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Abstract
In this paper we explore mapping of a high-level macro data-flow
programming model called Concurrent Collections (CnC) onto het-
erogeneous platforms in order to achieve high performance and low
energy consumption while preserving the ease of use of data-flow
programming. Modern computing platforms are becoming increas-
ingly heterogeneous in order to improve energy efficiency. This
trend is clearly seen across a diverse spectrum of platforms, from
small-scale embedded SOCs to large-scale super-computers. How-
ever, programming these heterogeneous platforms poses a serious
challenge for application developers. We have designed a software
flow for converting high-level CnC programs to the Habanero-C
language. CnC programs have a clear separation between the ap-
plication description, the implementation of each of the application
components and the abstraction of hardware platform, making it an
excellent programming model for domain experts. Domain experts
can later employ the help of a tuning expert (either a compiler or
a person) to tune their applications with minimal effort. We also
extend the Habanero-C runtime system to support work-stealing
across heterogeneous computing devices and introduce task affinity
for these heterogeneous components to allow users to fine tune the
runtime scheduling decisions. We demonstrate a working example
that maps a pipeline of medical image-processing algorithms onto
a prototype heterogeneous platform that includes CPUs, GPUs and
FPGAs. For the medical imaging domain, where obtaining fast and
accurate results is a critical step in diagnosis and treatment of pa-
tients, we show that our model offers up to 17.72× speedup and an
estimated usage of 0.52× of the power used by CPUs alone, when
using accelerators (GPUs and FPGAs) and CPUs.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Data flow model, Heterogeneous architectures, Domain-
specific language, Tuning annotations.

1. Introduction
Energy efficiency is becoming a critical criteria for designing both
embedded and large-scale computing systems [23]. The current
trend in hardware design is to develop heterogeneous, massively
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parallel multicore architectures that can be specialized to satisfy
the energy constraint. In embedded computing, modern SOCs typi-
cally integrate DSP processors and several domain-specific (such as
video and audio) accelerators. In supercomputing, GPUs and mas-
sively parallel many-core accelerators are present in many of the
top HPC systems1. GPUs can boost a very high computing capa-
bility with a smaller (per FLOP) energy demand, at a price of very
low programmability.

These radical changes in hardware architectures are already im-
pacting software, as the burden shifts to the programmer to take ad-
vantage of the available parallelism. The additional software com-
plexity forces the rethinking of the design of computer systems. Old
views have already begun to change, moving from mapping soft-
ware on complex hardware to designing hardware based on soft-
ware needs. These challenges are further compounded by the need
to enable parallelism in mainstream workloads and application do-
mains that have traditionally not had to employ parallelism.

Despite over four decades of research, few high-level parallel
programming models are available to domain experts who are not
at the same time experts in parallelism. Fortunately, this situation is
starting to change. Frameworks such as Map-Reduce [14] success-
fully exploit implicit parallelism on distributed systems and have
also been extended to heterogeneous platforms such as GPU [17]
and FPGA [26], but unfortunately have a restricted programming
model. Other models, such as CUDA [21] and OpenCL [19], pro-
vide a restricted programming model to the users of GPU accel-
erators, but also expose a significant amount of hardware details.
The StarSs model builds a task-level model using a pragma-based
approach (similar to OpenMP) to ease the burden of task-level pro-
gramming for different architectures; its instantiations include Cell
Superscalar [6] for the Cell broadband engine and GPUSs [5] for
a system with multiple accelerators. Other works propose different
approaches, such as extending a high-level language like Java to
create domain-specific languages for tackling the problem of run-
ning on heterogeneous hardware. The DeLite project from Stanford
[9] is an example of such a project. The Lime language from IBM
Research [4] developed a compiler for source-to-source translation
from a Java-like language to C, OpenCL and Verilog, and a run-
time that can interact with the native libraries generated. In this
paper, we propose a programming model that can express arbitrary
task graphs, which none of the mentioned systems can do. Further,
our research is orthogonal to these systems, because the individual
tasks in our data-flow programming model can be still expressed in
almost any language (including explicitly parallel languages), pro-
viding flexibility and reuse of the existing algorithms.

Concurrent Collections (CnC) is a macro data-flow model de-
veloped by Intel [18] for execution of C++ programs on homoge-
neous multicore processors. CnC is a general programming model

1 e.g. Tianhe-1A, the fastest supercomputer in top-500 Nov.2010 edition



that has some very desirable properties, such as determinism, data-
race freedom and live-lock freedom [10]. The extensions we pro-
pose enable the use of accelerators by adding support for defining
device steps in the language specification. This allows steps to run
on multiple locations, which can include CPUs, GPUs and FPGAs.
We demonstrate that these extensions, together with correspond-
ing compiler and runtime improvements, result in a very signif-
icant performance improvement while maintaining a low energy
envelope on a set of medical imaging applications and retaining the
ease of programming championed by CnC.

This effort is the first step in achieving our long-term goal of
learning from software when developing the appropriate hardware
architecture and vice-versa — more precisely, through hardware-
software co-design. Further, we detail how we achieve this first
step: mapping an application onto a heterogeneous architecture
with high performance and low energy consumption.

The contributions presented in this paper include

• Extending the CnC model with tag functions and ranges to
enable automatic code generation of high-level operations for
inter-task communication. This improves programmability and
also makes the code more analyzable, opening the door for
future optimizations.
• Introduction of task affinity, a tuning annotation in the specifi-

cation language. Affinity is used by the runtime during schedul-
ing and can be fine-tuned based on application needs to achieve
better (faster, lower power, etc.) results.
• Introduction and development of a novel, data-driven runtime

for the CnC model, developed in a C framework, using a re-
search parallel programming model: Habanero-C (HC) [2] as a
base language.
• Expanding the Habanero-C dynamic work-stealing runtime to

allow cross-device stealing based on task affinity. Cross-device
dynamic work-stealing is used to achieve load balancing across
heterogeneous platforms for improved performance and is, to
our knowledge, the first extension of this kind.
• A unique heterogeneous hardware platform test-bed that serves

as a target for our software.
• Validation of the model’s performance on the full software and

hardware stack.

