
Communication Optimizations for Distributed-Memory X10 Programs

Rajkishore Barik
Intel Corporation, Santa Clara, CA

rajkishore.barik@intel.com

Jisheng Zhao
Rice University, Houston, TX

jisheng.zhao@rice.edu

David Grove
IBM T.J Watson Research Center, NY

groved@us.ibm.com

Igor Peshansky
IBM T.J Watson Research Center, NY

igorp@us.ibm.com

Zoran Budimlić
Rice University, Houston, TX

zoran@rice.edu

Vivek Sarkar
Rice University, Houston, TX

vsarkar@rice.edu

Abstract—X10 is a new object-oriented PGAS (Partitioned
Global Address Space) programming language with support
for distributed asynchronous dynamic parallelism that goes
beyond past SPMD message-passing models such as MPI and
SPMD PGAS models such as UPC and Co-Array Fortran.
The concurrency constructs in X10 make it possible to ex-
press complex computation and communication structures with
higher productivity than other distributed-memory program-
ming models. However, this productivity often comes at the
cost of high performance overhead when the language is used
in its full generality.

This paper introduces high-level compiler optimizations and
transformations to reduce communication and synchronization
overheads in distributed-memory implementations of X10 pro-
grams. Specifically, we focus on locality optimizations such
as scalar replacement and task localization, combined with
supporting transformations such as loop distribution, scalar
expansion, loop tiling, and loop splitting. We have completed a
prototype implementation of these high-level optimizations, and
performed a performance evaluation that shows significant im-
provements in performance, scalability, communication volume
and number of tasks. We evaluated the communication opti-
mizations on three platforms: a 128-node BlueGene/P cluster,
a 32-node Nehalem cluster, and a 16-node Power7 cluster. On
the BlueGene/P cluster, we observed a maximum performance
improvement of 31.46× relative to the unoptimized case (for
the MolDyn benchmark). On the Nehalem cluster, we observed
a maximum performance improvement of 3.01× (for the
NQueens benchmark) and on the Power7 cluster, we observed
a maximum performance improvement of 2.73× (for the
MolDyn benchmark). In addition, there was no case in which
the optimized code was slower than the unoptimized case. We
also believe that the optimizations presented in this paper
will be necessary for any high-productivity PGAS language
based on modern object-oriented principles, that is designed
for execution on future Extreme Scale systems that place a
high premium on locality improvement for performance and
energy efficiency.

I. INTRODUCTION

Computer systems anticipated in the 2015 – 2020 time-
frame are referred to as Extreme Scale [21] because they
will be built using massive multi-core processors with hun-
dreds of cores per chip. These systems pose new critical
concurrency and energy efficiency challenges for software.
From an application viewpoint, the key challenges are the

ability to express all of the intrinsic parallelism and locality
in a portable manner, while ensuring that this expression
can be efficiently mapped on to Extreme Scale systems
with processors that exhibit high variability and require high
degrees of locality for performance and energy efficiency.

X10 [23] is a new object-oriented partitioned global ad-
dress space (PGAS) programming language that is designed
for future parallel computing platforms including Extreme
Scale systems. It provides first-class support for distributing
data and computation, as well as for creating dynamic tasks
in a distributed-memory context, unlike past PGAS models
(such as UPC [9] and Co-Array Fortran [20]) that only
supported bulk-synchronous SPMD execution models. The
concurrency constructs in X10 (such as async, finish,
at, ateach, atomic, places, distributions) make it pos-
sible to express complex computation and communication
structures with higher productivity than past distributed-
memory programming models. However, this productivity
often raises new challenges for code generation and opti-
mization.

This paper introduces high-level compiler optimizations
and transformations to reduce communication and synchro-
nization overheads in distributed-memory implementations
of X10 programs. The generality of X10 is manifested in
its distributed object model which includes objects, structs,
and closures. A key source of communication overhead
relates to the serialization that is performed on an object
and the subgraph of objects that it can reach, which directly
impacts the volume of communicated data. A key source
of synchronization overhead arises from lightweight tasks
that cross place boundaries. Given this context, we focus on
locality optimizations including scalar replacement and task
localization, combined with supporting transformations such
as loop distribution, scalar expansion, loop tiling, and loop
splitting.

Using our prototype implementation we evaluated the
performance of five programs (three benchmarks and two
real-world applications) on three platforms: (1) a 128-node
BlueGene/P cluster that is part of a 4096-node system; (2)
a 32-node Nehalem cluster with Infiniband interconnect that

is part of a 90-node system; and (3) a 16-node Power7
cluster with Infiniband interconnect that is part of a 18-
node system. On the BlueGene/P cluster, we observed a
maximum performance improvement of 31.46× relative to
the unoptimized case (for the MolDyn benchmark). On
the Nehalem cluster, we observed a maximum performance
improvement of 3.01× (for the NQueens benchmark) and
on the Power7 cluster, we observed a maximum performance
improvement of 2.73× (for the MolDyn benchmark). There
was no case in which the optimized code was slower than
the unoptimized case. Additionally, the experimental results
show that our optimizations produce significant improve-
ments in performance, scalability, communication volume
and number of remotely spawned tasks.

The rest of the paper is organized as follows. Section II
summarizes the X10 language constructs, compiler, and
runtime. In Section III, we present a motivating example
to illustrate the effectiveness of our approach. The commu-
nication optimizations and their soundness in the presence
of exceptions are described in Section IV. Experimental
evaluations are presented in Section V. We discuss related
work in Section VI and conclude in Section VII.

II. X10

X10 is an object-oriented Partitioned Global Address
Space (PGAS) language. The partitioned global address
space is reified in X10 by the concept of a place. A
computation in X10 may span multiple places. Objects
residing in one place may contain references to objects
residing in other places. However, X10 enforces a strong
locality property: it is not permissible to access an object’s
mutable state through a remote reference to that object1.
Therefore computations must sometimes “shift” from one
place to another to access the data they need. When this
happens, the compiler and runtime system must somehow
communicate data and control information from one place
to another. This section provides background information on
the X10 2.0 programming language constructs and some im-
plementation details of X10 2.0.6 relevant to understanding
this cross-place communication. We focus on the subset of
X10 that includes the following constructs: places, regions,
distributions, async, at, finish, ateach, and atomic.
For a more complete description of X10, please refer to the
X10 language specification [23].

A computation in X10 consists of one or more asyn-
chronous activities (light-weight tasks). A new activity is
created by the statement async S. To synchronize activities,
X10 provides the statement finish S. An activity that
executes a finish statement will not execute the statement

1The 1.7, 2.0, and 2.1 versions of X10 have had slightly different
distributed object models, but this fundamental locality property is true
of all three versions of the language. Mutable state can only be accessed
in its home location.

after the finish until all activities spawned within the finish’s
body have terminated.

