%

105%

110%

115%

0 2 4 8 16 32 64 128 256 512

Threshold

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Figure 5. Threshold Hybrid Strategy Performance Space



four randomly chosen neighbors with the newly inserted node.
When any node is inserted or removed from the graph, the ver-
tex set and the degree of every node are updated accordingly. The
graph is implemented using a sorted list of nodes. Each node has its
own sorted list of neighbors. Transactions in RandomGraph exhibit
a high probability of conflicting with each other.

In order to show the impact of different thresholds on the per-
formance, our experiments measure the throughput of the whole
system when threshold changes. To change the contention lev-
els, we set up benchmarks with different numbers of competing
threads (from 2 to 16). The lookup/insert/remove ratio per thread is
98%/1%/1%.

Figure 5 shows how the performance of our benchmarks
changes with different thresholds. The x-axis of each figure is the
threshold. The y-axis of each figure is the throughput normalized to
the smallest throughput on each line. We use normalized through-
put to show the shape of the performance space of four different
thread numbers of each benchmark. For each benchmark, we mea-
sured the cases of 2, 4, 8 and 16 threads, denoted with 2T, 4T, 8T
and 16T in the legend.

The results show a nearly monotonic performance space most
of the time across a variety of benchmarks and contention ratios.
In other words, if, for a given scenario, one of the validation tech-
niques (TL II or Lazy Snapshot) performs better than the other, then
it will also very often outperform our threshold hybrid technique.
This observation leads us to a coarse-grain runtime tuning strategy
which switches the runtime validation strategy to the better one of
Transactional Locking II and Lazy Snapshot. This runtime tuning
strategy is described in the next section.

An interesting observation can be made about the threshold:
it appears that in most of our benchmarks the “switching point”
in performance happens around a threshold value of two. This
is not very surprising after we observed that the average number
of validations per transaction in all of our benchmarks is around
4. This also suggests that a different set of applications with a
larger number of validations per transaction may create contention
scenarios where the threshold hybrid strategy would outperform
both of the extreme cases. Investigation into the practical usability
of the threshold hybrid technique is a subject of our future research.

3.4 Runtime Tuning of Validation

Our runtime tuning strategy is based on the observation of the
nearly monotonic property of the performance space. Since the
performance increases or decreases as the threshold increases, the
best performance is either achieved with TL II or Lazy Snapshot.
The question is how and when to choose between the two validation
techniques. Our solution is to monitor the contention change in the
system and select the right strategy when the change happens.

Figure 6 shows the major steps of our runtime tuning strategy.
The STM system starts by running both Transactional Locking
II and Lazy Snapshot for a short time and picking up the better
one to continue. When the contention monitor detects a contention
change, our runtime tuning system switches to the other strategy
for a short time, then compares the performance with the current
strategy. If the newly tested strategy is better, the system stays in
that state, otherwise it switches back to the original strategy.

Our strategy has two major components - contention monitor
and heuristic selector. Contention monitor monitors the runtime
contention level and informs the runtime about any changes. The
heuristic selector selects the best validation heuristic to continue
the execution.

Contention level monitor needs to be sensitive to contention
level changes. We use the wall clock time to commit a certain
number of transactions as the indicator of the contention level. One
advantage of using the wall time as the contention indicator is that

it incurs very little overhead. Moreover, wall time is a relatively
stable and accurate indicator to filter micro-variations in the TM
system performance, which can vary up to 20% for short periods
of time in our experiments, even for a constant contention level.
In our implementation, the contention level monitor measures the
time it takes to commit 10,000 transactions (an arbitrary number).
Depending on how fast the application changes its behavior, a
larger or smaller number may be more suitable.

If the time spent on two consecutive sequence of transactions
varies more than some threshold, the monitor reports it as a con-
tention change and informs the heuristic selector. In our experi-
ments we set the threshold to 5%.

