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ABSTRACT
The demand for portable mainstream programming models sup-
porting scalable, reactive and versatile distributed computing is gro-
wing dramatically with the proliferation of manycore/heterogeneous
processors on portable devices and cloud computing clusters that
can be elastically and dynamically allocated. With such changes,
distributed software systems and applications are shifting towards
service oriented architectures (SOA) that consist of largely decou-
pled, dynamically replaceable components and connected via loo-
sely coupled, interactive networks that may exhibit more complex
coordination and synchronization patterns.

In this paper, we propose the Distributed Selector (DS) model, to
address the aforementioned requirements via a simple easy-to-use
API. Our implementation of this model runs on distributed JVMs,
and features automated bootstrap and global termination. We fo-
cus on the Selector Model (a generalization of the actor model)
as a foundation for creating distributed programs and introduce
a unified runtime system that supports both shared memory and
distributed multi-node execution of such programs. The multiple
guarded mailboxes, a unique and novel property of Selectors, en-
able the programmer to easily specify coordination patterns that are
strictly more general than those supported by the Actor model.

We evaluate the performance of our selector-based distributed
implementation using benchmarks from the Savina benchmark suite
[13]. Our results show promising scalability performance for var-
ious message exchange patterns. We also demonstrate high pro-
gramming productivity arising from high-level abstraction and lo-
cation transparency in the HJ Distributed Selector Runtime library
(as evidenced by minimal differences between single-node and multi-
node implementations of a selector-based application), as well as
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the contribution of automated system bootstrap and global termi-
nation capabilities.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Distributed programming, Parallel programming

Keywords
Actor Model, Selector Model, Distributed Selectors, Remote Mes-
saging, Remote Synchronization

1. MOTIVATION
Distributed application for today’s cloud and mobile platforms

need more than mere computing capacity. Without improvements
in scalability and programmability, the ever-growing complexity
of interaction patterns in distributed computing can limit us from
efficiently exploiting available computational resources. While the
need for exploiting both multicore and multi-node parallelism is
widely acknowledged in modern cloud services, there remains a
conceptual gap between programming models for shared-memory
parallelism and those for distributed concurrency.

The Actor Model (AM) [1, 8], represented by isolated processes
(actors) that interact solely via asynchronous message passing, is a
natural fit for a unified concurrency model for both multi-core and
cluster-level parallelism. However, we believe that the traditional
Actor model poses certain limitations on the actor coordination and
synchronization patterns, and we aim to develop a distributed run-
time system for the more general Selector Model (SM) [15].

In this paper, we introduce the Habanero Java Distributed Selec-
tor (HJ-DS) runtime, which (to the best of our knowledge) is the
first known implementation of the selector model as a unified pro-
gramming model for both single-node and multi-node parallelism.
We built the HJ-DS runtime as an extension to the single-node
shared-memory Habanero Java Runtime Library (HJlib) [3]. The
SM model extends the AM with multiple guarded mailboxes and
message priorities to enable more general coordination and syn-
chronization patterns than those supported by the AM. It offers
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a promising approach for building distributed concurrent applica-
tions with both productivity and scalability.

Unlike other distributed actor libraries, our implementation fea-
tures light-weight selector/ actor creation on remote places, auto-
matic system bootstrap, and automatic program termination detec-
tion. Our library includes support for a) transparent creation of
selectors on remote nodes; b) transparent message delivery for lo-
cal or remote recipient selectors; and c) distributed global termi-
nation when the program becomes quiescent. In contrast to many
distributed Actor-based libraries (e.g. Akka [22], SALSA [23]) that
use daemon tasks for these system services, our library implements
such services as system-level selectors that process internal runtime
events.

2. THE DISTRIBUTED SELECTOR MODEL

2.1 The Selector Model
Selectors are an extension of the Actor model [15]. A Selec-

tor is an execution unit that has the capability to process incoming
messages. Similar to actors, selectors encapsulate their local state
and process incoming messages, one message at a time. Figure 1
shows a decomposition of the Selector model. The modularity and
data locality of the Actor model are still preserved when using se-
lectors.

Although the Actor Model has been successfully used for many
concurrent computations, not all concurrent problems are most ef-
fectively solved using this model. In some concurrent program-
ming patterns, preserving the integrity of the objects requires syn-
chronization protocols to control the order in which messages are
processed in the mailbox [19].

Since the Actor model does not permit shared state and forces
all communication to be asynchronous, concurrent coordination in-
volving multiple actors might be harder than using non-actor con-
currency constructs such as locks [16]. The Distributed Selector
model we are proposing in this paper acts as an abstraction to sup-
port synchronization and coordination mechanisms among multi-
ple selectors. Selectors allows an actor to have multiple guarded
mailboxes. This is a unique and novel property of Selectors, which
distinguishes them from Actors. Messages can be sent to any of the
mailboxes, and the processing of messages from a specific mailbox
can be managed by turning the processing of a specific mailbox on
or off.