Section 2 presents our target heterogeneous platforms and our
approach to abstracting hardware configuration. Sections 3 and 4
give an overview of the Concurrent Collection macro data-flow
model, the enhancements for supporting hybrid execution, the in-
terpretation of those enhancements to generate C code, and a de-
scription of the tool-chain. Section 5 describes Habanero-C, the
lower-level parallel programming model on which we build our
implementation, the extensions to the Habanero-C work-stealing
runtime to enable cross-device scheduling and work-stealing, and
the design of the Concurrent Collections runtime that combines
all these enhancements to achieve better performance and/or lower
power consumption. We present and discuss our experimental plat-
form and results in section 6 and our conclusions in section 7.

2. Heterogeneous Platforms
2.1 Customizable Heterogeneous Platform (CHP)
Today’s highly parallel general-purpose computing systems face
serious challenges in terms of performance, power, heat dissipa-
tion, space, and cost. In domain-specific computing areas such as
medical imaging, that require real-time performance, using accel-
erators such as GPUs or FPGAs can significantly boost the comput-
ing performance and throughput [11]. We envision that current and

Figure 1. Customizable Heterogeneous Platform

future computing systems will embrace customization and hetero-
geneity in order to match the requirements of domain-specific ap-
plications. Moreover, the integration of heterogeneous components
(or accelerators) will become more extensive, because the integra-
tion can bring components that are currently far apart together to
reduce the communication latency and boost the computation ef-
ficiency. Such trends already appear in the mobile segment where
power consumption and form factors are critical issues.

Figure 1 shows a diagram of a Customizable Heterogeneous
Platform or CHP [13], a futuristic heterogeneous platform. Specif-
ically, a CHP includes 1) the integration of customizable cores and
co-processors that will enable power-efficient performance tuned
to the specific needs of an application domain and 2) reconfig-
urable high-bandwidth and low-latency on-chip and off-chip inter-
connects, which can be customized to specific applications or even
specific phases of a given application.

There are several programming challenges inherent to the CHP.
The first challenge is to find a way to efficiently program a par-
ticular heterogeneous component. This ultimately depends on the
software kernel and the hardware architecture (e.g., ISA) of that
component. Second, in the planning and design stage of the CHP,
the co-design team will want to explore the design space and evalu-
ate the same application on a set of different design configurations.
The team would not want a significant code rewrite across differ-
ent configurations. Upgrading from one CHP to another CHP with
different amount of heterogeneous cores should not significantly
affect the performance or require a code rewrite.

Manufacture of the fully customizable CHPs is still years ahead.
In this paper, we first use a prototype machine consisting of off-the-
shelf heterogeneous components (GPUs and FPGAs) to validate the
concept. The programming environment presented in this paper al-
lows us to switch easily from one configuration (e.g., CPU+GPU)
to another (e.g. CPU+GPU+FPGA). This can be achieved simply
by supplying a different platform description file. The implementa-
tion details are elaborated in the following sections.

2.2 Platform abstraction
The heterogeneous system has multiple heterogeneous compo-
nents, and tasks can run on different components (likely using
device-specific APIs). The platform abstraction file, at a minimum,
has to describe the types of heterogeneous components and how
many of each type the system contains. At this point, we are not
yet modelling the interconnection topology of the CHP, which is a
subject of our future work.

As an example, the XML code below describes a machine that
has two CPU cores, one GPU, and one FPGA. This information is



stored in an XML file following the Habanero Hierarchical Place
Tree (HPT) format [25].

<?xml version="1.0"?>
<!DOCTYPE HPT SYSTEM "hpt.dtd">
<HPT version="0.1">
<place num="1" type="cpu" size="16G">

<!-- the CPU global memory -->
<core num="2"/>
</place>
<place num="1" type="fpga" size="16G">

<!-- the fpga global memory -->
</place>
<place num="1" type="nvgpu" size="4G">

<!-- the GPU global memory -->
</place>
</HPT>

The platform description XML file lists the places available in
the system. This information is further passed to the runtime system
(Section 5) to determine the actual mapping of tasks to places.
We plan to further enhance the description file to enable exposing
more details of the target heterogeneous platform, in particular, the
interconnection topology.

3. Programming Model
3.1 Concurrent Collections
Concurrent Collections [10] is a shared memory, dynamic, lightweight,
task-based parallel programming model. A program in the CnC
model is defined by a graph describing the dependences between
serial pieces of computation called tasks. The model can also be
described as a macro-dataflow coordination language, as it spec-
ifies how tasks interact with each other or depend on each other
(data and control dependences).

A graph specification for any program is built using three com-
ponents: step, item, and control. These are grouped into collections:

1. A step collection is a group of tasks with the same functional
behavior with respect to their inputs. They are declared in the
text form using parentheses and are represented graphically
using circles.

2. An item collection is a group of data items having the same
type. They are textually represented with brackets and graphi-
cally represented with rectangles.

3. A control collection is a group of tags or keys used to create
new steps within their respective collections, also known as tag
collections. These are textually represented with angle brackets
and are pictured as triangles.

The CnC specification also includes a special type of node,
called the environment, which denotes the serial piece of code
outside of the parallel CnC program, usually used to perform initial
I/O, set up the CnC program execution, seed the CnC program with
the input data, and read the results of the CnC computation.