The goal of this paper is to demonstrate that given a way of ac-
curately monitoring the contention change, it is beneficial to use
this information to guide the STM runtime to use the more suit-
able strategy. Designing an accurate contention monitoring scheme
for general applications is beyond the scope of this paper. We
experimented with different strategies to estimate the contention
level, including the ratio of total aborts over commits and recent
aborts/commits ratio, but did not find a meaningful correlation be-
tween those indicators and the contention level.

if ContentionChanged = TRUE then1
Tnew ← TestRun(Alternative Strategy);2

if Tnew < Told ∗ ratio then3
Use New Strategy;4

else5
Use Old Strategy;6

Figure 6. Runtime Tuning Validation

4. Experimental Results
Our platform for threshold hybrid strategy and runtime tuning strat-
egy evaluation was a SunFire 6800 with 16 UltraSPARC III proces-
sors running at 1.2 GHz. We ran each benchmark with a variety of
threads, using the standard RSTM test driver. Our experiments on
hardware counter and software counter comparison were based on
a Core 2 Duo-based machine and a dual-core Opteron based ma-
chine.

We evaluated our runtime tuning strategy in two scenarios. First,
we compare our runtime tuning strategy against TL II and Lazy
Snapshot in a dynamic scenario where the contention level changes
throughout the execution of the program. Second, we compare
our runtime tuning strategy against TL II and Lazy Snapshot in
a scenario where the lookup/insert/remove ratio of all threads is
constant throughout the whole run.

For the dynamically changing scenario, we set up the bench-
marks to alternate between 2 thread execution and 16 thread execu-
tion (thus changing the contention level) every 5 seconds and mea-
sure the average throughput of 3 runs. Each run lasts 25 seconds.
For all benchmarks except LFUCache, the lookup/insert/remove
ratio of each thread is set to be 98%/1%/1%. The lookup/ in-
sert/remove is randomly generated following an uniform distribu-
tion. Figure 7 shows the performance results for the dynamically
changing scenario.

Figure 8 shows the throughput (transactions per second) for
the six different benchmarks, at different (but constant) contention
levels, and different number of threads. The results are normalized
to the performance of our threshold hybrid profile-driven algorithm.
For the constant contention case, we fix the thread number to be
2, 4, 8 and 16. We measure the average throughput of three runs.
Each run takes 5 seconds. Since in the LFUCache benchmark, the



70%

75%

80%

85%

90%

95%

100%

105%

Lin
ke

dLi
st

Lin
ke

dLi
st

Rele
as

e

RBTre
e

Ran
dom

Gra
ph

LFUCac
he

Has
hTab

le

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TL II Lazy Snapshot Profile-driven

Figure 7. Runtime Tuning Result

Core 2 Duo

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

Lin
ke

dLi
st

Lin
ke

dLi
st

Rele
as

e

RBTre
e

Ran
dom

Gra
ph

LFUCac
he

Has
hTab

le

Benchmark

S
pe

ed
up

80%/10%/10% 33%/33%/33%

Figure 9. Hardware Counter vs Software Counter

read/write ratio cannot be changed, we only show how the result
varies with a change in the number of threads.

Figure 9 and figure 10 show the throughput speedup by using
hardware counter over using software counter under 2 threads at
different contention ratios. The experiments are done using the
Lazy Snapshot validation strategy. Since LFUCache does not have
a read/write ratio, the results are identical for the two runs of this
benchmark.

4.1 Discussion

In a dynamically changing environment, on figure 7, we observe
that our validation tuning strategy outperforms both TL II and Lazy
Snapshot in all cases. The performance improvement ranges from
a couple of percent up to 18%.

We observe that in the constant contention case on figure 8, our
strategy is very competitive with the best fixed strategy for any
given scenario. This shows that a) the overhead of our strategy due
to additional counters, run-time checks and occasional profiling of
a sub-optimal strategy is relatively small, and b) that our strategy
quickly converges to the behavior of the better fixed strategy. For
constant contention, our strategy performs significantly better than
the worse of the two in all cases, and is always within several
percent of the performance of the better strategy. Our strategy
sometimes even outperforms both TL II and Lazy snapshot because

Dual-core Opteron

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

Lin
ke

dLi
st

Lin
ke

dLi
st

Rele
as

e

RBTre
e

Ran
dom

Gra
ph

LFUCac
he

Has
hTab

le

Benchmark

S
pe

ed
up

80%/10%/10% 33%/33%/33%

Figure 10. Hardware Counter vs Software Counter

our tuning can find finer-grain contention changes that happen
even though the overall lookup/insert/remove ratio is statistically
constant, because during the short periods of time the contention
level can still change.