The multiple guarded mailboxes in the Selector model enable
coordination and synchronization patterns such as a) synchronous
request-reply [Section 2.2.1], b) join patterns in streaming applica-
tion [Section 2.2.2], and c) producer-consumer with bounded buffer
[Section 2.2.3]. We explain each of the motivating examples in Sec-
tion 2.2, contrasting our Selector based approach with the Actor
based approach. We briefly describe our user interface [Section 3],
library implementation of the Distributed Selectors [Section 4] and
finally present some performance results of our Java based imple-
mentation of the Savina benchmarks [Section 5] that show promis-
ing strong-scaling results.

Selectors differ from the conventional actor design in two ways:
a) Selectors have multiple mailboxes to receive messages, which
allows messages of different priority or purpose to be concurrently
and asynchronously added to different mailboxes, eliminating the
need for blocking coordination and reduce contention, b) The mail-
boxes have a boolean condition (guards) which can be used to en-
able or disable a specific mailbox while processing a message. This
guard does not affect the mailbox’s ability to receive messages;

Figure 1: Decomposition of a selector: guarded mailboxes, local state, mes-
sage processing logic.

it only controls whether the messages in the mailbox can be pro-
cessed or not. Each mailbox is guarded with one or more boolean
conditions that control whether message processing is enabled or
disabled for the mailbox. An actor can be implemented as a selec-
tor with an always enabled, single mailbox.

The DS life cycle is very similar to its shared-memory counter-
part [15], and displays the complete encapsulation and state isola-
tion found in most Actor model interpretations. The selector life
cycle consists of the following three stages:

• new: A selector is asked to be created, its location in the dis-
tributed runtime is hidden unless specified by the user. At
this point, the selector object is not guaranteed to have been
instantiated, but an access handle is immediately created and
passed to the caller and any entity holding this handle can
start sending messages to the selector. Initially, all mailboxes
are enabled, and the runtime will buffer all incoming mes-
sages for the Selector.

• started: A selector has started processing messages. It pro-
cesses messages one at a time from any enabled mailbox.
During the processing of a message, the selector can choose
to enable or disable some of its mailboxes, thus changing its
own behavior. Since the mailboxes have priorities, the selec-
tor will try to process messages in mailboxes of higher prior-
ity first, however such priorities are not strict. To guarantee
fairness among all mailboxes the Selector rotates between
mailboxes when processing messages.

• terminated: A selector terminates when it calls exit(). A Se-
lector in such a state will not process any messages in its
mailbox and ignores all incoming messages, aside from some
special cases. The distributed runtime does not terminate a
selector until all new operations requested by that selector
are observed to have completed and no outgoing messages
remain in the local buffer. A Selector in such a state cannot
be restarted, and a system-wide termination of all selectors
will signal the global termination of the application.

Figure 2: Life cycle of a selector.

The multiple guarded mailboxes in a selector allows the pro-
grammer to optionally implement the following actions:

• Mailbox determined by sender: The message sender can di-
rectly specify the mailbox to send a message to.



• Mailbox determined by receiver: A message can be sent with-
out a target mailbox, and the receiver can either choose to
put the message in a default mailbox, or introduce process-
ing logic to inspect the message and determine the mailbox
it should be put in. Such approach can be extremely useful
in dynamic loading and dynamic updates in many interactive
or reactive systems.

• Declarative mailbox guard: A mailbox may be guarded with
explicit declarative expressions, thus separating the mailbox
enable/disable logic from regular message processing logic.
Such approach can be useful when the enabling/disabling
of mailboxes rely on the selector’s internal state, such as in
many pipeline based applications.

2.2 Coordination with Selectors in Distributed
Applications

In this section, we describe how the multiple guarded mailboxes
in the Selector model allow efficient coordination and synchro-
nization patterns, and how the patterns are transparently applied
to a distributed runtime. We demonstrate the Distributed Selec-
tor model’s programmability by contrasting the distributed selector
patterns with a traditional actor-based solution.

2.2.1 Synchronous Request-Reply Pattern
We can observe a synchronous request-reply pattern [18, 11]

when a requestor sends a message to the replier, which receives
and processes the message, and eventually sends a reply in re-
sponse to the requestor. When using the Actor-based model for
a computation of synchronous request-reply, an actor sends a mes-
sage(request), its message processing logic stalls all other compu-
tations until it receives the corresponding reply. Since the Actor
model relies on asynchronous messages, this pattern would require
separate messages for request and reply. Such pattern can be hard
to implement efficiently as the requesting actor’s single mailbox
needs to house both the request and the reply messages. Using a
non-blocking method the incoming messages before the response
message must be stashed and unstashed to the mailbox after pro-
cessing the reply message.