Figure 2 shows an example of a textual CnC representation,
while Figure 3 shows a graphical representation of the dynamic
CnC graph for the same example (a medical imaging pipeline we
shall later use in our results).

The Concurrent Collections programming model [10, 18] is
designed to be implicitly parallel and easy to use by program-
mers with no knowledge of parallel programming. It is also more
general than other deterministic programming models including
dataflow and stream-processing and can incorporate static and dy-
namic forms of task, data, loop, pipeline, and tree parallelism.

     // Textual graph representation 
    //  of the medical imaging pipeline
1  < int [1] denoise_tag > ;
2  < int [1] reg_tag > ;
3  < int [1] seg_tag > ;

4  [ float* denoise_output ] ;
5  [ float* registration_output ] ;
6  [ float* final_output ] ;

7  <denoise_tag>:: (denoise);
8  <reg_tag> :: (registration);
9  <seg_tag> :: (segmentation);

10 ( denoise : k ) -> [ denoise_output : k ];
11 [denoise_output : k]-> ( registration: k ) 
                   -> [ registration_output : k ];
12 [registration_output : k] 
                   -> (segmentation : k)
                          ->[ final_output : k ];

13 env -> <denoise_tag : {0 .. 9} >;
14 env -> <reg_tag : {0 .. 9} >;
15 env -> <seg_tag : {0 .. 9} >;

Figure 2. Textual graph representation of the medical imaging
pipeline
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Figure 3. Dynamic graph representation for the medical imaging
pipeline

The Concurrent Collection model uses the dynamic single-
assignment rule for items added (Put) in an item collection, en-
suring that the value that a task will read (Get) is the same every
time. This property makes the model provably deterministic and
race-free [10]. Live-lock may be possible if a task is waiting on an
item that is never written and the implementation in the runtime in-
volves a blocking operation. The CnC implementation we propose
in this work is live-lock free. To differentiate our version of CnC
from existing ones, we will refer to ours as CnC-HC.

The original definition and implementation of the CnC model
was done by Intel, using C++ as the programming language to
implement both the step code and the runtime. Our work uses
Habanero-C ([2], section 5.1) for implementing CnC steps and for
interaction between the CnC-HC runtime, CPU steps and device
steps. This is the first publication to describe the CnC-HC system.

3.2 Extending the specification language
To use the CnC model in a manner that is easy to program, and
enables the communication between CPUs and devices such as
GPUs and FPGAs, we introduce a series of extensions to the model:



tag functions, ranges and task affinity. Tag functions and ranges are
described in the following sections; we describe task affinity later
in section 4 as the means to fine-tune the runtime scheduling of
tasks on heterogeneous devices.

3.2.1 Tag functions
In order to achieve our first goal — making the model easy to pro-
gram — we make two additions to the specification language: tag
functions and ranges, both of which facilitate automatic code gen-
eration. We introduce tag functions in the CnC graph file specifica-
tion to specify the relation between the tags of the steps and the tags
of the data items that the step reads (a tag uniquely identifies a step
or an item in a collection of data items). This new addition enabled
us to create a tool that automatically generates code for reading the
data items needed by a step (Section 3.3) and enables the runtime
to use an efficient, data-driven implementation to schedule steps
(Section 5). Instances of computation steps are uniquely identified
by tags, which are tuples of symbolic names, e.g.,(x1, x2,...) . Thus,
when writing a consumer and/or producer relation in the graph file,
users can identify a step by a list of names they chosen for the
components of the tag that prescribed the step. The items read and
written can be specified by using a tag function f(x1, x2, ...). In
Figure 2, lines 10-12 show the use of a simple identity tag function
f(k)=k for the items read and written by the computation steps.

3.2.2 Ranges
Another addition to the CnC graph specification is the concept
of ranges, which simplifies programming through code generation
for reading groups of items, for writing groups of items, and for
starting groups of steps. This extension targets a large number of
applications, as many of them require that multiple pieces of data
in a contiguous range be read or written or both. This is also in
accord with constructs that involve split-join operations similar to
map-reduce: a computation step writes N pieces of data that trigger
N independent steps, each of which uses one item and gives a
transformed piece of information; the results are then all read by
a final step that computes the desired result. In the new model, this
process can be accomplished by using ranges: the first step will
write a range of data items and a range of control items; the latter
will trigger the execution of as many steps as there are in the range;
finally, the reduction step will read a range of items. In the example
in Figure 2, on lines 13-15, we note that the environment will write
a range of tags, thus starting a set of computation steps.

Ranges are specified in CnC using braces and two dots between
the beginning and end of the range: { start range .. end range }.

3.3 Translator
All the code necessary for reading one or more items is auto-
generated based on the information provided in the graph speci-
fication. Similarly, parallelism is ensured by auto-generated code
and is transparent to the user. For this we developed a tool called
the CnC-HC translator, which parses the CnC specification and
translates it into Habanero-C code.

The translator uses the information provided by the user in the
graph file to generate the necessary instructions for reading data to
be used in a computation step. Parallelism is achieved by spawning
each step as a separate task when all its input data is available, using
the async primitive defined in Habanero-C. This is possible because
in the model steps are functional with respect to their inputs. To
handle synchronization issues, we created the CnC runtime, and, to
achieve load balancing, we use the HC work-stealing runtime under
the CnC runtime (both discussed in Section 5).

The translator also generates helper code for the steps. For
example, if a step was defined to possibly create a control or data
item, the step code will include a comment of how this would
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Figure 4. CnC-HC Implementation Flow

translate into code. The user can then use this code as he/she sees
fit, though in most cases simply uncommenting the suggested code
will give the desired user code.

