Heterogeneous Work-stealing
across CPU and DSP cores

Vivek Kumar®, Alina Sbirleaf, Ajay Jayarajt, Zoran Budimli¢f, Deepak Majeti’ and Vivek Sarkar'

TRice University, Texas Instruments

Due to the increasing power constraints and higher and
higher performance demands, many vendors have shifted their
focus from designing high-performance computer nodes using
powerful multicore general-purpose CPUs, to nodes containing
a smaller number of general-purpose CPUs aided by a larger
number of more power-efficient special purpose processing
units, such as GPUs, FPGAs or DSPs. While offering a lower
power-to-performance ratio, unfortunately, such heterogeneous
systems are notoriously hard to program, forcing the users
to resort to lower-level direct programming of the special
purpose processors and manually managing data transfer and
synchronization between the parts of the program running on
general-purpose CPUs and on special-purpose processors.

In this paper, we present HC-K2H, a programming model
and runtime system for the Texas Instruments Keystone II
Hawking platform, consisting of 4 ARM CPUs and 8 TI DSP
processors. This System-on-a-Chip (SoC) offers high floating-
point performance with lower power requirements than other
processors with comparable performance. We present the de-
sign and implementation of a hybrid programming model and
work-stealing runtime that allows tasks to be created and
executed on both the ARM and DSP, and enables the seamless
execution and synchronization of tasks regardless of whether
they are running on the ARM or DSP. The design of our
programming model and runtime is based on an extension
of the Habanero-C programming system. We evaluate our
implementation using task-parallel benchmarks on a Hawking
board, and demonstrate excellent scaling compared to sequen-
tial implementations on a single ARM processor.

Keywords—Habanero; Keystone-II; load balancing; scheduling;
work-stealing

I. INTRODUCTION

The road to extreme scale computing has created an
unprecedented pressure on creating power-efficient building
blocks for supercomputers. Due to the power-hungry nature
of general-purpose CPUs, traditional approaches of scaling
up and scaling out using more and more nodes with more
and more CPU cores on each node are simply not feasible
any longer. Many vendors have instead shifted their focus to
designing high-performance nodes using a smaller number of
general-purpose CPUs aided by a larger number of lower-
power special purpose processors (SPPs), such as GPUs [1],
FPGAs [2] or DSPs [3]. While offering a much lower potential
power-to-performance ratio, such heterogeneous systems are,
unfortunately, notoriously hard to program. The users are
forced to resort to lower-level direct programming of the SPPs
and manually managing data transfer and synchronization

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

between the parts of the program running on CPUs and
SPPs. The current state of the art requires the programmer
to compose parallel kernels for execution on SPPs, transfer
the data necessary for the kernel execution, launch a kernel,
wait for its completion and transfer the data back to the CPUs
to continue the program execution. The CPUs might be able
to perform some useful computation while waiting for the
kernel to finish on the SPPs. An alternative to manual resource
management that some hardware vendors support is a higher-
level model that can do the offloading of tasks and data to
the SPPs automatically, but that uses either only the CPUs or
SPPs, and is only suited for regular data-parallel computations.
Examples of this approach include the OpenMP accelerator
model for TI’s Keystone II architecture [4]. This approach
is unfortunately ill-suited for dynamic, irregular programs,
forcing the user to perform the bulk of their computation on
either CPUs or SPPs, therefore wasting a large part of the
available computation resources, lengthening the total time to
solution and total energy spent on the solution.

Task-parallel programming models, such as Chapel [5],
Cilk [6], Habanero-C [7], [8], Habanero-Java [9], OpenMP
4.0 [10], and X10 [11]-[13] offer a high-level approach to
creating parallelism by creating large numbers of lightweight
tasks that can execute in parallel on a fixed and smaller number
of worker threads that are bound to processors. While such
programming models present a much higher-level and more
intuitive methods for designing parallel algorithms, especially
for irregular and dynamic problems, they also require a pow-
erful and efficient runtime to manage task creation, scheduling
and synchronization.

