
Optimizing Array Accesses in
High Productivity Languages

Mackale Joyner, Zoran Budimlić, and Vivek Sarkar

Rice University, Houston TX. {mjoyner, zoran, vsarkar}@cs.rice.edu

Abstract. One of the outcomes of DARPA’s HPCS program has been
the creation of three new high productivity languages: Chapel, Fortress,
and X10. While these languages have introduced improvements in lan-
guage expressiveness and programmer productivity, several technical chal-
lenges still remain in delivering high performance with these languages.
In the absence of optimization, the high-level language constructs that
improve productivity can result in order-of-magnitude runtime perfor-
mance degradations.
This paper addresses the problem of efficient code generation for high
level array accesses in the X10 language. Two aspects of high level array
accesses in X10 are important for productivity but also pose significant
performance challenges: the high level accesses are performed through
Point objects rather than integer indices, and variables containing refer-
ences to arrays are rank-independent. Our solution to the first challenge
is to extend the X10 compiler with automatic inlining and scalar re-
placement of Point objects. Our partial solution to the second challenge
is to use X10’s dependent type system to enable the programmer to an-
notate array variable declarations with additional information for the
rank and region of the variable, and to allow the compiler to generate
efficient code in cases where the dependent type information is available.
Although this paper focuses on high level array accesses in X10, our
approach is applicable to similar constructs in other languages.
Our experimental results for single-thread performance demonstrate that
these compiler optimizations can enable high-level X10 array accesses
with implicit ranks and Points to improve performance by up to a fac-
tor of 5.4× over unoptimized X10 code, and to also achieve performance
comparable (from 48% to 100%) to that of lower-level Java programs.
These results underscore the importance of the optimization techniques
presented in this paper for achieving high performance with high pro-
ductivity.

1 Introduction

The Defense Advanced Research Projects Agency (DARPA) has challenged su-
percomputer vendors to increase development productivity in high-performance
scientific computing by a factor of 10 by the year 2010. DARPA has recognized
that constructing new languages designed for scientific computing is important
to meeting this productivity goal. Cray (Chapel), IBM (X10), and Sun (Fortress)

2

have developed new high productivity languages in response to this challenge.
While these languages’ abstractions suitably provide the mechanisms necessary
to improve productivity in high-performance scientific computing [10], compiler
optimizations are crucial to minimizing performance penalties resulting from the
abstractions.

This paper addresses the problem of efficient code generation for high level
array accesses in the X10 language. There are two aspects of high level array
accesses in X10 that are important for productivity but that also pose signifi-
cant performance challenges. First, the high level accesses are performed through
Point objects rather than integer indices. Points support an object-oriented ap-
proach to specifying sequential and parallel iterations over general array regions
and distributions in X10. As a result, the Point object encourages programmers
to implement reusable high-level iteration abstractions to efficiently develop ar-
ray computations for scientific applications without having to manage many of
the details typical for low level scientific programming. However, the creation
and use of new Point objects in each iteration of a loop can be a significant
source of overhead. Second, variables containing references to arrays are rank-
independent i.e., by default, the declaration of an array reference variable in
X10 does not specify the rank (or dimension sizes) of its underlying array. This
makes it possible to write rank-independent code in X10, but poses a challenge
for the compiler to generate efficient rank-specific code. Our solution to the first
challenge is to extend the X10 compiler so as to perform automatic inlining and
scalar replacement of Point objects. We have a partial solution to the second
challenge that uses X10’s dependent type system to enable the programmer to
annotate selected array variable declarations with additional information for the
rank and region of the variable, and to extend the compiler so as to generate
efficient code in cases where the dependent type information is available. In the
future, we plan to evaluate existing algorithms in the literature for rank and
region analysis to test their effectiveness for X10 arrays, so as to reduce the need
for the programmer to provide the dependent type annotations.