Tag functions make the program flow more analyzable, and in-
troducing ranges can extend CnC to other SIMD/SIMT architec-
tures, such as GPUs, by allowing parallelism within a step. In addi-
tion to allowing domain experts to program without worrying about
parallelism and the details of underlying C implementation of the
model, this approach also opens the many opportunities for further
research in automatic CnC program analysis and optimization.

3.4 Implementation flow
Figure 4 presents the implementation flow for a CnC-HC program.

A user has to take several steps to write a program using CnC-
HC. First, they need to decompose the algorithm into steps and
write a graph specification detailing the producer-consumer rela-
tionships between the computation steps. The CnC translator gen-
erates a series of “glue-code” files to enable transparent parallelism
for the user, based on the guidelines provided in the graph file. It
also creates code stubs as suggested and commented-out step code
to handle the items written or steps enabled by a given step. To
ensure an easy build, the translator also generates a makefile.

The user can then proceed to write the code for each of the com-
putation steps and run the makefile to build the application. This
uses the HC compiler and gcc compiler to generate an executable
file. If additional libraries are required, they can be easily added in
the provided makefile.

A common scenario in developing a program is making changes
to the initial specification. In our case, if the user were to make
changes to the graph file and rerun the translator, only the code
linking the steps with the runtime will be overwritten to match the
new dependences. Thus, if the computation had been written by
a programmer prior to running the translator, their code will not
be overwritten but preserved intact. If a step’s definition were to
change owing to changes in the specification (e.g., a step reading 3
items instead of 2), then the user will need to match his implemen-
tation with the new function prototype.

4. Tuning Annotations: Affinity
We have applied the CnC model in practice in the medical imagin-
ing domain, enabling the domain experts to reuse their previously
implemented computational kernels. Certain kernels were only im-
plemented on a particular platform, such as an FPGA. In contrast,
other kernels had multiple implementations and could run on more



than one platform (for example, on a CPU and a GPU, but not on
an FPGA). From our preliminary experiments, we also knew that
some steps would perform significantly better on a particular plat-
form. Thus, we introduced the notion of affinity into the CnC graph
specification to allow tuning of an application based on knowledge
of where an algorithm can run and where it runs better if multiple
variants are available. In this paper, we use the term “affinity” to
indicate a scheduling priority rather than an indication of locality.
Following are the lines of code from the graph in Figure 2 that we
extended with an affinity annotation for each of the steps.

1 <d e n o i s e t a g > : : ( d e n o i s e @ CPU = 20 , GPU=10) ;
2 <r e g t a g> : : ( r e g i s t r a t i o n @ GPU = 5 , FPGA = 10) ;
3 <s e g t a g> : : ( s e g m e n t a t i o n @ GPU = 12) ;

Medical images are sent through the pipeline of image-processing
kernels (denoising, registration and segmentation), resulting in an
image that can be interpreted by a medical expert. All the steps
in the above example are image-processing steps executing in se-
quence: the denoising step makes the image clearer, the registration
step compares the image to previous scans, and finally the segmen-
tation step localizes the desired area (in our case, a tumor or an
aneurysm). Line 1 defines the denoising step, which can be run on
both a CPU and a GPU but is more fitting for CPU execution. Line
2 defines the step executing registration, which can execute on a
GPU and on an FPGA but is better suited for FPGA execution. Fi-
nally, line 3 defines the segmentation step, which only has a GPU
implementation.

Currently, the values assigned as affinity are considered to pri-
oritize the device on which a step should first attempt to execute;
the relative quantitative differences are used to enable the “device
worker” to use a small look-ahead and choose a task that needs to
be executed sooner based on its higher priority. In this particular
example, it may be desirable to execute the denoising steps with a
higher priority in order to enable the registration step for that im-
age. Similarly, we may want to execute the registration as soon as
possible so that the segmentation can start. However, if we had a
single GPU, note that the CPU and FPGA, respectively, can also
execute the first two stages, while the last stage must run on the
GPU. As a result, we have chosen the last stage to have the greater
GPU affinity. We also notice that the first two stages run better on
other platforms (CPU and FPGA, respectively), motivating a choice
of affinities as defined by the example.

In general, a “tuning expert” would need to do the analysis
we described above and choose appropriate affinity values. Thus,
the affinity notion can be viewed as a tuning annotation [20],
which we provide as a means of not only enabling the mapping
of an application to a heterogeneous architecture but also tuning
it according to a set of constraints (these can include throughput,
energy efficiency or latency).

We are currently also exploring opportunities to define a quan-
titative notion of affinity in which we assume affinity values to be
proportional relative to the expected performance on a given device
(where a bigger number implies better performance). This feature
would allow the runtime to perform even better informed schedul-
ing decisions and possibly improve the results.

There has been previous work on tuning annotations in the
CnC model [20], but they do not involve extensions for specifying
affinities for heterogeneous architectures.

4.1 Theoretical bounds
The problem of obtaining theoretical bounds for schedules involv-
ing heterogeneous architectures is still an actively researched topic.
Blumofe et al. investigated theoretical bounds for work-stealing
among homogeneous tasks [7], while Agrawal et al. have shown

that scheduling task flows with interleaved computation and com-
munication on heterogeneous architectures is NP complete.[3].

5. Runtime Support
5.1 Habanero-C programming model
The Habanero-C (HC) language is a C-based task-parallel pro-
gramming language developed at Rice University. In this section,
we summarize key properties of HC and the Habanero model as
described in [2, 13, 22] and then describe our extensions to the HC
runtime system in Sections 5.2 and 5.4.

The two main features of HC that are relevant to this paper are

1. The async and finish constructs, which define lightweight dy-
namic task creation and termination and were originally defined
in the X10 language [12].