In this paper, we present HC-K2H, a programming model
based on the Habanero task-parallel model [9], and a run-
time implementation of that model on the Texas Instruments
Hawking SoC platform [3], consisting of 4 ARM CPUs and 8
TI’s DSP processors. Low-power SoCs with general-purpose
processors and on-chip accelerators that share the same address
space and physical memory are increasingly being considered
as attractive candidates for extreme scale computing. We
present the design and implementation of a hybrid work-
stealing runtime that allows for creation of tasks that can be
executed either on ARM or DSP and enables the seamless
execution and synchronization of those tasks regardless of
where they run. We evaluate our implementation by executing
task-parallel benchmarks on a Hawking board, and show
excellent scaling compared to sequential implementations on
a single ARM processor.

The next section presents some background on the Ha-
banero task-parallel programming model and the Texas In-



// Task To (Parent) T4 To

start_finish( );
async (STMT1); //T+(Child) async
STMT1&e—
STMT2; /Mo S.iMTZ
terminate
end_finish( ); ~ Y
STMT3; /Mo STMT3

Fig. 1: An example code schema with async and £inish

struments’ Hawking platform. Section III presents the HC-
K2H programming model, and Section IV describes the details
of our implementation of the HC-K2H runtime, Section V
presents an experimental evaluation of HC-K2H runtime, fol-
lowed by summaries of related work and our conclusions in
Section VI and Section VII respectively.

II. BACKGROUND
A. Work-stealing

Work-stealing is a strategy for efficiently distributing work
in a parallel system. The runtime maintains a pool of worker
threads, each of which maintains a local set of tasks. When
local work runs out, the worker becomes a thief and searches
for a victim thread from which to steal work. A steal occurs
when a thief takes work from a victim. The runtime provides
the thief with the execution context of the stolen work,
including the entry point and sufficient program state to initiate
the computation. The runtime ensures that work is executed
exactly once and that the state of the program reflects the
contributions of all workers.

In this paper, we describe our extensions to work-stealing
schedulers to execute across ARM and DSP cores, taking into
account the limitations of a hybrid CPU+DSP platform.

B. Habanero-C Library (HCIib)

Habanero-C is a C-based task-parallel programming lan-
guage developed at Rice University. Habanero-C provides a
task-parallel programming model based on the async and
finish constructs [9], [11]. In this paper we introduce a
library-based implementation of Habanero-C, called HClib.
Here we briefly describe the HClib features related to this
paper, more details can be found in [7].

Figure 1 shows a sample code written in HClib. The
“async (stmt)” clause creates a new task, which will execute
(stmt) asynchronously (i.e., before, after, or in parallel) with
the code which follows the async block (i.e., the remainder
of the parent task). Figure 1 illustrates how the parent task,
Ty, uses an async construct to create a child task 77. Thus,
STMT1 in task 77 and STMT2 in task 7 can potentially
execute in parallel.

async is a powerful primitive because it can be used to
enable any statement to execute as a parallel task, including
statement blocks, for-loop iterations, and function calls.

Finish is a generalized join operation. The statement
start_finish () starts a finish scope in HClib and the
statement end_finish terminates this finish scope. Worker
starting the finish scope will wait in the end_finish scope

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

| Memory Subsystem

|
7Bt | BMB ]
MSM ™
ooRa | E—— | : 566):3
ToEi orePac
DDR3 EI‘.ﬂ\Fl* | tsvC ||
=== —==—— |- EEETEIY
« pEmT=e t =
[(oocrror o> B e 1 t ax
P-Coche |D-Cachs P Cache [b.Cache
- ARM
— A15
- W e
o ARM ARM
<« A15 A15
5% 32KB L1[32K8 L1 335 L1 [32KB L1
P-Cache|D-Cache |P-Cache |D-Caehg
g_l 4> 8 C66x DSP Cores @ up to 1.2 GHz
B 4 ARM Cores @ Up to 1.4 GHz
é;:( HyperLink TeraNet

L A A A
Multicore Navigator
» | Queue || Packet
Manager DMA
v r
5-Port Security
Ethernet Accelerator
Switch =
acke
i

i
I I I I T I Network

T Coprocessor
Vel bl bl e

Fig. 2: Keystone-II 66AK2H ARM-DSP SoC

Ll

Pl

&
<
&

3x FC
USB 3.0
3x SPI
PCle x2
SRIO x4 |«

EMIF16
GPIO x32 |4

2x UART [+

>

1GBE

until all async transitively spawned tasks from this scope
have completed. Each dynamic instance 7’4 of an async task
has a unique Immediately Enclosing Finish (IEF) instance F
of a finish statement during program execution, where F' is
the innermost finish containing T4 [14].