The largest benefit of using a runtime tuning strategy presented
in this paper is that it prevents the system from running a clearly
inferior heuristic for long periods of time. For example, for the
LinkedList benchmark in the 16 thread case with 80%/10%/10%
lookup/insert/remove ratio in Figure 8, if the system is running
Transaction Locking II as the validation strategy, it will suffer
a 43% performance degradation compared to the optimal strat-
egy (Lazy Snapshot). For the same benchmark and the same
lookup/inser/remove ratio, if the system is running Lazy Snap-
shot in the 2 thread case, it will suffer a 21% performance penalty
compared to the optimal strategy (Transaction Locking II).

On the other hand, if the system is using our runtime profile-
driven tuning strategy, it will perform at 6% below optimal in the
worst case, and within 2% of optimal in 9 out of 12 cases for the
LinkedList example. For an application that dynamically changes
its behavior, running our tuning strategy can achieve overall perfor-
mance that neither TL II or Lazy Snapshot can achieve.

Figure 9 and figure 10 show the throughput speedup using hard-
ware counter over using software counter. Since the thread num-
ber is small, in most of the cases, hardware counter loses against
software counter. This is not surprising considering the low con-
tention over the counter under 2 threads and the time to read a
hardware counter is not very cheap as well. This suggests that for
a small scale multi-core system, a software counter can be a better
choice than hardware counter. We also observe some performance
improvement in the dual-core Opteron case in RBTree, Random-
Graph and HashTable. We attribute this to the relatively cheaper
hardware counter read on Opteron than Core 2 Duo. We measured
64 cpu cycles and 8 cpu cycles for a timestamp counter read for
Core 2 Duo and Opteron respectively. For a larger scale multi-core
processor and faster read speed to the timestamp counter, we expect
better performance and scalability from a hardware counter based
approach.

5. Conclusions and Future Work
A profile-driven strategy for runtime tuning of software transac-
tional memory validation heuristics can be competitive with the the
best heuristic for any given constant contention level. In scenarios
with dynamically changing contention levels, such a runtime strat-
egy can significantly outperform even the state-of-the-art validation
techniques.