2. Hierarchical place trees for locality control, which were origi-
nally defined for Habanero-Java [25].

The statement “async 〈stmt〉” causes the parent task to create
a new child task to execute 〈stmt〉 asynchronously (i.e., before,
after, or in parallel) with the remainder of the parent task. Figure 5
illustrates this concept by showing a code schema in which the
parent task, T0, uses an async construct to create a child task T1.
Thus, STMT1 in task T1 can potentially execute in parallel with
STMT2 in task T0.

//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Figure 5. An example code schema with async and finish

async is a powerful primitive because it can be used to enable
any statement to execute as a parallel task, including statement
blocks, for-loop iterations, and function calls. The project described
in this paper, uses the async statement to create dynamic instances
of CnC steps.

finish is a generalized join operation. The statement “finish
〈stmt〉” causes the parent task to execute 〈stmt〉 and then wait until
all async tasks created within 〈stmt〉 have completed, including
transitively spawned tasks. Each dynamic instance TA of an async
task has a unique Immedia Enclosing Finish (IEF) instance F of
a finish statement during program execution, where F is the
innermost finish containing TA [24]. There is an implicit finish
scope surrounding the body of main(), so program execution will
only end after all async tasks have completed.

For example, the finish statement in Figure 5 is used by task
T0 to ensure that child task T1 has completed executing STMT1
before T0 executes STMT3. If T1 created a child async task, T2

(a “grandchild” of T0), T0 will wait for both T1 and T2 to complete
in the finish scope before executing STMT3. As described in
Section 5.4, we only use one level of finish when executing a
CnC program because we include additional data-driven execution
constraints on async tasks that control when async tasks become
ready for execution.

Habanero-C allows arguments to be passed in an async state-
ment in the following forms:



• IN(list of local variables): each of the values in the list is passed
by value to the newly created task,
• OUT(list of local variables): each of the values in the list will

override the local value with the value from the newly created
(child) task once this finishes, or
• INOUT(list of local variables): each of the values in the list will

be passed by value to the new task and, if modified inside this
new task, the new value will be copied back to the parent task
when the child finishes its execution.

The above clauses result in shallow copies of data structures.
The Habanero-C runtime uses a work-stealing scheduler that

supports work-first and help-first policies [16]. In the work-first
policy, the current thread will start to execute the newly spawned
task, adding the continuation to its work queue from which other
threads can steal it. In the help-first policy, the worker will make
the child task available for stealing and continue executing the par-
ent task. The work-first policy is good for scenarios when work-
stealing is rare; however, it performs poorly in situations when the
task continuation encompasses high parallelism that is not split into
tasks, such as a for loop creating tasks using the async statement.
It also has a provable memory bound relative to 1-processor exe-
cution, but it may overflow the stack in cases where the help-first
policy does not. The help-first policy performs well when steal-
ing is frequent; it uses little stack, but the memory usage can be
large. Previous work [15] has shown how the two policies perform
in different scenarios and that an adaptive approach that switches
between the two policies can yield good performance improvement
and efficient stack and memory usage.

For locality/affinity control, Habanero-C uses Hierarchical
Place Trees (HPTs) [25]. HPTs define a hierarchical structure of
computational nodes in the system, which are an abstraction of the
underlying hardware. The nodes in the tree (places) can be CPU
cores, groups of cores sharing different levels of cache, or devices
such as GPUs or FPGAs. The Habanero-C HPTs are defined in an
XML file and are also used as the Platform Abstraction for the un-
derlying hardware as described in Section 2.2. For locality/affinity
control, an optional at clause can be specified for a Habanero-C
async statement of the form, “async at(place-expr) . . .”, where
place-expr evaluates to a node in the HPT. This clause dictates that
the child async task will be placed in the work queue at the spec-
ified place. Locality can be controlled by assigning two tasks with
the same data affinity to execute in the same place. If the at clause
is omitted, then the child task is scheduled by default to execute at
the same place as its parent task. However, next section describes
our extensions to the HC runtime system that allow for reassigning
tasks across places if the initial assignment is unbalanced.

5.2 Dynamic work stealing
The original Habanero-C runtime system was implemented for ho-
mogeneous multicore processors, with support for work stealing
among CPU workers. We extended the HC runtime to use the
place/affinity annotation to facilitate task scheduling across hetero-
geneous processors by enabling work-stealing among devices. An
affinity annotation is used to specify which variants of code are
available for a given task (currently, these can be some subset of
CPU, GPU, and FPGA).

Figure 6 shows a work-stealing scenario for a group of tasks
for the graph presented in Figure 3. The environment first launches
all the tasks (D1, R1, S1, D2, R2, S2, . . .) on devices specified
by their initial affinities. In this particular example, denoising
(D1, D2, . . .) tasks can run on a GPU device or on a CPU de-
vic, and are initially launched on a GPU device. Segmenta-
tion (S1, S2, . . .) tasks can run on a GPU only. Registration
(R1, R2, . . .) tasks can run on an FPGA or a GPU device and
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Figure 6. Dynamic work-stealing between devices for the medical
imaging pipeline

are initially launched on the FPGA device. The CPUs can steal
denoising tasks from the GPU, and the GPU can steal registration
tasks from the FPGA. Figure 8b shows a trace of an actual dynamic
execution schedule for a set of 10 denoising, 10 registration and 10
segmentation tasks.

In our implementation of work-stealing between devices, we
also consider task affinity. Instead of stealing the first task available
on a worker’s deque, the thief worker will choose the one with the
highest affinity from the first N tasks on the dequeue, where N is
a small number typically less than 10 defined by the runtime (in
our results we used a lookahead of N=5). For example, if the top 5
tasks in the FPGA queue have GPU affinities of 10, 20, 30, 15, and
5, the GPU worker, when stealing from the FPGA queue, will steal
the one with the GPU affinity 30.