For example, the start_finish statement in Figure 1
is used by task T, to ensure that child task 77 has com-
pleted executing STMT1 before STMT3 starts executing. If T}
were to create additional transitive tasks, these would become
“grandchild” of T and T will wait for all to complete before
executing STMT3. The power of these constructs comes from
the ability to arbitrarily nest async and £inish constructs.

C. Keystone Il

Texas Instrument’s KeyStone platforms provide an inno-
vative platform that integrates RISC and DSP cores with
application-specific co-processors and input/output peripherals.
This design can achieve excellent performance for embedded
DSP applications, but can also be used for general-purpose
applications.

The work described in this paper was developed on TI’s
Keystone II platform (also referred to as Hawking), but the
principles should be applicable to other CPU+SPP architec-
tures. The Hawking platform contains 4 ARM Cortex-A15
processors - TI’s highest performing ARM processors, each
running at up to 1.4 GHz and 8 TI C66x floating-point DSPs
each running at up to 9.6GHz, all on a single low-power
System-on-chip (SoC). The hardware also provides hardware
queues, which can be used to communicate between ARM
and DSP cores. There are two queue managers with 8192
queues per queue manager and 64 descriptor memory regions
per queue manager.



Figure 2 shows the architecture of the Keystone-II 66AK2H
ARM-DSP SoC [3].

The ARM cores have 32KB of L1D (data cache) and
LI1P cache (program cache) per core and a shared L2 cache
of 4MB. The DSP cores also have 32KB of L1D and L1P
cache per core, plus a private L2 cache of 1IMB cache each.
The Multicore Shared Memory Controller (MSMC) provides
6 MB of scratchpad RAM (SRAM) that is on-chip, and
shared by all ARM and DSP cores. The additional shared
memory between ARM and DSP cores is the off-chip DDR,
with 2GB size, managed by two DDR3 controllers. Notably
the shared memory controller in Keystone devices neither
maintains coherency between two DSP cores nor between
ARM and DSP cores. It is the responsibility of the running
program to use synchronization mechanisms and cache control
operations to maintain coherent views of the memories. The
ARM cores are fully cache coherent and have their own MMU
(memory management unit), which is not shared with the
DSPs.

We propose an approach in which the work-stealing model
is extended across ARM and DSP, thus making the DSPs
independent and able to request and steal work for themselves.
We do this in a high-level programming model (HClib), which
abstracts all the above hardware details from the programmer.

III. PROGRAMMING MODEL

In this section, we use a parallel array addition example
to introduce the HC-K2H programming model. Parallel pro-
gramming constructs in HC-K2H are extended from HClib. As
we target HC-K2H for hybrid work-stealing across ARM and
DSP cores, its parallel programming constructs slightly differs
from HClib.

A. ARM and DSP shared buffers

Figure 3 shows a simple parallel array addition code using
HC-K2H programming model. For using the HC-K2H library,
a ‘C’ program has to include the HC-K2H header file (line 2).
The variables declared on line 5 are not shared by default
between the ARM and DSP. Buffers ‘a’, ‘b’ and ‘c’ can only be
shared between the ARM and DSP if they are heap allocated
by contiguous memory allocator (CMEM) [15]. CMEM can
allocate buffers either on MSMC or on DDR (Section II-C).
This is done by using the ws_malloc function for memory
allocations (lines 10-12). Currently HC-K2H allows CMEM
allocations only by the ARM but not by the DSP. The array
initialization done at line 14 are visible only on the ARM,
unless the ARM explicitly writes back and invalidate its
cache. This is done by using the function ws_cacheWbInv
(lines 16-18). It accepts the CMEM allocated buffer pointer
and buffer size as parameters. This CMEM allocated pointer
is valid only on the ARM. The conversion of this ARM
pointer to DSP pointer is performed by using the function
ws_dspPtr (line 51). This function accepts an ARM pointer
as a function parameter and returns the corresponding DSP
pointer as uint32_t type.