Our experimental results for single-thread performance demonstrate that
these compiler optimizations can enable high-level X10 array accesses with im-
plicit ranks and Points to improve performance by up to a factor of 5.4× over
unoptimized X10 code, and to also achieve performance comparable (from 48% to
100%) to that of lower-level Java programs. Even though the current prototype
X10 implementation [18] targets Java as its execution platform, we expect the
code optimizations presented here to be applicable to other source languages
(including Chapel and Fortress) and other target languages (including C and
Fortran). Further, recent improvements in Java optimization and implemen-
tation technologies show that Java performance can also approach that of native
Fortran and C for some high-performance scientific applications [15]. Thus,
we believe that the experimental results in this paper are also indicative of the
impact that the optimizations will have on future production-strength imple-
mentations of the new high-productivity languages.

3

Section 2 discusses X10 language constructs related to arrays, points, regions,
and point-wise loops. Section 3 describes the optimizations we utilize to enhance
the performance of applications employing these specific language constructs.
Finally, section 4 presents the experimental results obtained from these compiler
optimizations.

2 X10 Language Overview

In this section, we summarize X10 features related to arrays, points, regions and
loops [7], and discuss how they contribute to improved productivity in high per-
formance computing. Since the introduction of arrays in the fortran language,
the prevailing model for arrays in high performance computing has been as a con-
tiguous sequence of elements that are addressable via a Cartesian index space.
Further, the actual layout of the array elements in memory is typically dictated
by the underlying language e.g., column major for fortran and row major for
C. Though this low-level array abstraction has served us well for several decades,
it also limits productivity due to the following reasons:

1. Iteration. It is the programmer’s responsibility to write loops that iterate
over the correct index space for the array. Productivity losses can occur when
the programmer inadvertently misses some array elements in the iteration or
introduces accesses to non-existent array elements (when array indices are
out of bounds).

2. Sparse Array accesses. Iteration is further complicated when the program-
mer is working with a logical model of sparse arrays, while the low level
abstraction supported in the language is that of dense arrays. Productivity
losses can occur when the programmer introduces errors in managing the
mapping from sparse to dense indices.

3. Language Portability. The fact that the array storage layout depends on the
underlying language (e.g., C vs. fortran) introduces losses in productivity
when translating algorithms and code from one language to another.

4. Limitations on Compiler Optimizations. Finally, while the low-level array
abstraction can provide programmers with more control over performance,
there is a productivity loss incurred due to its interference with the com-
piler’s ability to perform data transformations for improved performance
(such as array dimension padding and automatic selection of hierarchical
storage layouts).

The X10 language addresses these productivity limitations by providing higher-
level abstractions for arrays and loops that build on the concepts of points and
regions (which were in turn inspired by similar constructs in languages such as
ZPL). A point is an element of an n-dimensional Cartesian space (n ≥ 1) with
integer-valued coordinates, where n is the rank of the point. A region is a set
of points, and can be used to specify an array allocation or an iteration con-
struct such as the point-wise for loop. The benefits of using points inside of for
loops include: potential reuse of common iteration patterns via storage inside

4

of regions and simple point references replacing multiple loop index variables to
access array elements. We use the term, compact region, to refer to a region for
which the set of points can be specified in bounded space1, independent of the
number of points in the region. Rectangular, triangular, and banded diagonal
regions are all examples of compact regions. In contrast, sparse array formats
such as compressed row/column storage are examples of non-compact regions.

Region operations:

R.rank ::= # dimensions in region;

R.size() ::= # points in region

R.contains(P) ::= predicate if region R contains point P

R.contains(S) ::= predicate if region R contains region S

R.equal(S) ::= true if region R and S contain same set of points

R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)

R.rank(i).low() ::= lower bound of i-th dimension of region R

R.rank(i).high() ::= upper bound of i-th dimension of region R

R.ordinal(P) ::= ordinal value of point P in region R

R.coord(N) ::= point in region R with ordinal value = N

R1 && R2 ::= region intersection (will be rectangular if R1 and R2 are rectangular)