Every activity executes in a single Place (address space).
While executing in this place, it may freely access any
object that also resides in the place. The fundamental X10
construct for “place-shifting” is at (p) S. An at statement
shifts execution of the current activity from the current place
to place p2. In X10 2.0, an at statement is implemented
by the X10 compiler and runtime system by translation
to an active message. The message identifier encodes the
source code location (the code to execute at the target place
when it receives the message). The message payload is a
serialized form of the data necessary to execute the body
of the at. To determine the data needed, the compiler
analyzes S and identifies any upwardly exposed variables
(variables referenced in S that are defined in its lexically
enclosing environment). The compiler then generates code
to serialize the values contained by each of these variables
into a communication buffer. On the remote side, when
the message is received, the runtime system de-serializes
the values from the communication buffer, initializes the
variables of S to refer to them, and then executes S. At the
sending place, the activity that executes the at statement is
blocked until it is notified that S has completed.

Exactly what data is serialized at an at is a function of
X10’s distributed object model. In X10 2.0, there are three
kinds of values: objects, structs, and functions (closures).
When an object is serialized, the subset of its instance fields
that have been declared as global are serialized. Only val

(immutable) fields may be declared as global. To enable
later access to the non-global instance fields of the object,
when the object is de-serialized in the destination place
it will contain additional information (a remote reference
to the original object) that can be used in subsequent at
statements to return to the home location of the original
object and access its non-global fields. It will also contain
copies of all of the original object’s global fields. Since these
fields are immutable, they can be safely accessed in the
remote location. When structs and functions are serialized,
all of their data members are serialized (all instance fields of
these types are implicitly global). When serializing a global
instance field, the value contained by the field is recursively
serialized. Thus when communicating the data for an at

statement, for each upwardly exposed variable, the transitive
closure of the object graph reachable by global instance
fields is serialized.

In X10 2.0, the construct async (p) S is a syntac-
tic sugar for at (p) async S and is implemented ac-
cordingly. X10 also provides the ateach construct as
a convenient way of spawning multiple activities across
a set of places. The statement ateach (p in dist) S

2X10 also supports at expressions such as at (p) E and at (p)
S; E that facilitate the return of a value from a remote computation.

is expanded by the front-end of the X10 compiler into
an equivalent statement for (p in dist.region) at

(dist[p]) async S and is implemented accordingly.
A core part of the functionality provided by the X10 class

libraries is support for k-dimensional arrays (both single
place and distributed). A Point of rank k represents an
element in a k-dimensional Cartesian space with integer
value coordinates. A Region is an ordered set of points,
all of the same rank. An Array in X10 is defined over a
Region; the Array maps every Point in its defining region
to a corresponding data element. Array is a single-place
construct; the Array object and all of its backing storage
are allocated in a single Place and can only be accessed by
activities executing in that Place. In X10 2.0.x, the class
library also provides the Rail and ValRail classes, which
are specializations of Array for the common case of 1-
dimensional, dense, zero-based arrays. Because a ValRail

is immutable, all of its elements will be serialized between
places; in contrast when a Rail is serialized only a remote
reference to the object is created (the elements are not
serialized).

A Dist (distribution) maps each Point in a Region

to a Place. A DistArray (distributed array) is defined
over a Dist; the DistArray maps every Point in the
Region of its defining Dist to a data element. Several
simple distributions such as unique, block, and block-cyclic
are built into the class libraries; user-defined distributions
can also be used to define instance of DistArray. Unlike
Array, DistArray’s backing storage is distributed among
all of the Places that are included in its Dist. A data
element in a DistArray can only be accessed by activities
that are executing in the Place to which the Dist maps the
corresponding Point.

A lower-level facility provided by the class libraries is
that of a PlaceLocalHandle. A PlaceLocalHandle in
X10 fills a similar role as the Shared Variable Directory
(SVD) in IBM’s UPC implementation [5]. Namely, it pro-
vides a unique id that can be efficiently resolved to a
unique local piece of storage at each Place. One important
use of PlaceLocalHandle is to implement the backing
storage for DistArray. Each instance of a DistArray

internally has a single instance of a PlaceLocalHandle

which it uses to find the place-local storage used as the
backing data store for its data elements. Programs may
also use PlaceLocalHandle directly, and several of our
optimizations work by automatically transforming programs
to introduce additional PlaceLocalHandle’s.

The X10 compiler infrastructure is depicted in Figure 1.
This compilation framework is composed of two parts:
an AST-based front-end that parses X10 source code and
performs AST based program transformation; Native/Java
backends that translate the X10 AST into C++/Java code
and invokes the post compilation process that uses C/C++
compiler to build executable binary or javac compiler to

X10 Compiler Front End and Common Optimizer

X10 Application Front End
AST-based optimizations

AST- Lowering

Java Back End Native Back End

X10 AST

Java .cu

X10 AST

JVM

g++/xlC javac

Bytecode Executable

XRX C++

Natives

XRX Java

Natives

X10RT/PGAS

Native Backend Java Backend

C++

CUDA

X10 Class Libs

X10RT/PGAS

Figure 1. X10 Compiler Structure

build bytecode. Both binary code and Java bytecode need to
co-operate with the X10 runtime system (X10RT) that man-
ages task scheduling and message passing on the distributed
memory system.

III. MOTIVATING EXAMPLE

Figure 2 (Original Code) presents a fragment of the dis-
tributed X10 version of the JGF MolDyn benchmark [17]. It
creates an array of Particle objects, i.e., particleTable,
using the distributed array library interface of X10. The
particleTable is distributed across places using a block
distribution that is created using Dist.makeBlock(). The
loop nest visits each Particle at a place using the j loop
and for each such Particle, it traverses the remaining
Particles to compute pairwise force using the k loop. The
at construct in the k-loop fetches the Particle objects
from various places.

Even though the code in Figure 2 (Original Code) is
succinct, it offers several opportunities for optimizing com-
munication and synchronization overhead. First, the k loop
nest creates unnecessary parallel tasks and their synchro-
nization for fetching local data. Second, while the loop nest
executes concurrently across places, it executes sequentially
within a place due to the synchronization imposed by the at
construct; some of these synchronizations are unnecessary
and can be eliminated using compiler based transformations
described in this paper.