B. Asynchronous tasks

HC-K2H provides three different types of asynchronous
tasks. They are async, asyncDSP and forasync. The use

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

#include <stdio.h>
#include "hc-k2h.h"

#define INT uint32_t
INT size, *a *b, =xc;

void arm_init (INT n) {
int i;
size = n;
a=(INT+x)ws_malloc(n * sizeof (INT));
b=(INTx)ws_malloc(n * sizeof (INT));
c=(INTx)ws_malloc(n * sizeof (utin32_t));
for (i=0; i<n; i++) {

ali] = 0; b[i] = 100; c[i] = 1;

}
ws_cacheWbInv(a, n x* sizeof (INT));
ws_cacheWbInv (b, n x sizeof (INT));
ws_cacheWbInv(c, n * sizeof (INT));

}

© N oA W =

DN 2 o oo o
- O ©® Vo aOR BN = O ©

void dsp_init (voidx args) {

22 INT+ in = (INT*) args;
23 size = in[0];

24 a = (INTx) in[1];

25 b = (INT*) in[2];

n
@

c (INT*) in[3];

}

NN N
© ® N

void cleanup() {
ws_free (a); ws_free(b); ws_free(c);

}

W oW W W
@ N =S

void kernel (voidx args, int i) {
afi] = bl[i] + c[i];
}

W oW W W
N o o R

void par_sum() {

38 loop_domain_t loop = {0 /+lowboundx*/,
39 size /xhighBound*/, 1 /+stridex/, 32 /xtile sizex*/};
40 ws_args_t tl = {a, sizexsizeof (INT)};

=

start_finish(l, &tl);
forasync (kernel, NULL, 0, 1, &loop, WS_RECURSION) ;
end_finish();

}

P N
>R o0

int main (int argc, char x* argv) {
INT n = 1048576;
// initialization at ARM
arm_init (n);
// initialization at DSP
INT in[]={n, ws_dspPtr(a), ws_dspPtr (b),ws_dspPtr(c)};
start_f£finish(0);
asyncDSP (dsp_init, in, sizeof(in));
end_finish();
// launch parallel sum
par_sum() ;
cleanup () ;
return O;

oo oo aaoaaas s s
® N a R DN O L >

59 }

Fig. 3: Parallel array addition in HC-K2H

of asyncDSP and forasync is shown in our array addition
example. The only difference between async and asyncDSP
is their place of execution. async tasks are free to execute
either on the ARM or on the DSP, whereas asyncDSP can ex-
ecute only on the DSP. Synchronization on these asynchronous
tasks is done by wrapping them within a finish scope. A finish
scope is started by using start_£inish function and closed
by using end_finish function (Section II-B).

The CMEM allocations by the ARM (lines 10-12) are still
not visible to DSP. They are informed about the corresponding
DSP equivalent pointers by using asyncDSP (line 53). The
first parameter is the function pointer, the second parameter



contains arguments to this function, and the third parameter
contains the size of the arguments. The start_finishis a
variable argument function (line 52). Writes performed by the
DSP on shared buffers are visible to ARM only after ARM
invalidates its cache. HC-K2H runtime can do this only if
its informed about the pointer to CMEM buffer (write access
types) and corresponding buffer size. ws_args_t structure is
provided by the runtime to pack the CMEM buffer pointer and
buffer size. However, as the asyncDSP task at line 53 will
not write to any shared variable, start_finish at line 52 is
passed with zero as parameter. Parallel addition of arrays using
forasync is launched at line 56 The forasync function
(line 42) has the first parameter as function pointer to the user
function, second parameter is arguments to the user function,
third parameter is the size of user function arguments, fourth
parameter is the dimension of the for loop (1 for single
dimension), fifth parameter as pointer to the loop domain
containing information on for loop parameters (lines 38-
39), and the last parameter as scheduling mode (recursive
or chunked scheduling). forasync will write to CMEM
allocated buffer ‘a’ (line 34), hence ws_args_t is used at
line 40 to pack this information and is passed as parameter
to start_finish at line 41. The HClib APIs has been
designed to be accessible to C programs. Higher-level APIs
can instead be used in C++ programs by using lambdas and
related constructs, as was done in Habanero-C++ [16].