R1 || R2 ::= union of regions R1 and R2 (may or may not be rectangular,compact)

R1 - R2 ::= region difference (may or may not be rectangular,compact)

Array operations:

A.rank ::= # dimensions in array

A.region ::= index region (domain) of array

A.distribution ::= distribution of array A

A[P] ::= element at point P, where P belongs to A.region

A | R ::= restriction of array onto region R (returns copy of subarray)

A.sum(), A.max() ::= sum/max of elements in array

A1 <op> A2 ::= returns result of applying a point-wise op on array elements,

when A1.region = A2. region

(<op> can include +, -, *, and /)

A1 || A2 ::= disjoint union of arrays A1 and A2

(A1.region and A2.region must be disjoint)

A1.overlay(A2) ::= array with region, A1.region || A2.region,

with element value A2[P] for all points P in A2.region

and A1[P] otherwise.

Fig. 1. Region operations in X10

Points and regions are first-class value types [1] in X10 — a programmer can
declare variables and create expressions of these types using the operations listed
in Figure 1. In addition, X10 supports a special syntax for point construction —
the expression, “[a,b,c]”, is implicit syntax for a call to a three-dimensional
point constructor, “point.factory(a,b,c)”, and also for variable declarations
— the declaration, “point p[i,j]” is exploded syntax for declaring a two-
dimensional point variable p along with integer variables i and j which corre-

1 For this purpose, we assume that the rank of a region can be assumed to be bounded.

5

spond to the first and second elements of p. Further, by requiring that points
and regions be value types, the X10 language ensures that individual elements
of a point or a region cannot be modified after construction.

A summary of array operations in X10 can be found in Figure 1. A new array
can be created by restricting an existing array to a sub-distribution, by combin-
ing multiple arrays, and by performing point-wise operations on arrays with the
same region. Note that the X10 array allocation expression, “new double[R]”,
directly allocates a multi-dimensional array specified by region R. In its full
generality, an array allocation expression in X10 takes a distribution instead of
region. However, we will ignore distributions in this paper, since we limit our
attention to single-place executions.

As an example, consider the Java and code fragments shown in Figure 2
for the Java Grande Forum [12] SOR benchmark2. Note that the Java version
involves a lot of manipulation of explicit array indices and loops bounds that
can be error prone. In contrast, the rank-specific X10 version uses a single for
loop to iterate over all the points in the inner region (R inner), and also uses
point expressions of the form “t+[-1,0]” to access individual array elements.
One drawback of the point-wise for loop in the X10 version is that (by default)
it leads to an allocation of a new point object in every iteration for the index
and for each subscript expression, thereby significantly degrading performance.
Fortunately, the optimization techniques presented in this paper enable the use
of point-wise loops as in the bottom of Figure 2, while still delivering the same
performance as manually indexed loops as in the top of Figure 2.

Figure 2 also contains a rank-independent X10 version. In this case, an ad-
ditional loop is introduced to compute the weighted sum using all elements in
the stencil. Note that the computation performed by the nested t and s for
loops in this version can be reused unchanged for different values of R inner
and stencil.

3 Improving Performance of Applications with X10
Language Abstractions

This section has two areas of focus. First, we discuss a compiler optimization we
employ to reduce the overhead of using points in X10. Second, we use X10’s de-
pendent type system to further improve code generation. As an example, Figure 3
contains a simple code fragment illustrating how X10 arrays may be indexed with
points in lieu of loop indices. Figure 4 shows the unoptimized Java output gen-
erated by the reference X10 compiler [18] from the input source code in Figure 3.
The get and set operations inside the for loops are expensive, and this is further
exacerbated by the fact that they occur within innermost loops.

To address this issue, we have a developed an optimization that is a form
of object inlining, specifically tailored for value-type objects. Object inlining [2,
2 For convenience, we use the same name, G, for the allocated array as well as the array

used inside the SOR computation, even though the actual benchmark uses distinct
names for both.