Figure 2 (Optimized Code) presents the transformed code
for (Original Code) after applying the following communi-
cation optimizations:
• First, loop splitting is applied to the k loop which

separates local and remote communications while pre-
serving the original program semantics. The local com-
munications performed by the k1 loop can then inline
the at construct and eliminate parallel task creation and

struct commBuf {
x:double;y:double;z:double;
def this(x:double,y:double,z:double) {
this.x=x;this.y=y;this.z=z; } }

...
val dist = Dist.makeBlock([0..M-1]);
val particleTable = DistArray.make(dist, ...)(M);
val slice = M/Place.MAX_PLACES;
...
finish ateach (p in Dist.makeUnique()) {
val i_ = here.id;

for (var j:Int=i_*slice; j<(i_+1)*slice; j++) {
for (var k:Int=j+1; k<M; k++) {

val res = at (particleTable.dist(k)) {
val tmpP = particleTable(k);
val tx = tmpP.x, ty = tmpP.y, tz = tmpP.z;
commBuf(tx, ty, tz)

};
rxcoord=res.x; rycoord=res.y; rzcoord=res.z;

... } } }
Original Code

...
finish ateach (p in Dist.makeUnique()) {
val commBufs:Rail[commBuf]=Rail.make[commBuf](slice);
val i_ = here.id;
for (var j:Int=i_*slice;j<(i_+1)*slice;j++) {
// LOCAL
for (var k1:Int=j+1;k1¡M && k1¡(i˙+1)*slice;k1++) {
// the following at is for local place-shifting
// and is unnecessary in this case
val res = at (particleTable.dist(k1)) {

val tmpP = particleTable(k1);
val tx = tmpP.x, ty = tmpP.y, tz = tmpP.z;
commBuf(tx, ty, tz) };

rxcoord = res.x; rycoord = res.y; rzcoord = res.z;
... } }
// REMOTE
val startPlace = i_+1;
for (var k2:Int=startPlace;k2¡Place.MAX˙PLACES;k2++) {
finish at (places(k2)) async {

for (k3=slice*k2;k3¡slice*(k2+1);k3++) {
val tmpP = particleTable(k3);
val tx = tmpP.x, ty = tmpP.y, tz = tmpP.z;
val ind = k3 % slice as int;
at (commBufs) async
commBufs(ind) = commBuf(tx, ty, tz);

} }
for (var j:Int=i_ * slice;j<(i_ +1)*slice;j++) {
for (k3=slice*k2;k3<slice*(k2+1);k3++) {
val ind = k3 % slice as int;
val cb = commBufs(ind);
rxcoord = cb.x; rycoord = cb.y; rzcoord = cb.z;

... } } } }
Optimized Code

Figure 2. MolDyn example demonstrating the benefits of communication optimizations. We assume that the particleTable is block distributed across
MAX PLACES number of places. For simplicity sake, let us assume that the number of particles, M , is a multiple of MAX PLACES (this is not a
requirement). The Original Code is the unoptimized code for the MolDyn benchmark. The Optimized Code is obtained from Original Code
by a series of compiler transformations described in this paper: (1) loop splitting of k loop for separating local (k1) and remote (k2) communications; (2)
strip-mine and scalar expansion of remote loop k2 to parallelize the loop iterations and avoid fine-grained synchronization overhead; (3) loop distribution
to distribute j loop to produce final code in Optimized Code. The transformations are described in detail in an expanded version of this paper in [3].

synchronization overheads. This is only valid if the at

construct does not throw any exceptions, which is the
case in this example. We discuss in Section IV-E how
these transformations can be performed in the presence
of exceptions.

• Second, the remote loop created after loop splitting
is sequential due to the “place-shifting” construct at.
This incurs synchronization overhead for every iteration
of the remote loop. Since the body of the at construct
only fetches data from remote places (and is free of
loop-carried dependencies and side-effects), we can
easily parallelize the loop by scalar expanding res to
commBufs. For efficient space usage, we strip-mine
the remote loop at a place-level using loop k2. Such
a transformation results in: (a) parallelizing the loop
nest; and (b) reducing the synchronization overhead to
exactly one per place instead of every iteration in the
original program.

• Finally, the j loop is distributed to both the k1 and
k2 loop nests. This transformation removes additional
overheads of parallel task creation and synchronization.

IV. COMMUNICATION OPTIMIZATION

In this section, we introduce compiler optimizations that
reduce the communication overhead of distributed-memory
X10 programs. As mentioned earlier, we focus on the
subset of X10 that includes the following constructs: places,

regions, distributions, async, at, finish, ateach, and
atomic. The sources of communication overhead include:
1) the size of transferred data; 2) the number of communi-
cation operations, (i.e., async and at); and 3) the number
of synchronization operations (i.e., finish). For 1), our
approach is to apply scalar replacement and object splitting
transformations to reduce the size of transferred data by
removing certain classes of redundant data communications.
For 2) and 3), our approach is to apply several program
transformations (focused on loops) to reduce the number of
communication and synchronization operations performed.

A. Scalar Replacement

As introduced in Section II, X10 serializes immutable
classes, structs, and functions (closures) when they need to
be passed across places. These forms of serialization will
be necessary by default in any high-productivity PGAS lan-
guage based on modern object-oriented principles. However,
unlike other models, an X10 implementation need not worry
about scenarios where read/write accesses can be performed
on the same location by activities in more than one place.
Since the communicated values are immutable, the compiler
is free to communicate only a live subset of the values
designated for data transfer, e.g., in some cases, only a
field of an object or an element of an array needs to be
communicated instead of the entire object or entire array.

Scalar replacement [7], [10] is a classical compiler trans-

val c1:C = new C(2,3);
val c2:C = new C(3,4);
async (p) {
 ... c1.x ...;
 ... c2.x ...;
 ... c2.y ...; }

c1.loc
&c1

RR(c1)

c2.loc
&c2

RR(c2)

c1.x
c1.y

RR(c1)

c2.x
c2.y

RR(c2)

val x:C = new C(2,3);
val y:C = new C(3,4);
val c1_x = c1.x;
val c2_x = c2.x;
val c2_y = c2.y;
async (p) {
 ... c1_x ...;
 ... c2_x ...;
 ... c2_y ...; }

c2_x
c2_y

c1_x

Communication
Buffer

Communication
Buffer

class C {
 global var x;
 global var y;
 }

Figure 3. Communication optimization using scalar replacement for object
field accesses

formation used to replace accesses of object fields and
array elements by accesses to scalar temporaries, thereby
enabling more opportunities for register allocation. However,
in this work, we use the scalar replacement transformation
to eliminate redundant data communications in distributed-
memory X10 programs, as explained in the following two
scenarios.

The upper left part of Figure 3 shows a code fragment
containing field accesses within a remote async. The
async(p) statement creates an activity at the remote place p
that performs memory load operations on object fields c1.x,
c2.x, and c2.y. The unoptimized communication buffer that
needs to be dispatched to place p along with the async is
shown on the upper right; it consists of the remote reference
(RR) handles for objects c1 and c2 including their fields
x and y (shown on upper right corner of Figure 3). The
remote reference handle captures the place of the object and
its memory location at that place. In the optimized case,
a compiler can scalar-replace the immutable field accesses
c1.x, c2.x, and c2.y in the async, reducing the size of the
communication buffer (as shown in the lower right part of
Figure 3). The transformed code after scalar replacement is
shown in the lower left part. The optimized code does not
need to send any remote reference handles.