A CPU worker can steal from any kind of device, and any de-
vice can steal tasks from other devices (as long as the task can run
on the thief’s device). For performance reasons, we have disabled
stealing from CPU queues by device workers. The reasons for this
are twofold: 1) the CPU tasks usually have small granularity, and
the overhead of launching a task on a GPU or FPGA device can be
significant (see Section 6 for more details) and 2) allowing device
workers to steal from CPU tasks would require locking the CPU
queues in order to implement the N task lookahead, which would
introduce significant overhead to CPU-to-CPU work stealing, cur-
rently implemented using a non-blocking algorithm [8].

Because of this restriction — disallowing device workers to
steal tasks from a CPU worker — a task that has both CPU and
some other device affinity needs to be launched on a device. In
Habanero-C, the launch mechanism implies adding the task to the
waiting queue for the device, not necessarily running it immedi-
ately. Thus, such a task may later be stolen by a CPU thread,
whereas if it were launched on the CPU it would never be stolen
by a device worker.

We combined the notion of affinity as described in the graph
specification and the notion of device preference. The CnC transla-
tor generates appropriate HC code that passes the preferences spec-
ified by the user in the graph file to the work-stealing runtime.

Since steps can potentially run on different components, we
used the Habanero-C library function current place(), which can
be used to determine on what type of hardware component the step
runs. Based on the device type, the step code calls the appropriate
code or library routine that is compiled for that device type.



5.3 Generalizing dynamic work-stealing
We looked into lifting the restriction of disallowing stealing from
the CPU, while taking into account the granularity problem.

The solution we propose for CPU workers is splitting tasks that
can run on the CPU into two categories: those that can run only
on the CPU, which are viewed as small tasks, with fine granularity
stored in a deque and those that can also execute on an acceler-
ator, which are assumed to have larger granularity and which are
stored in a queue. For the first category of tasks we use the same
non-blocking algorithm such that a worker can pop from it’s own
deque or steal form other worker’s deques using light-weight syn-
chronization. For the second category, we use a blocking approach
for popping or stealing from the CPU queues. With this approach,
the tasks that will be the least likely to be stolen by the CPU are
those tasks which were added to a device worker’s queue (but can
also be run by the CPU) as these tasks have larger affinity with
some device. A CPU could, however, still steal from these in the
event that no other tasks are available.

For device workers, we keep the same scheduling policy as be-
fore, which is a work-stealing algorithm among the device queues
using a blocking approach and a lookahead of N tasks. We enhance
this with stealing from CPU queues as well, but allowing tasks
which have been added to device queues to have priority because
of the affinity metric which made the initial decision of enqueuing
the task for a device.

With the enhancements we propose, we allow the affinity metric
to be used more accurately, thus defining a schedule more closely
matching the indication of device preference.

5.4 CnC runtime
The CnC-HC model was developed on top of the Habanero-C (HC)
programming language, and it uses the async and finish constructs
available in HC. Since not all dependency graphs from CnC can be
implemented using only async and finish constructs, we needed to
extend the HC runtime with additional synchronization to support
the CnC model. The previous implementations included techniques
such as “rollback-and-replay”, feasible for CPU-only scheduling,
but impractical for use across heterogeneous processors. For this
work, we took a new data-driven approach that differs from pre-
vious implementations of the CnC model [10], as it minimizes the
number of spawns, thus reducing overhead.

In our implementation, the CnC runtime scheduler uses the tag
functions to determine exactly which data items the step will get,
and checks the availability of all those items. If not, it enqueues
the step into a queue of tasks waiting for the particular (still un-
available) data item. When a Put() happens for that data item, the
runtime iterates through all the steps that were waiting on that item
and reevaluates whether they have all their data available. If so,
the runtime launches the step using the HC async statement; oth-
erwise, it continues putting the steps into queues of data items on
which they are waiting.

In this section, we presented two runtime contributions: extend-
ing the HC runtime with cross-device work-stealing in order to
achieve load balancing across heterogeneous processors and a new,
data-driven runtime for CnC, which removes unnecessary spawns
to reduce overhead.

6. Experimental Results
6.1 Prototyping platform
To validate our ideas on CHP, we built a single-node heterogeneous
system integrating off-the-shelf components, including a multi-
core CPU, many-core GPU, and FPGAs. We use the Convey HC-
1ex [1] as our baseline platform. The form-factor of the platform is
a 2-U rack-mountable server box. The motherboard has two PCI-e

Tesla C1060

100GB/s off-chip bandwidth

200W TDP

4 XC6vlx760 FPGAs

80GB/s off-chip bandwidth

94W Design Power

Xeon Quad 

Core LV5408

40W TDP

Figure 7. Diagram of the Convey HC-1ex Hybrid Computer

X16 slots, but no physical space to host a double-width GPU (e.g.,
GTX280) or Tesla compute card owing to form-factor issues. Cur-
rently we use a PCI-express expansion box to host a Tesla C1060.
Figure 7 shows the structures of the coprocessor hardware of the
Convey HC-1ex. The HC-1ex uses 4 Xilinx Virtex6 LX760 as the
user FPGAs. The CPU and different FPGAs access the off-chip
memory using a shared memory model. The system employs an on-
board crossbar for the interconnection. Cache coherence is handled
through the FSB protocols. Each FPGA has 16 external memory ac-
cess channels. Eight physical memory ports are connected to eight
memory controllers, which run at 300MHZ. The core design runs at
150MHZ. Thus, effectively, the design on each FPGA is presented
with 16 “logical” memory access channels through time multiplex-
ing. The Convey HC-1ex provides a very large bandwidth (80GB/s
peak) and 16GB capacity for coprocessor side memory. In prac-
tice, we observe that around 30% to 40% of the peak bandwidth
can be easily obtained. The FPGA-side off-chip memory system
is designed to better support interleaved (short) data access rather
than traditional cache-line burst access.