6

Java version:

double G[][] = new double[M][N];

. . .

int Mm1 = M-1; int Nm1 = N-1;

for (int p=0; p<num_iterations; p++) {

for (int i=1; i<Mm1; i++) {

double[] Gi = G[i]; double[] Gim1 = G[i-1]; double [] Gip1 = G[i+1];

for (int j=1; j<Nm1; j++)

Gi[j] = omega_over_four * (Gim1[j] + Gip1[j] + Gi[j-1] + Gi[j+1])

+ one_minus_omega * Gi[j];

} // for i

} // for p

X10 version (rank-specific):

region R = [0:M-1,0:N-1]; double[.] G = new double[R];

. . .

region R_inner = [1:M-2,1:N-2]; // R_inner is a subregion of R

for (int p=0; p<num_iterations; p++) {

for (point t : R_inner) {

G[t] = omega_over_four * (G[t+[-1,0]] + G[t+[1,0]]

+ G[t+[0,-1]] + G[t+[0,1]]) + one_minus_omega * G[t];

} // for t

} // for p

X10 version (rank-independent):

. . .

region R_inner = ... ; // Inner region as before

region stencil = ... ; // Set of points in stencil

double omega_factor = ... ; // Weight used for stencil points

for (int p=0; p<num_iterations; p++) {

for (point t : R_inner) {

double sum = one_minus_omega * G[t];

for (point s : stencil) sum += omega_factor * G[t+s];

G[t] = sum;

} // for t

} // for p

Fig. 2. Java Grande SOR benchmark

7

region arrayRegion1 = [0:datasizes_nz[size]-1];

...

//X10 for loop

for (point p : arrayRegion1) {

row[p] = rowt[p];...

col[p] = colt[p];...

val[p] = valt[p];...

}

Fig. 3. X10 source code of loop example taken from the Java Grande sparsematmult
benchmark

//X10 for loop body translated to Java

for ... {

... // Includes code to allocate a new point object for p

(row).set(((rowt).get(p)),p);...

(col).set(((colt).get(p)),p);...

(val).set(((valt).get(p)),p);...

}

Fig. 4. Java source code of loop following translation from X10 to Java by X10 compiler

4, 8, 9] is a compiler optimization for object-oriented languages that transforms
objects into primitive data, and the code that operates on objects into code that
operates on inlined data. Budimlić [2] and Dolby [8] introduced object inlining
as an optimization for Java and C++. General object inlining requires complex
escape analysis and concrete type inference, and the transformation is irreversible
(once unboxed, objects in general cannot be “reboxed”).

However, because points in X10 are value types, we can safely optimize all
array accesses utilizing point objects by replacing them with an object inlined
point array access version. A value object has the property that once the program
initializes the object, it cannot subsequently modify any of the object’s fields.
This prevents the possibility of the code modifying point p in Figure 3 in between
the assignments – a situation that would prevent the inlining of the point. As a
result, we can inline the point object declared in the for loop header. Figure 5
shows the results of applying this point optimization to the loop we introduce
in Figure 3, and Figure 6 shows the resulting Java code.

3.1 Point Inlining Algorithm

We perform a specialized version of object inlining [2] to inline points. There are
two main differences between points and the objects traditionally considered as
candidates for object inlining. First, a point variable can have an arbitrary num-
ber of fields because a programmer may use points to access arrays of different
rank. Second, a point variable may appear in an X10 loop header. Consequently,
the specialized object inlining algorithm must transform the X10 loop header by

8

//X10 optimized for loop

for (int i = 0; i <= datasizes_nz[size] -1; i +=1) {

// No point allocation is needed here

row[i] = rowt[i];...

col[i] = colt[i];...

val[i] = valt[i];...

}

Fig. 5. X10 source code following optimization of X10 loop body

//X10 optimized for loop translated to Java

for (int i = 0; i <= datasizes_nz[size] -1; i +=1) {

(row).set(((rowt).get(i)),i);...