In general, the precision of a scalar replacement transfor-
mation depends on the precision of the object alias analysis
performed by the compiler. For the results reported in this
paper, we used an efficient flow-insensitive alias analysis
algorithm derived from the algorithms reported in [10] and
[4]. Further, scalar replacement of array accesses requires
that their bounds check operations are also redundant.

Figure 4 shows another code fragment performing ar-
ray accesses inside a remote async. In general, array
accesses v(i) and v(j) can access any element of the one
dimensional array (ValRail) v. Without additional analysis
across async boundaries, a compiler makes the worst-
case assumption that the async can potentially access any
element, forcing the communication of the whole array v

val i:Int = ...;
val j:Int = ...;
val v:ValRail = Rail.makeVal(n);

at (p) {
 ... v(i);
 ... v(j); }

v.loc
&v

RR(v)
v[0]
v[1]

RR(v)

v[n-1]
v[n]

...

i
j

val i:Int = ...;
val j:Int = ...;
val v:ValRail = Rail.makeVal(n);
val v_i = v(i);
val v_j = v(j);

at (p) {
 ... v_i;
 ... v_j; }

v_i
v_j

Communication
Buffer

Communication
Buffer

Figure 4. Communication optimization using scalar replacement for array
accesses

val v:ValRail =
 Rail.makeVal[C](n);
... ...

at (p) {
 for (i : R) {
 ... v(i).x
 ... v(i).y;
 }
}

v.loc
&v

RR(v)
RR(v[0])
RR(v)

Communication
Buffer

Communication
Buffer

class C {
 public var x:Int;
 public var y:Int;
 public var z:Int;
}

val v_x:ValRail = Rail.makeVal[Int](n);
val v_y:ValRail = Rail.makeVal[Int](n);
... ...
at (p) {
 for (i : R) {
 ... v_x(i);
 ... v_y(i);
 }
}

v[0].x

v[0].z
v[0].y

v[0].loc
&v[0]

RR(v[0])

v[n].x

v[n].z
v[n].y

...

v[n].loc
&v[n]

RR(v[n])
... ...RR(v[n])

v_x.loc
&v_x

RR(v_x)RR(v_x)
v_x[0]

v_x[n]
...

v_y[0]

v_y[n]
... v_y.loc

&v_y

RR(v_y])
RR(v_y)

Figure 5. Communication optimization using class splitting

along with the async (as shown on the upper right of
Figure 4). Scalar replacement of v(i) and v(j) reduces the
communication buffer to two scalars, v i and v j (as shown
on lower right).

B. Object Splitting

Consider the code example shown in Figure 5 that shows
a class C with class fields: x, y, and z. The original program
creates an array of objects of class C, however, only fields
x and y are accessed in a remote task. Splitting the array [6]
into separate arrays for fields x, y and z allows the compiler
to eliminate the communication overhead of serializing the z
field and the object header. This kind of opportunity occurs
frequently in object-based applications.

C. Program Transformations

Our compiler includes several loop transformations to
reduce the number of communication and synchronization

1. Scalar Replacement with Loop-Invariant Code Motion

class T ...
...
val A = Rail.make[T](r);
// region r is a subset of region R
for(point i in R) {
val idx = f(i) % Places.MAX_PLACE;
async (Place.places(idx)) g(A(idx));

}

=⇒



val A:ValRail[T] = ...;
// send once to each place and save in local storage
val sharedA =
DistArray.make[ValRail[T]](Dist.makeUnique());
finish ateach (p in Place.places())

sharedA(p) = A;
for(point i in R) {
val idx = f(i) % Places.MAX_PLACE;
async (Place.places(idx))
g(sharedA(Place.places(idx))(idx));

}
2. Local Optimization for async:

for (point i in R) {
// S has no block operations and is exception free
async(places(f(i))) S;

}
=⇒



for (point i in R) {
if (places(f(i)) == here)
S;

else
async(places(f(i))) S;

}
3. Local Optimization with Loop Distribution:

val dist:Dist = ...;
A = DistArray.make[T](dist);
for (i in dist)

async(A.dist(i)) {
... = A(i);

}

=⇒



val dist_local = dist | here;
val dist_remote = dist - here;
for (point i in dist_local) {
... = A(i); }

for (point i in dist_remote) {
async(A.dist(i)) {
... = A(i);

}}
4. Synchronization Elimination using Scalar Expansion:

// A is a DistArray on distribution R
for (point i in R) {

t = at(A.dist(i)) A(i);
... = t;

}

=⇒



// t_arr is scalar expanded version of t
t_arr = Rail.make[T](R.size());
finish for (point i in R) {
at (A.dist(i)) async {
val v = A(i);
at (t_arr) async t_arr(i) = v;

}}
for (point i in R) {
... = t_arr(i); }

5. Place-level Strip Mining

// A is a DistArray on a distribution R
for (point i in R) {

t = at(A.dist(i)) A(i);
... = t;

}

=⇒



for (p in Place.places()) {
val subdist = R | p;
// t_arr is scalar expanded version of t
val t_arr = Rail.make[T](subdist.size());
finish at (p) async {
var j:Int = 0;
for (point i in subdist)) {
val ind = j++; val v = A(i);
at (t_arr) async t_arr(ind) = v;

} }
var j:Int = 0;
for (point i in subdist)) {
... = t_arr(j); j++;

} }
6. Parallel Reduction through Scalar Expansion

x = ...;
finish ateach (point in R) {
...
val v = ...;
at (x) { atomic x.val += v; }

// no use of x.val
}
... = x.val;

=⇒



x = ...;
x_tmp = DistArray.make[T](...);
finish ateach (point in R) {
...
val v = ...;
x_tmp(here.id) = v;

}
// Reduction across places
x.val = x_tmp.reduce(T.+, x.val);
... = x.val;

Figure 6. Communication optimization rules: Scalar Replacement, Local Optimization, Synchronization Elimination, Place-level Strip-mining, and Parallel
reduction

operations performed. These transformations are summa-
rized in Figure 6.

Scalar Replacement with Loop Invariant Code Motion:
Figure 6-1. shows an example of a scalar replacement trans-
formation combined with loop invariant code motion. The
code on the left requires communicating the entire array A to
the target place at every loop iteration. In the transformed
code on the right, the array is first communicated to all
the places and stored as a local copy in each place, thereby
enabling later async’s to only communicate the idx variable.
This transformation also avoids the need for re-sending the
array A while accessing the same place multiple times, as in
the original case.

Local Optimization for async: Figure 6-2. shows an
example of converting a local async into sequential code.
The code on the left creates an async regardless of whether it
is local or remote. The code on the right avoids the overhead
of creating a local async when the target place happens to be
local. In general, this transformation would require compiler
analysis to prove that the statement S does not have any
synchronization dependencies on other asyncs that may get
spawned after the loop. However, in the subset of X10 that
this paper focuses on, such dependencies are not possible,
thus the compiler analysis is not necessary.