Care should be taken in deciding the total bytes of shared
buffer written by tasks generated by forasync and async
constructs. The DSP cache line size is 128 bytes, whereas it is
64 bytes for the ARM. The ARM can read a buffer written by
the DSP only after it invalidates its own cache. If the size of
the buffer accessed in an asynchronous task is not a multiple
of 128 bytes, a cache flush by the ARM can overwrite the DSP
results. To avoid this situation, we have chosen a tile size as
32 in line 39. This will ensure that 128 bytes of contiguous
data are written to shared buffer ‘a’ by each task. Another (less
efficient) way to achieve this is to pack each element of ‘a’
in a structure with a padding to ensure each array element is
128 bytes (thereby allowing for tile sizes as small as 1).

A HC-K2H program is compiled with both the ARM C++
compiler and the DSP C compiler so as to obtain executables
for both classes of processors.

IV. IMPLEMENTATION

In this section, we describe the design of the HC-K2H
work-stealing runtime.

A. Data-structures for task management

In traditional work-stealing runtimes, each worker thread
maintains a software-implemented deque. Thieves can steal
task from this deque using atomic operations. However, the
DSP C platform supports neither atomic operations nor the
pthread library. Though it can support hardware queues and
up to 32 hardware semaphores (not accessible from ARM).
Hardware queue accesses are always thread safe and can be
performed both from the ARM and the DSP. Hence, in HC-
K2H the DSP workers use hardware queues for task manage-
ment. These hardware queues allow push operations to be
performed at either end, but pop operations can only be per-
formed from the tail. To decide the work-stealing data-structure

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

1.006
1.004
1.002

0.998
0.996
0.994
0.992

0.99

Seedup over FIFOhwQueue

Bo, i M2y Me2

S
0, < Om,
4 S
%

/14‘5'1‘ /Wel‘ 44‘91‘,)/;', O'S@f/&e,/- Se, » 75)
/ ( w\
9y

(Y77
ol ol ! (W e e W O (o,
M0%$®%©\0 SRS/ S
Benchmark executions by varying total workers

EEE | IFOhwQueue I WSDeque

Fig. 4: Work-stealing performance at ARM using software
deques and hardware queues

»

if (Idle_DSPs) {
increment(task->arm_finish)
push(task, SQ1).

-

Shared SQ2
DSP_0
DSP_1
DSP_2
DSP_3
DSP_4
DSP_5

=22 Shared SQ1
""" Shared SQ3

>
>
>
>
>
>
>
>

Steals within ARM cores

“Push

(R
vi

4
<
<
<

Steals within DSP cores

Pop (task, SQ3);
decrement(task->arm_finish);

Steal(task, SQ1); start_dsp_root_finish( );

end_arm_root_finish( ); push(task, SQ2);
Steal(task, DSPs); start_arm_root_finish( )

end_dsp_root_finish( ); push(task, SQ3);

Pop (task, SQ2); decrement(task->dsp_finish)

Fig. 5: HC-K2H work-stealing runtime

for ARM, we performed the experiment shown in Figure 4
(experimental methodology described later in Section V-A).
We implemented three different versions of Habanero-C library
and executed each of our benchmarks using them on ARM
processor only. Each version of the runtime differs from each
other in the way the tasks are managed by the workers. The
first version (WSDeque) uses the traditional work-stealing
deques, second version (FIFOhwQueue) uses a FIFO hard-
ware queue, and the third version (LIFOhwQueue) uses LIFO
hardware queues at each worker for task management. We
observed that all the three versions performed roughly the
same. However, HC-K2H uses WSDeque for ARM workers
rather than hardware queues so that they don’t have to rely on
hardware queue descriptors (shared across all hardware queues
in HC-K2H) for managing every asynchronous task.