Another approach to avoid complications in processing the ex-
isting messages can be implemented using a blocking mechanism
but that limits scalability. While it can be cumbersome for a user
to manually code the non-blocking approach, Akka provides the
become and unbecome constructs and the Stash trait to enable this
pattern [20]. Such approaches, however, produces overhead associ-
ated with maintaining the stashedmessages when the actor is in a
reply blocked state, and when the messages need to be unstashed
after the response message is processed, as well as switching con-
text for different processing patterns. Additional overhead is ob-
served if the unstashed messages need to be prepended to the
head of the mailbox, as the actor can be receiving other messages
during the reply-blocked stage.

Solution: Request-Reply with Selectors.
Using the Selector-based approach we can define two separate

maiboxes, one to receive regular messages including all the re-
quest messages and another mailbox to receive only synchronous
response messages. Let’s say the selector has two mailboxes (see
Figure 3): REGULAR and REPLY. Whenever a selector is ex-
pected to process a synchronous response message, it disables the
REGULAR mailbox, which ensures that the next message to be
processed will be from the REPLY mailbox [line 10]. When a re-
sponder processes the request message it will send back a response
to the REPLY mailbox of the selector. The requestor selector stays

in the reply-blocked state until a response is received, and after
processing the message from the REPLY mailbox, it enables the
REGULAR mailbox and starts processing other messages [lines 12
- 17]. Such a pattern translates seamlessly to distributed appli-
cations, hides long message passing latencies, and can be a large
contributor to improving efficiency in interactive applications and
service-oriented architectures where a request-response pattern is
commonly used.

1 public class ReqRespSelector extends ←↩
DistributedSelector {

2 public void process(MessageType theMsg){
3 if( theMsg instanceof SomeMessage){
4 // a case where we want a response
5 SomeRequest req = new SomeRequest(this,
6 new SomeMessage(theMsg));
7 anotherActor.send(req);
8 // move to reply-blocked state
9 this.mailbox.get(REGULAR).disable();

10

11 } else if (theMsg instanceof SomeReply){
12

13 // process the reply (from REPLY mailbox)
14 ...
15 // resume processing regular messages
16 this.mailbox.get(REGULAR).enable();
17

18 ...
19 } else {
20 ...
21 }}}

23 class ResponseSelector extends DistributedSelector{
24 public void process(MessageType theMsg) {
25 if (theMsg instanceof SomeRequest){
26 SomeReply reply = compute(m.data);
27 // send to response mailbox
28 sender().send(REPLY, reply);
29 ...
30 } } }

Figure 3: Using Selectors to solve the Request-Response Pattern without
blocking. In this example the responding entity is an actor and is sending
the reply message to the REPLY mailbox (line 28).

2.2.2 Join Patterns in Streaming Applications
An Actor-based approach can be an excellent choice for stream-

ing applications as it can be used to pipeline messages. Actors can
be connected in a data flow chain to form a producer-consumer pair,
and ensure messages to be processed in FIFO order. Such a net-
work can effectively exploit parallelism, by propagating data asyn-
chronously from producers to consumers as data becomes avail-
able. However, when using actors it becomes difficult to mimic
a join pattern where messages from two or more data streams are
combined into a single message. Join-patterns are usually block-
ing as they need to match the data from all sources and wait for all
the data to arrive before processing the messages. Figure 4 shows
an aggregator, where the Adder actor is consuming data from the
Source actors and adding streams of corresponding values.

The order of processing of messages is not guaranteed on the
sender actors, which makes implementing this protocol difficult.
Further complexity is added when we need to keep a track of all
the in-flight messages from various sequence numbers. To aggre-
gate the results from the sources we also need to tag messages with
source and sequence number. Only when messages from all the
Source actors for the oldest sequence number is received by the ag-
gregator actor, it can reduce the items into a single value. To avoid
any memory leaks the aggregator needs to remove all the processed
sequence numbers.

Akka provides support for the aggregator pattern that allows ma-



Figure 4: Actor network simulating a join pattern. Source-1, Source-2,
and Source-3 are producers for data streams. The Adder actor aggregates
data items from each of the three sources and sums them up.

tch patterns to be dynamically added to and remove from an actor
from inside of the message processing logic. However, this im-
plementation does not allow matching the sender (Source) of the
message during aggregation which is a key part of the join pattern.

Solution: Join Pattern with Selectors.
In an actor-based solution, we need to tag the messages with

source and sequence numbers to support the join pattern. In con-
trast, using the selector-based approach we need to make sure that
the senders send their messages to the correct mailbox of the aggre-
gator. We can achieve this in two ways: a) Any order: wrapping
the send logic in the selector to forward messages from sources to a
specific mailbox in the aggregator or b) Round robin order: con-
figuring (initialization) the sources with different mailbox names so
that the sources send only to specific mailboxes.