Local Optimization with Loop Distribution: Figure 6-3.
shows how an array distribution can be partitioned into local
and remote subsets. The code on the right first computes
the local and remote distributions, then for all points in the
local distribution it executes the computation (in this case, a
simple assignment) sequentially on the local place, followed
by the remote computation on the remote places.

Synchronization Elimination using Scalar Expansion: In
the example in Figure 6-4., the compiler uses scalar ex-
pansion of variable t to enable parallel execution of tasks
that would otherwise be sequentialized. The statement t =

at(p) S involves a communication because statement S can
be performed at remote place p. In this particular example
(taken directly from the MolDyn benchmark) the remote
computation is trivial (just returning the value of A(i)),
but it can be arbitrarily complex in general. In the code
on the left, the computation of t and its subsequent use
are done in a sequential loop, therefore sequentializing all
the remote task executions. The code on the right converts
the at construct into a combination of finish and async,
that allows the remote tasks to execute in parallel and assign
their results to the scalar-expanded array t_arr. This results
in eliminating the synchronization operations inherent in
a place-shifting at statement. Note that the size of the
scalar expanded array, t_arr, is proportional to the size of
the original array, which can be expensive in general. The
next transformation below can reduce the space overhead of
compiler-generated array temporaries.

Place-level Strip Mining: The example in Figure 6-5.
takes the example from Figure 6-4. one step further by first
tiling the iteration space at the place level and then executing
the tiles sequentially (using finish and async in order to
reduce space overhead) while parallelizing the computations
within a tile. Instead of creating an async for each iteration
of the loop as in the code on the right of Figure 6-4., the
code on the right of Figure 6-5. first finds a sub-distribution
of A for each place, then creates a sequential task at each
place to execute the place-local part of the computation in
parallel. Compared to Figure 6-4, this case requires a space
overhead proportional to the size of the local array within a
place.

Parallel Reduction through Scalar Expansion: Figure 6-6.
shows an example of how a reduction can be done in parallel
through scalar expansion of the variable containing the result
of the reduction. In the code on the left, all remote tasks are
atomically updating the value of x.val, creating many tasks
on the place that owns x just to update the value. In the code
on the right, each remote task only updates its private copy
(the element of the scalar-expanded x_tmp array), and the
final reduction is performed by the X10 reduce operation.

D. Overall Communication Optimization Algorithm

Now we present an integrated algorithm based on the pro-
gram transformations described above. The algorithm works
on the Program Structure Tree (PST) [1] that is derived
from the Abstract Syntax Tree (AST)-based intermediate
representation (shown in Figure 1). Our transformations are
applied before mapping the X10 AST to the C++ or Java
backend. Each node in our PST represents loops, statements,
and X10 parallel constructs such as finish, async, at,
ateach, and atomic. The algorithm uses the PST as input
and performs bottom-up traversal on the PST to apply the
program transformations described above.

The main algorithm shown in Figure 7 consists of two
parts: scalar replacement and loop-based program transfor-
mations. Scalar replacement is a pre-pass for redundant data
transfer elimination. The second pass walks through the
PST nodes in bottom-up order, identifies the potential data
dependence and exceptions for each PST node, then applies
the appropriate transformations listed in Figure 6.

E. Exception Semantics

In this section, we discuss how to perform the commu-
nication optimizations described earlier, while preserving
the program semantics in the presence of exceptions. In
X10, an uncaught exception thrown inside the body of an
async construct terminates the current activity, and throws
the exception to the immediately enclosing finish (IEF)
operation [4]. Similarly, an exception thrown inside the body
of an at expression/statement is thrown to its IEF since at
is a sequential “place shifting” construct. The finish scope
catches all the exceptions that are thrown inside its body

2. Local Optimization for async:

for (point i in R) {
// S has no block operations
async(places(f(i))) S;

}
=⇒



val Es = Rail.make[Exception](R.size());
for (point i in R) {
if (places(f(i)) == here)
try { S;
} catch (Exception e){ Es(i) = e; }

else
async(places(f(i))) S;

}
foreach (point i in R)

if (Es(i)) throw Es(i);
3. Local Optimization with Loop Distribution:

val dist:Dist = ...;
A = DistArray.make[T](dist);
for (i in dist)

async(A.dist(i)) {
... = A(i);

}

=⇒



val dist_local = dist | here;
val dist_remote = dist - here;
val Es =
Rail.make[Exception](dist_local.size());

for (point i in dist_local) {
try{ ... = A(i);
} catch (Exception e){ Es[(i)=e; } }

for (point i in dist_remote) {
async(A.dist(i)) {
... = A(i);

}}
foreach (point i in dist_local)

if (Es(i)) throw Es(i);
4. Synchronization Elimination using Scalar Expansion:

// A is a DistArray on distribution R
// body of at expression is free of side effects
for (point i in R) {

t = at(A.dist(i)) A(i);
... = t;

}

=⇒



// t_arr is scalar expanded version of t
t_arr = Rail.make[T](R.size());
Es = Rail.make[Exception](R.size());
finish for (point i in R) {
at (A.dist(i)) async {
var tmpE:Exception = null;
try { val v = A(i); }
catch (Exception e) { tmpE = e; }
if (tmpE == null)
at (t_arr) async t_arr(i) = v;

else {
val ex = tmpE; val ind = i;
at (t_arr) async { t_arr(ind) = v;

Es(ind) = ex); }
}
for (point i in R) {
if (!Es(i)) ... = t_arr(i);
else throw Es(i); }

5. Place level Strip Mining

// A is a DistArray on a distribution R
for (point i in R) {

t = at(A.dist(i)) A(i);
... = t;

}

=⇒



for (p in Place.places()) {
val subdist = R | p;
// t_arr is scalar expanded version of t
val t_arr = Rail.make[T](subdist.size());
val Es =

Rail.make[Exception](subdist.size());
finish at (p) async {
var j:Int = 0;
for (point i in subdist)) {
var tmpE:Exception=null; val ind=j++;
try { val v = A(i); }
catch(Exception e) { tmpE = e; }
if (tmpE == null)
at (t_arr) async t_arr(ind) = v;

else {
val ex = tmpE;
at (t_arr) async {t_arr(ind) = v;

Es(ind) = ex); } }
} }

var j:Int = 0;
for (point i in subdist)) {
if (!Es(j)) ... = t_arr(j++);
else throw Es(j); }

} }

Figure 8. Communication optimization rules in the presence of exceptions: Local Optimization, Synchronization Elimination, and Place-level Strip-mining.
Note that foreach (point i in R) S is a syntactic sugar for for (point i in R) async S.