B. Hybrid work-stealing

Figure 5 shows the design of HC-K2H’s hybrid work-
stealing runtime. During the ARM runtime initialization phase,
the message descriptor queue and the hardware queues are
heap-allocated by the CMEM allocator. This heap resides on
the on-chip MSMC memory. Next, the ARM launches the
DSP executable and passes the information on queues to DSP
core 0, which then writes back the information in DSP shared
variables. Once all the queues are initialized by DSP core 0,
it unblocks other DSP cores from a barrier. Every DSP core
now becomes a thief and start hunting for tasks. ARM core 0
executes the user main and launches the computation.



To manage hybrid steals, three extra hardware queues
(SQ1, SQ2, and SQ3) are used in HC-K2H runtime. Both
ARM and DSP cores first try a local steal. After failing they
try to steal from each other. ARM can access DSP queues
but DSP cannot access ARM’s deque. Also the finish scope
cannot be shared between DSP and ARM. If there is at least
one task on ARM deque, it will check if any of the DSP cores
are free (CMEM allocated flag accessed by ARM and DSP). If
yes, then ARM will pop a message descriptor from descriptor
queue and copy the task information into it. It also stores its
current finish scope inside this descriptor. ARM increments
its local finish counter and then pushes this descriptor to SQ1
(accessible to DSP). After a hybrid steal, both ARM and DSP
wraps the task execution within a new finish scope. Once
the finish scope is terminated, ARM pushes a descriptor in
SQ2 whereas DSP pushes to SQ3. This descriptor contains the
original finish scope of the root task. During steal cycles, ARM
try pop from SQ3 and DSP try from SQ2. If they succeed they
will decrement the finish scope embedded in this descriptor.

C. Cache updates

ARM cores are cache coherent but DSP cores are not.
DSP cache settings allow two write modes: a) write-back;
and b) write-through. In write-back mode, DSP core has to
explicitly call the cache write back and invalidate method after
writing to shared data. In write-through the cache contents are
written back to memory by default. However, in either case
a cache invalidation method is always called before executing
any task. DSP cores allocate memory for finish object on non-
cached memory. Any writes to finish (counter increment and
decrement) are never cached and visible to all DSP cores.

CMEM allocated buffers (writable by ARM and DSP)
are packed in ws_args_t and passed as parameters to
variable argument function start_£finish (Figure 3). ARM
stores this information in every subsequent finish scopes. It
calls ws_cacheWbInv on all these CMEM buffers at the
outermost finish scope. When exiting end_finish, ARM
cores call ws_cacheWbInv on CMEM buffers such that
ARM neither looses the data in its cache, nor the results from
DSP execution. It performs similar action at all end_finish
for the tasks stolen from DSP (Section IV-B).

V. EXPERIMENTAL RESULTS
A. Experimental setup

We have used three different benchmarks: a) NBody prob-
lem [7] (predicting the individual motions of a group of
celestial objects interacting with each other gravitationally),
b) Series test [17] (calculates first n Fourier coefficients of
the function (z + 1)® defined on the interval 0,2), and c)
Matmul [6] (2D matrix multiplication). NBody and Series
benchmarks are non-recursive and use forasync inside a
flat finish scope. Matmul is recursive async-finish type
generating nested finish scopes. We run each experiment six
times, reporting the mean along with a 95% confidence interval
based on a Student t-test.

B. Work-stealing performance

We execute each benchmark using both hybrid work-
stealing and DSP only work-stealing. In hybrid work-stealing

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

/

_\7/

A e
// ~
1 2 3 4 5 6 7 8 9 10 11 12
Total workers (ARM + DSP)

Speedup over Serial Elision (ARM)

Speedup over Serial Elision (ARM)

8
6
4 /,./*/
2
0

1 2 3 4 5 6 7 8
Total workers (at DSP only)
—— Matmul NBody ——— Series

—+— Matmul NBody ~—— Series

(a) DSP work-stealing performance (b) Hybrid work-stealing performance

Fig. 6: Work-stealing performance

=
@ 70§ = ] ;
E ’\ % 0.6
8 K
% 60 2 os ]
| R -
s 50 =
k) =3 0.4
® 40 4
< <
2 5 T x 5 03
g
3 T T, g o2
s 20 —— E]
5 B~ i T
—~—————— % 1 S
0 o

5 6 7 8 9 10 " 12 5 6 7 8 9 10 " 12
Total workers (ARM + DSP) Total workers (ARM + DSP)