(col).set(((colt).get(i)),i);...

(val).set(((valt).get(i)),i);...

}

Fig. 6. Java source code of loop following translation of optimized X10 to Java by X10
compiler

using the inlined point fields as loop index variables. As a result, this may lead
to nested for loops if the point variable is a multi-dimensional point.

Figure 7 shows the point inlining algorithm. The first step in the algorithm is
to use type analysis to discover the rank of all X10 points in the program. Recall,
developers may omit rank information when declaring X10 points. However, we
need to infer rank information to inline the point. We obtain rank information
for points from both point assignments and array domain information found in
X10 loop headers. Because points have the value type property, we inline/unbox
every point with an inferred rank. When encountering method calls passed point
arguments, we reconstruct the inlined point by creating a new point instance,
but ensure that this overhead is only incurred on paths leading to the method
calls by allowing the code to work with both original and unboxed versions of
the point. Finally, when possible, we convert a point-wise X10 loop into a set of
nested for loops using the X10 loop’s range information for each dimension in
the region.

3.2 Use of Dependent Type Information for Improved Code
Generation

When examining the Java code generated for the optimization example discussed
in the previous section (Figure 6) we see that even though the point object has
been inlined, significant overheads still remain due to the calls to the get/set
methods. These calls are present because by default, the declaration of an array
reference variable in X10 does not specify the rank (or dimension sizes) of its
underlying array. This makes it possible to write rank-independent code in X10,

9

//flow−insensi t ive point in l ining algorithm

// in i t pass
for each region r

r’s rank = TOP
for each point p

p’s rank = TOP

//gather rank information
for each AST node n

case(assignment)
i f (n.lhs == point OR region)

n.lhs rank = merge(n.lhs’s rank, n.rhs’s rank)
case(x10 loop)

point p = s.formal ();
region r = s.domain ();
p’s rank = merge(p’s rank, r’s rank);

//merge rank using l a t t i c e
merge(rank l, rank r) {

return l ^ r where :
TOP ^ r = r;
BOTTOM ^ r = BOTTOM;
c1 ^ c2 = c1, i f c1 equals c2 else BOTTOM;

}

// inl ine points
for each AST node n

i f (get_rank(n) == CONSTANT) // in l ineab le point found
switch(n)

case(point declaration)
inline(n);

case(point use)
inline(n);

case(method call argument)
reconstruct_point(n);

case(loop with formal point)
convert_loop(loop)

Fig. 7. Algorithm for X10 point inlining

but poses a challenge for the compiler to generate efficient rank-specific code. In
this example, all regions and array accesses are one-dimensional, so it should be
possible for the compiler to generate code with direct array accesses instead of
method calls. Ideally, this information should be deduced automatically by the
compiler (e.g., by propagating rank information from the array’s allocation site
to all its uses), but in general it requires intra- and inter-procedural rank and
region analysis of X10 programs which is beyond the scope of this paper and
a subject for future work. Instead, the partial solution in this paper is to use
the dependent type system [11] available in version 1.01 of the X10 language [16]
to enable the programmer to annotate selected array variable declarations with
additional information for the rank and region of the variable, and to extend the
X10 compiler so as to generate efficient code in cases where the dependent type
information is available. A key advantage of dependent types over pragmas is
that type soundness is guaranteed statically with dependent types, and dynamic
casts can be used to limit the use of dependent types to performance-critical
code regions.

10

// X10 array declarations with dependent type information

// rank==1 ==> array is one-dimensional

// rect ==> array’s region is dense (rectangular)

// zeroBased ==> lower bound of array’s region is zero

double[: rank==1 && rect && zeroBased] row = ... ;

. . .

region arrayRegion1 = [0:datasizes_nz[size]-1];

//X10 for loop

for (point p : arrayRegion1) {

row[p] = rowt[p];...

col[p] = colt[p];...

val[p] = valt[p];...