LinkedList

50%

60%

70%

80%

90%

100%

110%

80
/1

0/1
0, 

2T

33
/3

3/3
3, 

2T

98
/1

/1,
 2T

80
/1

0/1
0, 

4T

33
/3

3/3
3, 

4T

98
/1

/1,
 4T

80
/1

0/1
0, 

8T

33
/3

3/3
3, 

8T

98
/1

/1,
 8T

80
/1

0/1
0, 

16
T

33
/3

3/3
3, 

16
T

98
/1

/1,
 16

T

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LinkedListRelease

20%

40%

60%

80%

100%

120%

140%

80
/1

0/1
0, 

2T

33
/3

3/3
3, 

2T

98
/1

/1,
 2T

80
/1

0/1
0, 

4T

33
/3

3/3
3, 

4T

98
/1

/1,
 4T

80
/1

0/1
0, 

8T

33
/3

3/3
3, 

8T

98
/1

/1,
 8T

80
/1

0/1
0, 

16
T

33
/3

3/3
3, 

16
T

98
/1

/1,
 16

T

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

RBTree

50%

60%

70%

80%

90%

100%

110%

120%

80
/1

0/1
0, 

2T

33
/3

3/3
3, 

2T

98
/1

/1,
 2T

80
/1

0/1
0, 

4T

33
/3

3/3
3, 

4T

98
/1

/1,
 4T

80
/1

0/1
0, 

8T

33
/3

3/3
3, 

8T

98
/1

/1,
 8T

80
/1

0/1
0, 

16
T

33
/3

3/3
3, 

16
T

98
/1

/1,
 16

T

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

RandomGraph

60%

65%

70%

75%

80%

85%

90%

95%

100%

105%

80
/1

0/1
0, 

2T

33
/3

3/3
3, 

2T

98
/1

/1,
 2T

80
/1

0/1
0, 

4T

33
/3

3/3
3, 

4T

98
/1

/1,
 4T

80
/1

0/1
0, 

8T

33
/3

3/3
3, 

8T

98
/1

/1,
 8T

80
/1

0/1
0, 

16
T

33
/3

3/3
3, 

16
T

98
/1

/1,
 16

T

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LFUCache

90%

92%

94%

96%

98%

100%

102%

104%

106%

108%

2T 4T 8T 16T

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

HashTable

80%

85%

90%

95%

100%

105%

110%

80
/1

0/1
0, 

2T

33
/3

3/3
3, 

2T

98
/1

/1,
 2T

80
/1

0/1
0, 

4T

33
/3

3/3
3, 

4T

98
/1

/1,
 4T

80
/1

0/1
0, 

8T

33
/3

3/3
3, 

8T

98
/1

/1,
 8T

80
/1

0/1
0, 

16
T

33
/3

3/3
3, 

16
T

98
/1

/1,
 16

T

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TL II Lazy Snapshot Profile-driven

Figure 8. Showing throughput for six different benchmarks, at constant contention levels, with different number of threads

Using a shared software counter to implement the concept of
time in time-based validation schemes outperforms using a hard-
ware counter in scenarios where parallelism and contention is low.

In scenarios with high parallelism and contetion, schemes that use
a hardware counter perform better than schemes using a sofware
counter.



In future research, we will investigate the possibility of using
different runtime measurements that could suggest changing the
validation strategy without performing the runtime profiling of the
alternatives. We will also further investigate the practical usability
of a threshold hybrid strategy in scenarios where applications per-
form a mix of short and long-running transactions with small and
large number of full validations per each transaction.

References
[1] D. Dice, O. Shalev, and N. Shavit. Transactional lockingII. In

Proceedings of the 20th International Symposium on Distributed
Computing, DISC 2006. Springer, Sep 2006.

[2] K. Fraser.Practical lock freedom. PhD thesis, Cambridge University
Computer Laboratory, 2003. Also available as Technical Report
UCAM-CL-TR-579.

[3] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic contention
management. InDISC ’05: Proceedings of the nineteenth Interna-
tional Symposium on Distributed Computing, pages 303–323. LNCS,
Springer, Sep 2005.

[4] T. Harris and K. Fraser. Language support for lightweight trans-
actions. InOOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications, pages 388–402, New York, NY, USA,
2003. ACM Press.

[5] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions.SIGPLAN Not., 41(6):14–25, 2006.

[6] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
transactional memory for dynamic-sized data structures. InPODC
’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92–101, New York, NY,
USA, 2003. ACM Press.

[7] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional
memory. InWorkshop on Transactional Computing (TRANSACT),
2007.

[8] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the overhead of nonblocking
software transactional memory. InTRANSACT 06’: Proceedings of
the Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing, 2006.

[9] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with
eager validation. InProceedings of the 20th International Symposium
on Distributed Computing, DISC 2006, volume 4167 ofLecture Notes
in Computer Science, pages 284–298. Springer, Sep 2006.

[10] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory
with scalable time bases. InSPAA ’07: Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures,
pages 221–228, New York, NY, USA, 2007. ACM.

[11] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. Mcrt-stm: a high performance software transactional
memory system for a multi-core runtime. InPPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 187–197, New York, NY, USA, 2006.
ACM Press.

[12] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict
detection and validation strategies for software transactional memory.
In DISC06: 20th Intl. Symp. on Distributed Computing, 2006.

[13] R. Zhang, Z. Budimlíc, and W. N. S. III. Inside time-based software
transactional memory. Technical Report TR07-5, Rice University,
July 2007.