—+— Matmul NBody ——— Series —— Matmul NBody ——— Series

(a) Total percentage of hybrid steals (b) Ratio of total cache flushes at
ARM to total asynchronous tasks gen-
erated at ARM

Fig. 7: Hybrid work-stealing statistics

results we very the total number worker threads from 1 to
12. Using up to 4 worker threads results in ARM only work-
stealing. Increasing worker threads beyond 4 involve DSP
cores, resulting in hybrid work-stealing. In DSP only work-
stealing, one of the ARM cores offloads the entire compu-
tation to DSP and waits for the completion. Figure 6 shows
the performance of both hybrid work-stealing and DSP only
work-stealing for all the benchmarks. The speedup at each
worker thread is calculated against the execution of serial
elision version of benchmarks at ARM. Removing all HC-
K2H programming constructs from a benchmark creates serial
elision version. Increasing worker threads in hybrid work-
stealing increases the speedup of all the benchmarks. NBody
and Series show excellent speedup with 12 worker thread using
hybrid work-stealing significantly outperforming the 8 core
DSP only work-stealing. However, Matmul using hybrid work-
stealing does not outperform DSP-only work-stealing.

The main reason for this anomaly is the nature of the
Matmul benchmark. Matmul is a recursive benchmark gener-
ating several nested finishes, and relatively fine-grained tasks,
the consequences of which can be observed on Figure 7.
Figure 7(a) shows the total number of hybrid steals in each
benchmark as a percentage of total steals. When a single
DSP worker is added to the execution (resulting in 5 worker
threads), hybrid steals in Matmul increase to 67%. Hybrid
steals are always much more costly than local steals, result-
ing in worse performance for 5 worker threads than for 4
worker threads. Figure 7(b) shows the ratio of total number
of ws_cacheWbInv called from end_finish at ARM to
the total number of asynchronous tasks generated at ARM. We
can observe that for Matmul, the ARM side of the machine has
to perform a cache flush approximately once for every 2 tasks



generated, a much more frequent occurrence than for NBody
and Series. Large number of end_finish implies frequent
calls to ws_cacheWbInv at ARM (Section IV-C), resulting
in a significant loss of performance.

We would like to note that increasing the granularity of
Matmul tasks (an obvious approach to reducing the total
number of steals and thus the total number of hybrid steals)
does eventually result in a scenario where 4 ARM cores and 8
DSP cores outperform 8 DSP cores. We chose not to include
those results since such large task granularity results in a very
poor sequential performance of each task due to cache issues,
negating any advantage of using additional cores. We chose
instead to present the results with the best-performing tile size.
This point to an obvious topic for future research in devising a
runtime strategy for minimizing hybrid steals without affecting
the sequential performance or parallel slackness.

VI. RELATED WORK

Previous work has looked into providing programming
models for architectures with heterogeneous cores. Models
such as CUDA and [18] and OpenCL [19] can target GPU
accelerators using a restricted programming model that also
includes a considerable amount of hardware detail. Models
such as StarSs offer a pragma-based approach for expressing
data parallel computations and its instantiations target lower
level architectures such as IBM’s Cell [20] and GPUs [21].
Another model, which looks at creating a high level model
for embedded systems is Lime [22] - an enhanced Java
language which can generate Verilog code for FPGAs and
OpenCL for GPUs. Closer related to our work is the CnC-
HC programming model [23] which relies on a runtime that
offers work-stealing across CPUs, GPUs and FPGAs. Previous
work [4], has demonstrated an OpenMP 4.0 implementation
on the Keystone-II 66AK2H ARM-DSP SoC. In addition to
this, TI also offers an OpenCL programming models for their
Keystone II platform. Both these models use the DSP cores
as accelerators, with the ARM cores offloading the work in
parallel regions to them. To our knowledge however, HC-K2H
is the first system to provide a work-stealing runtime for ARM
and DSP cores, along with abstracting away all the hardware
details.