}

Fig. 8. X10 for loop example from Figure 3, extended with dependent type declarations

//X10 optimized for loop translated to Java

for (int i = 0; i <= datasizes_nz[size] -1; i +=1) {

((DoubleArray_c) row).arr_[i] = ((DoubleArray_c) rowt).arr_[i] ;...

((DoubleArray_c) col).arr_[i] = ((DoubleArray_c) colt).arr_[i] ;...

((DoubleArray_c) val).arr_[i] = ((DoubleArray_c) valt).arr_[i] ;...

}

Fig. 9. X10 for loop body translated from X10 to Java by X10 compiler

To illustrate this approach, Figure 8 contains an extended version of the
original X10 code fragment in Figure 3 with a dependent type declaration shown
for array row. Similar declarations need to be provided for the other arrays
as well. The X10 compiler ensures the soundness of this type declaration i.e.,
it does not permit the assignment of any array reference to row that is not
guaranteed to satisfy the properties. For the one-dimensional case, we extended
the code generation performed by the reference X10 compiler [18] to generate
the optimized code shown in Figure 9 for array references with the appropriate
dependent type declaration. Performing this optimized code generation for multi-
dimensional arrays with dependent types is a subject for future work.

4 Performance Results

We ran all experiments on a 1.25 GHz PowerPC G4 with 1.5 GB of memory using
the Sun Java Hotspot VM (build 1.5.0 07-87) for Java 5 with the -Xms2000M
-Xmx2000M options to set the heap size to 2 GB (we used < 1.5 GB in prac-
tice). We measured performance results on the Java Grande benchmarks. All
benchmark results are obtained using the class A versions of the benchmark.

11

We report results for 3 different versions of the benchmark suite. Version 1 is
essentially the original Java version obtained from the Java Grande Forum web
site [12] renamed with the .x10 extension – we use this version as the baseline
since the X10 compiler currently translates X10 code into Java. Version 2 is an
unoptimized direct translation of the Java version into X10, with all Java arrays
converted into X10 arrays and integer subscripts replaced by points. Version 3
uses the same input X10 program as in Version 2 but turns on the optimizations
described in this paper. All results include runtime array bounds checks, null
pointer checks and other checks associated with a Java runtime environment.

Table 1 shows the impact of the optimizations by comparing the performance
of Versions 2 and 3. Performance improvements in the range of 1.6× to 5.4× were
observed for 7 of 8 benchmarks in Table 1. We observed no improvement in the
series benchmark because its performance is dominated by scalar (rather than
array) operations.

Table 2 compares the performance of the Java baseline (Version 1) with the
optimized X10 (Version 3) by reporting the execution time ratio for Version 1
relative to version 3. For 6 of 8 benchmarks the ratio is in the range of 0.48
to 1.00, showing that the performance gap is at most a factor of 2 for these
benchmarks. For the two remaining benchmarks, lufact and sor, the ratio is 0.07
indicating that the Java version is 14.3× faster than the X10 version in these two
cases. This gap is primarily due to the multi-dimensional array computations in
the two benchmarks, and the fact that the efficient code generation discussed in
Section 3.2 currently does not support arrays with rank > 1. Enabling efficient
code generation for multi-dimensional X10 arrays and comparison to C/Fortran
benchmark versions is a subject for future work.

Table 1. Results from optimizing points in X10 version of Java Grande benchmarks

Benchmarks Runtime Performance in seconds Speedup Factor
Unopt. X10 (Version 2) Opt. X10 (Version 3) (Version 2)/(Version 3)

sparsematmult 57.97 13.83 4.1×
crypt 8.14 4.79 1.7×
lufact 52.87 18.86 2.8×
sor 508.49 93.41 5.4×
series 19.01 18.95 1.0×
moldyn 2.39 1.19 2.0×
montecarlo 7.59 3.49 2.2×
raytracer 2.27 1.43 1.6×