Procedure Main, Input : Root node P of method m’s PST1
ScalarReplace (P);2
LoopTransform (P);3

Procedure LoopTransform, Input : PST node P4
children = GetChildren (P);5
for each child, c ∈ children do6

LoopTransform (c);7

bool isTransformed = false;8
if IsLoop(P) then9

for each child c ∈ children do10
//Perform Case (1) of Figure 6
if isAsync(c) and ScalarReplaceWithLICM(P , c) then11

return;12

if isAsync(c) or isAt(c) then13
//Find heap variables accessed in c
hs = HeapAccess(c); //Check data dependence14
if hasDependence(P , hs) == false then15

if LocalOptWithLoopDist(P , c) then16
//Perform Case (3) of Figure 6
isTransformed = true;17

else if SyncElimination(P , c) then18
//Perform Case (4) of Figure 6
isTransformed = true;19

else if AsyncCoalescing(P , c) then20
//Perform Case (5) of Figure 6
isTransformed = true;21

else if isFinish(P) then22
//Perform Case (6) of Figure 6
ParellelReduction(P);23

if isTransformed == false then24
for each child, c ∈ children do25

if isAsync(c) or isAt(c) then26
//Perform Case (2) of Figure 6
LocalOptimization(c);27

Figure 7. High-level algorithm for performing communication opti-
mizations. The function ScalarReplace performs scalar replace-
ment transformation for both field accesses and array accesses.

and combines them into a MultiException structure. If
unhandled, the combined structure is subsequently thrown
to the enclosing finish scope after terminating the current
activity. Since the main program of the application is always
wrapped in an implicit finish scope, all uncaught exceptions
are reported when the application terminates.

The transformations in Cases (1) and (6) in Figure 6
already preserve program semantics in the presence of
exceptions. For the transformations described in Cases (2)-
(5) in Figure 8, we present new transformations that preserve
the exception semantics. The common approach for handling
exceptions is to capture the exceptions thrown inside the
statement body in an one dimensional array, Es, using try-
catch blocks. These exceptions are subsequently thrown to
the enclosing finish scope to preserve the semantics of the
original program.

The transformations in Cases (4) and (5) of Figure 8
capture the exception surrounding the array access A(i) and
store the exception in Es that is located at the outermost
place (where t arr is also located). The storing of excep-
tions occurs in parallel for each activity in the innermost
loop. Finally, the exceptions are scanned in the original
order of the program to find the first index, i that threw

the exception. Once such an exception is found, no further
computation is performed, thereby preserving the semantics
of the sequential execution of the original loop nest.

V. EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation of
our communication optimizations implemented in the X10
2.0.6 compiler infrastructure. To demonstrate the benefits,
we used the distributed MPI runtime version of the C++
backend. Our optimizations were implemented as AST to
AST transformations before the code generation pass in the
X10 compiler front-end.

A. Benchmarks and Applications

Since X10 is a new language, there is currently only a
small number of X10 programs available for evaluation.
To maximize the variety, we evaluated the performance
of five programs (three benchmarks and two real-world
applications) for this study: a) a straightforward implementa-
tion of the HPC Challenge RandomAccess3 microbench-
mark [15] (with a per-node local table size of 4096, and
number of updates = (local table size) × (number of places)
× 4); b) the NQueens benchmark from the X10 open
source distribution [23] (using a 13 × 13 board size); c)
the JGF MolDyn benchmark [17] ported to distributed X10
(using 6192 particles); d) the FMM application from the ANU
chemistry simulation system [2]; and e) the PME application
from the same system (both simulated with 20,000 atoms).

Subsequent releases of X10, in particular X10 2.1.1
released in January of 2011, have included significant per-
formance and scalability improvements in the X10 standard
class libraries. Unfortunately, we were not able to finish
porting our compiler optimizations and benchmark suite
to this latest version of X10 in time to be able to report
new experimental results in this paper. This explains the
significant differences in the baseline performance of the
FMM and PME programs in this paper and those in [19].

B. Experimental Platforms

We obtained experimental results on three cluster plat-
forms: (1) a 128-node (4 cards) BlueGene/P cluster that
is part of a 4096-node (128 cards) system; (2) a 32-node
Nehalem cluster with Infiniband interconnect that is part of
a 90-node system; and (3) a 16-node Power7 cluster with
Infiniband interconnect that is part of a 18-node system.

Each compute node in the BlueGene/P system has 4
850Mhz PowerPC 450 cores and 2 GB of memory. The
nodes are connected in a torus network and run a custom
OS kernel. We used IBM’s XL compiler v9.0 to produce
executable binary from the generated C++ code, and the
PGAS BGP library for message passing. Each node in the

3Our straightforward implementation of RandomAccess uses asyncs in
the innermost loop instead of using an explicit RDMA API. As a result,
the performance is not comparable to the those reported in [22]

Nehalem cluster is a dual Quadcore 2.4 GHz Intel Nehalem
CPU with 12GB of memory, running RedHat Linux 5 OS.
We used GCC 4.2 to produce executable binary from the
generated C++ code, and OpenMPI v1.4.2 for message
passing. Each node in the Power7 cluster is a eight quad-
core 3.55 GHz IBM Power7 CPUs with 256GB of memory,
running Red Hat Enterprise Linux 5.4. We used GCC 4.2
to produce executable binary from the generated C++ code
and OpenMPI v1.4.1 for message passing. All results were
obtained using the default value of X10_NTHREADS=1
which only creates one worker thread per node.

C. Experimental Results

We report experimental results for two cases: 1) UNOPT –
the baseline version without any communication optimiza-
tion; 2) OPT – the optimized version that uses the techniques
described in this paper. The data size was kept constant to
evaluate the impact of strong scaling. Figure 9(a) reports the
execution times in seconds for each benchmark under both
OPT and UNOPT configurations on a BlueGene/P cluster.
The X-axis shows the number of nodes (i.e., X10 places)
used. For the UNOPT case, the MolDyn benchmark ran out
of memory with 2 and 4 places. MolDyn and NQueens
benchmarks show significant performance benefits with OPT
across the board, while other benchmarks also show perfor-
mance benefits when the number of places is increased. For
MolDyn, we obtain a maximum speedup of 31.46× and
for Nqueens, we obtain a maximum speedup of 26.33×.
The overall speedup across all the benchmarks (for a given
number of places) is in the range of 1.52× to 31.46×.

On the Nehalem cluster, the MolDyn and NQueens
benchmarks show significant performance benefits for all
places, the RandomAccess and ANU-FMM benchmarks
show performance benefits for larger number of places while
ANU-PME shows a small performance improvement. For the
MolDyn benchmark, we observe a maximum speedup of
2.99× and for Nqueens, we observe a maximum speedup
of 3.01×. The overall speedup across all benchmarks (for a
given number of places) is in the range of 1.22× to 3.01×.

Similar to Nehalem cluster, the MolDyn benchmark gives
the best performance improvement on the Power7 cluster
and the other benchmarks also show improvements. We
observe a maximum speedup of 2.73× for MolDyn. The
overall speedup across all benchmarks (for a given number
of places) is in the range of 1.05× to 2.73×.