Because the CPU and FPGAs share a common virtual memory
space, while the GPU has its own memory space, we need to use
device specific API to perform memory copy (e.g., cudaMemcpy).

Figure 7 also lists the TDP (or design power for FPGA) of
the components. We use those numbers to estimate the energy
consumption required by the computation. Actual system power
will be higher, as the memory chip, chipset etc. also contributes
to power consumption. Off-chip memory bandwidth for different
components are shown as well. For all results reported in this
section, we used the HPT file given in Section 2.2 as the the
platform description for the CnC-HC runtime system.

6.2 Benefits of heterogeneous computing
We chose medical imaging as one of our primary application do-
main, as it has become a routine tool in the diagnosis and treatment
of most medical problems.

Using accelerators can significantly speed up computationally
intensive applications, such as medical imaging [11]. Table 1 shows
the individual performance of the different application steps on
CPUs, GPUs, and FPGAs. Note that the time measured is for
computation kernels and excludes file I/O (around 2s overhead for
each invocation).

We can see that GPUs and FPGAs deliver significant speedups
compared to single-threaded CPU implementation. We also notice
that different kernels prefer different accelerators. For the registra-



Table 1. Performance of Medical Imaging kernels on CPU, GPU and FPGA
Denoise Registration Segmentation

Num. of Iterations 3 100 50
CPU 3.3s 457.8s 36.76s
GPU 0.085s (38.3×) 20.26s (22.6×) 1.263s (29.1×)

FPGAs 0.190s (17.2×) 17.52s (26.1×) 4.173s (8.8×)

tion kernel, FPGA delivers a higher speedup than GPU, with the
roles reversed for segmentation.

Note that while it is possible to run multiple kernels on the
FPGA, in practice that may involve a large reconfiguration over-
head. In our experiments, we configured the FPGA to accelerate
the registration kernel only.

6.3 Image Pipeline Example
We aim not only to evaluate a representative medical imaging
pipeline that includes image denoising, image registration, and im-
age segmentation kernels [13], but also observe how well our CnC-
based mapping approach performs for such a pipeline. The algo-
rithms that compose the medical image pipeline are stand-alone,
complex algorithms that can be composed a variety of applications
depending on the patient study needs. Apart from the example we
outline in this paper, we mention studies that include multiple in-
stances of the registration algorithm, used to characterize a patient’s
evolution over time using multiple clinical studies.

We first construct a CnC graph for the application:

< int [1] denoise_tag > ;
< int [1] reg_tag > ;
< int [1] seg_tag > ;

[ float* denoise_output ] ;
[ float* registration_output ] ;
[ float* final_output ] ;

<denoise_tag>:: (denoise@CPU = 20,GPU=10);
<reg_tag> :: (registration@GPU = 5, FPGA = 10);
<seg_tag> :: (segmentation@GPU = 12);

( denoise : k ) -> [ denoise_output : k ];
[denoise_output : k]-> ( registration: k )

-> [ registration_output : k ];
[registration_output : k] -> (segmentation : k)

->[ final_output : k ];

Optionally, one can specify the control or data generated by the
environment (the main thread). For example, adding

env -> <denoise_tag : {0 .. 9} >;
env -> <reg_tag : {0 .. 9} >;
env -> <seg_tag : {0 .. 9} >;

to the CnC specification indicates that we want to create an appli-
cation that performs batch processing of the image pipeline, which
processes 10 images. 0..9 are the ranges of the control tags to pre-
scribe the computation steps.

In this CnC specification, we describe the list of computation
tasks denoise, registration, and segmentation, and the input and
output dependencies of each task. The CnC translator converts that
description into a collection of Habanero-C files. Users can further
edit those files to create a working implementation. For example,
for the above-mentioned CnC file, the auto-generated skeleton for
registration.hc is

#include "Common.h"
void registration( int k, float* denoise_output0,\

Context* context){
/*
float* registration_output1;
// allocate memory if necessary and fill
//in values to put here
char* tagregistration_output1=createTag(1, k);
Put(registration_output1, \

tagregistration_output1, \
context->registration_output);

*/
}

The auto-generated code provides hints for the actual implementa-
tion, which follows:

#include "Common.h"
void registration( int k, float* denoise_output0,\
Context* context){

float* registration_output1;
if(current_place() == MEM_PLACE)
{

registration_output1=REG_cpu(k,denoise_output0);
}
else if(current_place() == NVGPU_PLACE)
{

registration_output1=REG_gpu(k,denoise_output0);
}
else if(current_place() == FPGA_PLACE)
{

registration_output1=REG_fpga(k,denoise_output0);
}
char* tagregistration_output1 = createTag(1, k);
Put(registration_output1, \

tagregistration_output1,\
context->registration_output);
}

From the code above, we can see that a function current place()
is used to obtain the current place of the task. Based on the type
of the device, the step calls different routines. MEM PLACE de-
notes a CPU device, NVGPU PLACE denotes a GPU device, and
FPGA PLACE denotes an FPGA device. The scheduling and de-
pendency checking is auto-generated and transparent to the user.

In the main function of the program, we simply initialize the
required data structure (CnC graph) and create the computation
steps. In this example, the application performs a batch processing
on 10 images, where we create 10 instances of denoise, registration,
and segmentation.