5 Related Work

Object Inlining [2, 4, 8, 9] is a compiler optimization for object-oriented languages
that transforms objects into primitive data, and conversely the rest of the pro-
gram code that operates on objects into code that operates on inlined data. It

12

Table 2. Comparison of applied compiler optimizations to X10 array point accesses
versus the original version with Java arrays

Benchmarks Runtime Performance in seconds Performance Ratio
Orig. Java (Version 1) Opt. X10 (Version 3) (Version 1)/(Version 3)

sparsematmult 9.75 13.83 0.71

crypt 4.60 4.79 0.96

lufact 1.38 18.86 0.07

sor 6.06 93.41 0.07

series 19.01 18.95 1.00

moldyn 0.57 1.19 0.48

montecarlo 3.00 3.49 0.86

raytracer 1.28 1.43 0.90

is closely related to “unboxing” [14] for functional languages. Budimlić [2] and
Dolby [8] introduced object inlining as an optimization for object-oriented lan-
guages, particularly for Java and C++. General object inlining requires complex
escape analysis and concrete type inference, and the transformation is irreversible
(once unboxed, objects cannot always be reboxed). Joyner [6, 13] extended the
analysis to allow more objects and arrays of objects to be inlined in scientific,
high performance Java programs. This paper presents object inlining for points
and other value objects in X10, which is a less general, but more effective and
more applicable (all value objects can be boxed and unboxed freely) form of
object inlining.

Wu et al. [17] presented Semantic Inlining for Complex numbers in Java, an
optimization closely related to object inlining. Their optimization incorporates
the knowledge about the semantics of a standard library (Complex numbers)
into the compiler, and converting all the Complex numbers into data structures
containing the real and imaginary part. Although this optimization achieves the
same effect as object inlining for Complex numbers, it is less general since it
requires compiler modifications for any and all types of objects for which one
desires to apply this optimization.

The point-wise for loop language abstraction is not unique to the X10 lan-
guage. Titanium [19], a Java dialect, also has for loops which iterate over points
in a given domain. The Titanium compiler also performs an optimization to
remove points appearing inside for loops. However, there are a couple of dif-
ferences between our approach and the one applied in Titanium. First, because
in X10 the rank specification of both points and arrays is not required at the
declaration site, we employ a type analysis algorithm to determine the rank for
all X10 arrays. Second, object inlining in X10 is directly applicable to all value
objects, not just points, and thus is a more general optimization.

13

6 Conclusions and Future Work

In this paper, we discussed the Point abstraction in high-productivity languages,
and described compiler optimizations that reduce their performance overhead.
We conducted experiments that validate the effectiveness of our optimizations
and demonstrate that these optimizations can enable high-level X10 array ac-
cesses written with implicit ranks and Points to achieve performance comparable
to that of low-level programs written with explicit ranks and integer indices. The
experimental results showed performance improvements in the range of 1.6× to
5.4× for 7 of 8 Java Grande benchmark programs written in X10, as a result of
these optimizations. Further, for 6 of 8 benchmarks, the performance ratio of the
optimized X10 versions relative to the low-level Java versions was in the range
of 0.48 to 1.00, showing that the performance gap is at most a factor of 2 for
these benchmarks. These results emphasize the importance of the optimizations
we have presented in this paper as a step towards achieving high performance
for high productivity languages.

We plan to investigate possible optimizations to the X10 array implementa-
tion that brings it closer to Java array performance. We will be exploring the
ways to communicate static compiler analysis information to the run-time en-
vironment to further speed up array accesses, for example by eliminating array
bounds checks whenever possible.

We will examine the achievability of an object inlining framework that would
expand inlining to more general types of objects. This framework will require
a sophisticated concrete type analysis for high-productivity languages, which is
an exciting problem in its own right.

Acknowledgments

We would like to thank the anonymous reviewers for their detailed feedback on
the paper.

We are grateful to all X10 team members for their contributions to the
X10 software used in this paper. We would like to especially acknowledge Vijay
Saraswat’s work on the design and implementation of dependent types in X10,
and Rajkishore Barik’s work on optimized code generation for rectangular loops
in X10.