The number of bytes communicated4 is reported in Ta-
ble I. Using our optimizations, the bytes communicated
for both NQueens and MolDyn are reduced significantly
by OPT, thereby explaining the runtime benefits achieved.
As a part of the communication optimization, we also
reduced the number of asyncs created at remote places. The

4This statistic is reported by the X10 runtime system which is platform
independent, so the value is the same for all three cluster systems.

number of asyncs created across remote places is shown in
Table II. Again, NQueens and MolDyn show significant
improvement after applying the optimizations.

We do not provide any comparison between X10 and
MPI programs in this paper, because it has been shown
in past work that X10 is able to achieve performance
comparable to MPI for many HPCC benchmarks [22]. For
larger applications, it will be a tedious effort to rewrite
parallel object-oriented X10 programs in MPI.

VI. RELATED WORK

The Fortran D project [14], [13] describes analysis, opti-
mization and code generation techniques for the Fortran D
compiler. They employ communication optimizations such
as message vectorization (aggregating communications at
an outer loop level), message coalescing (combining com-
munications for different arrays in a single message), and
message pipelining (to hide the latencies of message send
and receive operations). These techniques complement the
communication optimizations introduced in this paper which
are focused on reducing the number of bytes communicated
and the number of remote tasks created in parallel object-
oriented programs. There have been some compiler opti-
mization frameworks that applied the techniques described
above for Fortran D to array-based data-parallel programs
written in languages such as HPF [11], [18], [8].

The UPC compiler and runtime work in [5] presented
three key compiler optimizations: 1) eliminating branch in-
structions for integer based affinity expressions in upc forall
loops; 2) eliminating accesses to shared pointers proven
by the compiler to be local; (3) using efficient messag-
ing mechanism for read-modify-write. Item 2) is related
to optimization scenarios 2 and 3 described in Figure 6.
While their aim is to prove some array accesses as local to
avoid representing them as fat-pointers, our work focuses
on reducing the communication overhead by creating fewer
number of asyncs. We extend their local optimizations to the
loop-level as shown in Figure 6.

In [24], Chen et. al. introduce compiler optimizations
for fine-grain communication in UPC using an extension
of SSA form that supports both scalar variables and in-
direct memory references. The optimizations include: 1)
eliminating redundant communication, 2) coalescing fine-
grain communication, and 3) splitting the read/write phase
to reduce unnecessary message passing.

Scalar replacement for load elimination [4] extends scalar
replacement across both method calls and parallel constructs
(such as async, finish, and isolated in Habanero-Java
[12]), using a relaxed isolation consistency memory model.
Optimizations presented in this paper focus on scalar re-
placement of immutable values in a distributed memory en-
vironment whereas their paper focused on scalar replacement
for both mutable and immutable object fields in a shared
memory environment. In addition, our paper presents several

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

#" $" &" '%" (#" %$" '#&"

)*+,-"

+,-"

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

#" $" &" '%" (#" %$" '#&"

)*+,-"

+,-"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

$" &" *" #(" %$" (&" #$*"

+,-./"

-./"

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

#" $" &" '%" (#" %$" '#&"

)*+,-"

+,-"

RandomAccess BG/P

NQueens BG/P

Moldyn BG/P

ANU-FMM BG/P

ANU-PME BG/P

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

#" $" &" '%" (#" %$" '#&"

)*+,-"

+,-"

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

RandomAccess Nehalem Cluster

NQueens Nehalem Cluster

Moldyn Nehalem Cluster

ANU-FMM Nehalem Cluster

ANU-PME Nehalem Cluster

!"

#"

$"

%"

&"

'"

("

)"

*"

$" &" *" #(" %$"

+,-./"

-./"

!"

#"

$"

%"

&"

'"

("

$" &")" #(" %$"

*+,-."

,-."

!"

#"

$!"

$#"

%!"

%#"

&!"

%" '" (" $)" &%"

*+,-."

,-."

!"

#"

$"

%"

&"

'!"

'#"

'$"

#" $" &" '%" (#"

)*+,-"

+,-"

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

%" '" (" $)" &%"

*+,-."

,-."

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

RandomAccess Power 7 Cluster

NQueens Power 7 Cluster

Moldyn Power7 Cluster

Cluster ANU-FMM Power7

ANU-PME Power7 Cluster

!"#$

!"%$

!"&$

!"'$

($

("($

(")$

("*$

("+$

(",$

)$ +$ &$ (#$

-./01$

/01$

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

$" &" *" #("

+,-./"

-./"

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

#!!"

%" '" (" $)"

*+,-."

,-."

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

#" $" &" '%"

()*+,"

*+,"

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

$" &" *" #("

,-./0"

./0"

ex
ec

ut
io

n
tim

e
(s

ec
)

ex
ec

ut
io

n
tim

e
(s

ec
)

(a) BG/P (b) Nehalem Cluster (c) Power7

Figure 9. Comparison of execution time in seconds (y-axis) between optimized and unoptimized X10 programs on BG/P, Nehalem and Power7 cluster
for varying number of nodes (x-axis).

Benchmarks 2 4 8 16 32 64 128
RandomAccess unopt 2,256,856 9,660,964 355,32,854 131,797,506 500,538,822 1,943,077,198 7,643,344,770

opt 915,870 2,857,120 6,875,010 15,042,700 31,534,622 63,856,368 130,392,532
NQueens unopt 19,169,496 44,506,378 82,602,428 148,833,610 271,789,450 518,362,570 1,010,751,900

opt 2,612 11,166 41,286 153,750 587,574 2,290,806 9,039,606
MolDyn unopt 551,633,524 1,166,187,282 2,167,104,718 4,106,195,814 8,099,838,556 16,749,488,734 36,768,582,822

opt 394,952 1,207,980 2,932,524 6,849,900 17,138,316 52,175,308 217,247,724
ANU.FMM unopt 11,647,144 33,345,944 69,699,994 140,975,486 312,012,055 772,934,354 2,219,485,689

opt 10,303,214 30,702,336 64,191,648 130,011,234 289,854,132 727,818,215 2,127,431,024
ANU.PME unopt 24,388,118 61,949,648 106,236,886 188,299,146 370,993,106 831,975,294 833,652,654

opt 23,277,968 59,160,890 101,252,764 177,328,274 348,954,582 788,977,118 799,426,694

Table I
NUMBER OF SERIALIZED BYTES COMMUNICATED ACROSS PLACES

Benchmarks 2 4 8 16 32 64 128
RandomAccess unopt 65,540 131,080 262,160 524,320 1,048,640 2,097,280 4,194,560

opt 65,542 131,084 262,168 524,336 1,048,672 2,097,344 4,194,688
NQueens unopt 73,714 73,716 73,720 73,728 73,744 73,776 73,840

opt 6 12 24 48 96 192 384
MolDyn unopt 4,192,256 4,192,256 4,192,256 4,192,256 4,192,256 4,192,256 4,192,256

opt 3,457 10,374 24,220 51,960 107,632 219,744 447,040
ANU.FMM unopt 26,454 27,864 30,448 34,168 40,600 50,768 68,878

opt 25,430 26,836 29,416 33,128 39,544 49,680 67,725
ANU.PME unopt 809,262 809,790 810,441 811,291 813,250 816,381 820,985

opt 808,695 809,171 809,537 810,116 810,712 811,822 813,375

Table II
NUMBER OF TASK SPAWNED ACROSS PLACES.

other loop transformations for reducing communication and
synchronization overhead.