VII. CONCLUSION

In this paper, we presented a high-level task-parallel pro-
gramming model based on Habanero and an implementation of
that model on the heterogeneous Texas Instruments KeyStone
Il platform that combines general-purpose ARM cores and
special-purpose DSP cores. Our model allows creation and
synchronization of parallel tasks without any indication on
where they should execute. Our implementation allows task
execution on either ARM or DSP cores and load balancing
through work-stealing amongst heterogeneous cores, while
using the mechanisms available on the KeyStone II platform
for synchronizing operations within the runtime.

Our experimental evaluation of task-parallel benchmarks
shows that our system can effectively use all the available
resources, achieving optimal load balance and even outper-
forming DSP-only executions. The experiments also show
that future research in runtime heuristics for heterogeneous
systems is necessary since hybrid execution does not always

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

outperform DSP-only execution, due to the fact that overhead
of heterogeneous work-stealing and increased number of steal
attempts might outweigh the benefits of complete load balance.

ACKNOWLEDGMENT

We would like to thank Vincent Cavé for implementing the
library version of Habanero-C language.

REFERENCES

[1] M. Feldman, “Titan sets high water mark for GPU supercomputing,”
HPCWire, 2012.

[2] W. Vanderbauwhede and K. Benkrid, High-Performance Computing
Using FPGAs. Springer, 2013.

[3] “Texas Instruments Literature: SPRS866: 66AK2H12/06 Multicore
DSP+ARM Keystone II System-on-Chip (SoC),” Texas Instruments,
Tech. Rep., November 2012.

[4] G. Mitra, E. Stotzer, A. Jayaraj, and A. P. Rendell, “Implementation
and optimization of the openmp accelerator model for the TI keystone
1T architecture,” in IWOMP’14, 2014.

[5] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291-312, Aug. 2007.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of
the Cilk-5 multithreaded language,” in PLDI '98. ACM, 1998.

[7] “Habanero-C  Overview,”  https://wiki.rice.edu/confluence/display/
HABANERO/Habanero-C, Rice University, 2013.

[8] V.Cavé, “HClib: a library implementation of the Habanero-C language,”
http://habanero-rice.github.io/hclib/, 2013.

[9] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the new
adventures of old X10,” in PPPJ, 2011, pp. 51-61.

[10] O. A. R. Board, OpenMP Application Program Interface, Version 4.0,
July 2013, http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[11] P. Charles et al., “X10: An object-oriented approach to non-uniform
cluster computing,” in OOPSLA, 2005, pp. 519-538.

[12] O. Tardieu, H. Wang, and H. Lin, “A work-stealing scheduler for X10’s
task parallelism with suspension,” in PPoPP, 2012, pp. 267-276.

[13] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and O. Tardieu,
“Work-stealing without the baggage,” in OOPSLA, 2012, pp. 297-314.

[14] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, ‘“Phasers:
a unified deadlock-free construct for collective and point-to-point syn-
chronization,” in ICS '08. ACM, 2008, pp. 277-288.

[15] T. Instruments, “CMEM

http://processors.wiki.ti.com/index.php/CMEM_Overview.

[16] V. Kumar, Y. Zheng, V. Cavé, Z. Budimli¢, and V. Sarkar, “Habaner-
oUPC++: A compiler-free PGAS library,” in PGAS, 2014, pp. 5:1-5:10.

[17] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey,
“A benchmark suite for high performance java,” Concurrency - Practice
and Experience, vol. 12, no. 6, pp. 375-388, 2000.

[18] J. Nickolls, I. Buck, M. Garland, Nvidia, and K. Skadron, “Scalable
Parallel Programming with CUDA,” ACM Queue, vol. 6, no. 2, pp.
40-53, 2008.

[19] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 1-3, pp. 66-73, 2010.

[20] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a
programming model for the Cell BE architecture,” in SC "06, 2006.

[21] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S.
Quintana-Orti, “An extension of the starss programming model for
platforms with multiple GPUs,” in Euro-Par, 2009.

[22] J.S. Auerbach, D. E. Bacon, P. Cheng, and R. M. Rabbah, “Lime: a java-
compatible and synthesizable language for heterogeneous architectures.”
in OOPSLA’10, 2010.

[23] A. Sbirlea, Y. Zou, Z. Budimlié, J. Cong, and V. Sarkar, “Mapping
a data-flow programming model onto heterogeneous platforms,” in

LCTES 12, 2012.

overview,”’