6.4 Benefit of dynamic work stealing across heterogeneous
components

Without our proposed framework, one may simply construct a
static mapping: for example, using CPU for denoising, FPGA for
registration, and GPU for segmentation, essentially using compo-
nents that are best-suited for each individual kernel. However, static
scheduling does not keep track of resource availability. In the sim-
ple image pipeline, the execution time of segmentation is smaller



Table 2. Execution times and active energy with dynamic work
stealing for the medical imagining pipeline

Exec time Estimated Active Energy
CPU only 2286s 69.8KJ
GPU only 276s 54.8KJ
CPU+GPU 251s 49.4KJ

CPU+GPU+FPGA 129s 36.1KJ
(dynamic binding)
CPU+GPU+FPGA 193s 23.0KJ

(static binding)

2286

0.33

276 251 129 193

2.18 2.19

2.8 2.85

Figure 9. Execution time and overhead for the medical imaging
pipeline

than registration, leaving the GPU idle for a long time when using a
static schedule. Figure 8a shows the scheduling graph of the static
scheme. Using a dynamic stealing achieves a better load balance
and shorter overall execution time.

Table 2 shows the performance results for different hardware
configurations: CPU only, GPU only, CPU + GPU, and CPU +
GPU + FPGA (static or dynamic bindings).

We can see that with the cross-device stealing, a setup of CPU
+ GPU + FPGA with dynamic binding (Figure 8b) can perform
better than the static scheme (Figure 8a). The energy column is
computed by summing up the energy spent by each device that
contributes to the computation, assuming 10W per core for the
CPU, 200W for the GPU, and 94W for the FPGA, ignoring idle
power. One of the reasons why the static binding has a lower
energy estimate than dynamic binding in Table 2 is because idle
power is ignored. If the idle power and the power of other system
components are considered, we expect that dynamic binding will
have a lower energy cost because of its shorter execution time.
The data in Table 2 shows that different mapping policies may be
needed for optimizing energy consumption or overall performance.

Note that in Figure 8, Dk means denoise instance k, Rk means
registration instance k, and Sk means segmentation instance k. The
graph in Figure 8b shows the effect of cross-device work-stealing.
Initially 10 tasks of denoise(D0 to D9) are pushed into the queue
of GPU, of which D4 to D9 are stolen by the CPU. Similarly, the
registration tasks are pushed into the queue of FPGA initially, but
several task instances are stolen by GPU as well.

We want to point out that all results shown in Table 2 can be
achieved by simply modifying the affinities of CnC description. For
example, a static binding can be realized by

<denoise_tag>:: (denoise@CPU = 1);
<reg_tag> :: (registration@FPGA = 1);
<seg_tag> :: (segmentation@GPU = 1);

CPU-only, GPU-only and CPU+GPU can be constructed in a sim-
ilar fashion.

Note that while the work-stealing runtime is quite powerful, the
decisions it makes are simply based on the status of the queues and
may actually hinder performance. For example, using

<reg_tag> :: (registration@CPU=1,GPU=2,FPGA=3);

to attempt to allow the CPU to help with running registration would
slow down the overall performance, since even a single registration
step takes a very long time to execute on a CPU. Nonetheless, the
affinity annotations provide a powerful tuning capability to boost
the overall application performance.

Examining the schedule resulting from dynamic binding in Fig-
ure 8b, we see room for a minor improvement if the scheduler
chooses to give higher priority to first executing task D3 on a CPU
worker, thereby enabling task R3 to start earlier on the GPU (as-
suming that tasks D1 and D2 also get scheduled on CPU workers).
Exploring such improvements in scheduling algorithms is a subject
for future work.

The graph in Figure 9 shows how the absolute performance
compares to the overhead introduced by using the runtime. To mea-
sure the overhead, we ran the whole application without the actual
work, replacing the computation with empty functions. We can see
that in our current implementation, the hardware configuration with
more heterogeneous components tends to have a larger overhead.
However, these overheads are still quite small compared to the ab-
solute overall execution time. Our future work will explore the op-
portunity to further reduce the data transfer overhead when the de-
pendent task launches on the same heterogeneous component.

7. Conclusions and Future Work
In this paper, we showed how the Concurrent Collections (CnC)
model can be mapped onto heterogeneous platforms in order to
achieve high performance with low energy consumption, while pre-
serving the ease of use of data-flow programming at a level appro-
priate for domain experts. This mapping relied on new extensions
to the CnC model (tag functions, ranges, affinities) and new ex-
tensions to the Habanero-C (HC) runtime system (dynamic work-
stealing across devices and data-driven execution of CnC tasks), all
of which were described in the paper. We demonstrated the effec-
tiveness of our proposed approach on a set of kernels taken from
a real-world medical image-processing pipeline, that were mapped
on to a unique prototype heterogeneous platform, which includes
CPUs, GPUs and FPGAs.

We showed that our model offers efficient (0.52× of the power
used by a CPU-only version) and competitive (17.72× speedup)
results for the medical imaging domain, where getting a fast result,
even when constrained by available power, is critical for facilitating
diagnosis and treatment.

This work opens new research opportunities, which we plan to
explore. First, the introduction of tag functions makes the represen-
tation of a computation in the CnC model more analyzable, offer-
ing the possibility to signal errors or problems in the specification
through static analysis (such as defined steps not being started by
any other step or the environment, items never being computed,
or computed items never being used). In addition, the details intro-
duced by the tag functions can help with scheduling choices and de-
cisions on memory management. Secondly, we are exploring how
the addition of ranges can further be used in defining data-parallel
computations for SIMD/SIMT architectures like GPUs for fully au-
tomated data copying to and from a device. Thirdly, the ability to
determine at runtime how the affinity values should be assigned, or
have a profiling phase for getting accurate values for a particular
platform, has the prospect of yielding even better performance, and
we plan to look into it in more depth. Finally, our aim is to con-
tinue researching what primitives are useful for domain experts, in
order to build a flexible and easy-to-program software for modeling
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their applications and the afferent customizable hardware platform
on which it can be mapped with high performance and efficiency.
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