Chapel [16] is another new high-productivity language
developed in the same timeframe as X10. Like X10, Chapel
has a PGAS memory model with language-based notation
for global arrays, global pointers, and locality exploitation.
A key difference from X10 is that Chapel permits implicit
accesses to remote locations, whereas X10 requires that all
data access be place-local. However, despite this difference,
many of the techniques presented in this paper can also be
applied to Chapel programs.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced high-level compiler optimizations
and transformations to reduce communication and synchro-
nization overheads in distributed-memory implementations
of X10 programs, paying close attention to the overheads
inherent in dynamic task parallelism with a distributed object
model. Using our prototype implementation of these high-
level optimizations, we evaluated the performance of five
programs on a Blue Gene/P cluster, a Nehalem, and a
Power7 cluster. On the BlueGene/P cluster, we observed
a maximum performance improvement of 31.46× relative
to the unoptimized case (for the MolDyn benchmark). On
the Nehalem cluster, we observed a maximum performance
improvement of 3.01× (for the NQueens benchmark) and
on the Power7 cluster, we observed a maximum performance
improvement of 2.73× (for the MolDyn benchmark). There
was no case in which the optimized code was slower than
the unoptimized case. Additionally, the experimental results
show that our optimizations produce significant improve-
ments in performance, scalability, communication volume
and number of remotely spawned tasks. We also believe that
the optimizations presented in this paper will be necessary
for any high-productivity PGAS language based on modern
object-oriented principles, that is designed for execution on
future Extreme Scale systems that place a high premium on
locality improvement for performance and energy efficiency.

For future work, we will port our compiler optimizations
to the latest X10 version (currently 2.1.2). As a number of
scalability improvements were made to the X10 standard
library in both the 2.1.1 and 2.1.2 releases, we expect to
see a general reduction in overall serialization costs on the

majority of the benchmarks studied in this paper. However,
it is not clear if this will decrease or increase the relative
effectiveness of our communication and synchronization
optimizations. On the one hand there will be less “low
hanging fruit” in the class library to optimize, but on the
other hand those optimization opportunities that still exist
may have a greater relative impact because of the improved
baseline performance.

We would also like to implement our optimizations us-
ing an interprocedural analysis framework such as WALA,
which may produce better performance results than our cur-
rent and somewhat conservative implementation within the
polyglot frontend of the compiler. Another interesting future
direction is to extend the scalar replacement optimization for
mutable values, which will require extending the compiler
analysis and adding memory model consideration to the
analysis.

REFERENCES

[1] Shivali Agarwal et al. May-happen-in-parallel analysis of X10
programs. In PPoPP’07, pages 183–193, New York, USA.

[2] ANU Computational Chemistry Applications.
http://cs.anu.edu.au/∼Josh.Milthorpe/x10.html.

[3] R. Barik et al. Communication optimizations for distributed-
memory x10 programs. Technical Report TR10-09, Depart-
ment of Computer Science, Rice University, September 2010.

[4] Rajkishore Barik and Vivek Sarkar. Interprocedural load
elimination for dynamic optimization of parallel programs.
In PACT’09, North Carolina, 2009.

[5] Christopher Barton et al. Shared memory programming for
large scale machines. In PLDI ’06, Canada.

[6] Zoran Budimlić and Ken Kennedy. Optimizing Java - theory
and practice. Concurrency, Practice and Experience, 9:445–
463, 1997.

[7] David Callahan, Steve Carr, and Ken Kennedy. Improving
register allocation for subscripted variables. In PLDI ’90,
pages 53–65, New York, NY, USA, 1990. ACM.

[8] Daniel Chavarrı́a-Miranda and John Mellor-Crummey. Effec-
tive communication coalescing for data-parallel applications.
In PPoPP ’05, pages 14–25, New York, NY, 2005. ACM.

[9] Tarek El-Ghazawi, William W. Carlson, and Jesse M. Draper.
UPC Language Specification v1.1.1, October 2003.

[10] Stephen J. Fink, Kathleen Knobe, and Vivek Sarkar. Unified
analysis of array and object references in strongly typed
languages. In SAS’00, pages 155–174, 2000.

[11] Manish Gupta, Edith Schonberg, and Harini Srinivasan. A
unified framework for optimizing communication in data-
parallel programs. IEEE Trans. Parallel Distrib. Syst.,
7(7):689–704, 1996.

[12] Habanero Java. http://habanero.rice.edu/hj, Dec 2009.

[13] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Evaluation of
compiler optimizations for Fortran D on MIMD distributed-
memory machines. In ICS’92, July 1992.

[14] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng.
Compiling Fortran D for MIMD distributed-memory ma-
chines. Commun. ACM, 35(8):66–80, 1992.

[15] HPC challenge benchmark. http://icl.cs.utk.edu/hpcc/.

[16] Cray Inc. The Chapel language specification version 0.4.
Technical report, Cray Inc., February 2005.

[17] The Java Grande Forum benchmark suite.
http://www.epcc.ed.ac.uk/javagrande/javag.html.

[18] M. Kandemir et al. A global communication optimization
technique based on data-flow analysis and linear algebra. In
PLDI’98, 1998.

[19] Josh Milthorpe, V. Ganesh, Alistair P. Rendell, and David
Grove. X10 as a parallel language for scientific computation:
Practice and experience. In 25th IEEE International Parallel
and Distributed Processing Symposium, May 2011.

[20] Robert W. Numrich and John Reid. Co-Array Fortran for par-
allel programming. ACM SIGPLAN Fortran Forum Archive,
17:1–31, August 1998.

[21] Vivek Sarkar, William Harrod, and Allan E. Snavely. Software
challenges in extreme scale systems. January 2010. Special
Issue on Advanced Computing: The Roadmap to Exascale.

[22] X10 HPCC’09 tutorial. http://www.hpcchallenge.org/presentations/
sc2009/hpcc09.pdf, October 2009.

[23] X10 programming language web site.
http://x10.codehaus.org/, January 2010.

[24] Wei yu Chen, Costin Iancu, and Katherine Yelick. Commu-
nication optimizations for fine-grained UPC applications. In
PACT’05, pages 267–278, 2005.