We would also like to acknowledge the contributions of the late Ken Kennedy,
who for a long time led a multi-institutional effort of bringing high-productivity
and high-performance together and who was particularly enthusiastic about this
project and participated in its early stages.

Mackale Joyner and Zoran Budimlić are supported in part by an IBM Uni-
versity Relations Faculty Award. While at IBM, Vivek Sarkar’s work on X10 was
supported in part by the Defense Advanced Research Projects Agency (DARPA)
under its Agreement No. HR0011-07-9-0002.

14

References

1. Bacon, D.F.: Kava: a Java dialect with a uniform object model for lightweight
classes. Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande.
Palo Alto, California. 68–77

2. Budimlić, Z.: Compiling Java for High Performance and the Internet. PhD thesis.
Rice University. (2001)

3. Budimlić, Z., Kennedy, K.: JaMake: A Java Compiler Environment. In 3rd Inter-
national Conference on Large Scale Scientific Computing. (2001) 201–209

4. Budimlić, Z., Kennedy, K.: Optimizing Java: Theory and practice. Concurrency:
Practice and Experience, 9(6):445–463. (1997)

5. Budimlić, Z., Kennedy, K.: Prospects for Scientific Computing in Polymorphic,
Object-Oriented Style. In the Proceedings of the 9th SIAM Conference on Parallel
Processing for Scientific Computing. San Antonio, Texas. (1999)

6. Budimlić, Z., Joyner, M., Kennedy, K.: Improving Compilation of Java Scientific
Applications . The International Journal of High Performance Computing Appli-
cations. (2006)

7. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., Praun, C.v.,
Saraswat, V., Sarkar, V.: X10: An object-oriented approach to non-uniform cluster
computing. In OOPSLA 2005 Onward! Track. (2005)

8. Dolby, J.: Automatic Inline Allocation of Objects. In Proceedings of ACM SIG-
PLAN conference on POPL. Las Vegas, Nevada. (1997)

9. Dolby, J., Chien, A.: An Automatic Object Inlining Optimization and its Evalu-
ation. In Proceedings of the 2000 ACM Sigplan Conference on Programming Lan-
guage Design and Implementation. (2000) 345–357

10. Ebcioglu, K., Sarkar, V., El-Ghazawi, T., Urbanic, J.: An Experiment in Measuring
the Productivity of Three Parallel Programming Languages. HPCA Workshop on
Productivity and Performance in High-End Computing (P-PHEC 2006), held in
conjunction with HPCA 2006. (2006)

11. Harper, R., Mitchell, J.C., Moggi, E.: Higher-order modules and the phase distinc-
tion. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, New York. 341–354

12. The Java Grande Forum benchmark suite. http://www.epcc.ed.ac.uk/javagrande.
13. Joyner, M.: Improving Object Inlining for High Performance Java Scientific Ap-

plications. Master’s Thesis. Rice University. (2005)
14. Leroy, X.: Unboxed objects and polymorphic typing. In Proceedings of the 19th

Symposium on the Principles of Programming Languages. (1992) 177–188
15. Markidis, S., Lapenta, G., VanderHeyden, W.B., Budimlić, Z.: Implementation and

Performance of a Particle-in-cell code Written in Java. Concurrency and Compu-
tation: Practice and Experience, Vol. 17. (2005) 821–837

16. Saraswat, V.: Report on the experimental language x10 version 1.01.
http://x10.sourceforge.net/docs/x10-101.pdf

17. Wu, P., Midkif, S., Moreira, J., Gupta. M.: Efficient support for complex numbers
in Java. Proceedings of the ACM 1999 conference on Java Grande. (1999) 109–118

18. X10 Prototype Implementation. http://x10.sf.net.
19. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,

A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: a high-
performance Java dialect. Concurrency: Practice and Experience, Vol. 10, Issue
11-13. (1998) 825–836