For the first approach (see Figure 5, lines 1-22), ordering is not
preserved when sending data from the sources to the aggregator’s
corresponding mailbox. As items are received the corresponding
mailbox is disabled and the pool of active mailboxes decrease [line
10]. When items from all sources have been received for the cur-
rent sequence number, the result is computed and pushed to the
consumer network, and all the mailboxes are enabled for the next
sequence number [lines 13-20].

For the second approach (see Figure 5, lines 24-47), the aggrega-
tor selector disables all mailboxes except the first one, which corre-
sponds to messages from the first source[line 30]. As each message
is received by a mailbox, that mailbox is disabled and next mailbox
is enabled in a round-robin fashion[line 36]. When one message
from each of the sources has reached the aggregator, the join op-
eration is commenced and forwarded to the next consumer in the
network[lines 39-44]. The first mailbox, corresponding to the first
source is then enabled to process items for the next sequence num-
ber.

2.2.3 Producer-Consumer with Bounded Buffer
A classic example of a multi-process synchronization problem is

the producer-consumer model with bounded buffer [9, 24], where
the producer pushes work into the buffer as work is produced and
the consumer pulls work from the buffer when they are ready to ex-
ecute. To model this problem as an Actor-based system, we model
the producer, consumer, and the buffer as actors.

The bounded buffer actor acts as an intermediary which needs to
keep track of these scenarios: a) whether the data buffer is empty
or full, b) when the buffer is empty, and the consumer requests
work, then the consumer is placed in a queue until work is avail-
able, c) when producers are ready to produce data, and the buffer
is full, the producer is placed in a queue until the buffer is empty,

1 // process items in any order
2 public class AdderAnyOrder(...) extends ←↩

DistributedSelector {
3 int[] items = new int[numSrcs];
4 int srcMatched = 0
5 public void process(MessageType theMsg) {
6 if(theMsg instanceof ItemMesssage){
7 ItemMessage im = new ItemMessage(theMsg);
8 items[im.sourceId) = im.intValue();
9 // disable the current mailbox

10 this.mailbox.disable(im.sourceId)
11

12 srcMatched += 1;
13 if (srcMatched == numSrcs) {
14 SomeValue joinResult = computeJoin(items);
15

16 nextInChain.send(joinResult);
17 // reset locals
18 items = new int[numSrcs]; srcMatched = 0;
19 // enable all mailboxes for next seq
20 this.mailbox.enableAll();
21 } }}}
22

24 // process items in round-robin order
25 public class AdderRoundRobinOrder(...)
26 extends DistributedSelector{
27 int[] items = new int[numSrcs];
28 int srcMatched = 0;
29 // expect item from first source
30 this.mailbox.disableAllExcept(0);
31 public void process(theMsg: AnyRef) {
32 if(theMsg instanceof ItemMessage){
33 ItemMessage im = new ItemMessage(theMsg);
34 items(im.sourceId) = im.intValue();
35 // disable the current mailbox
36 this.mailbox.disable(im.sourceId);
37 srcMatched += 1;
38

39 if (srcMatched == numSrcs) {
40 SomeValue joinResult = computeJoin(items)←↩

;
41 nextInChain.send(joinResult);

43 // reset locals
44 items = new int[numSrcs]; srcMatched = 0;←↩

45 }
46 //enable round-robin mailbox for next seq
47 this.mailbox.get(srcMatched).enable()←↩

;
48 } } }

Figure 5: Using Selectors to solve the Join Pattern problem of Figure 4.
The aggregator selector versions (Adder Any Order and Adder Round
Robin) maintain one mailbox for each source. For simplicity we assume
sources are identified by consecutive integers starting at 0.

and finally d) notify the producer when the buffer is ready, and
more work can be pushed into the buffer. Additional complexity is
observed as the buffer actor also needs to maintain queues for the
available producers and consumers as there are no ways to disable
processing of particular messages. Pattern matching can be used to
implement this scenario, but it is expensive as one would need to
search for the next message in the mailbox to be processed.

Solution: Producer-Consumer with Selectors.
Using the Selector-based model we can model the buffer as a se-

lector and the producer and consumers as actors. The buffer selec-
tor maintains two mailboxes, one to receive messages from produc-
ers and the other to receive messages from the consumer. We can
disable processing messages from the producers mailbox when the
buffer is full, and disable processing messages from the consumers
mailbox when the buffer is empty.

Figure 6 presents a solution that uses declarative guards to iso-
late the message processing logic from the logic to enable or dis-



1 public class BufferSelector extends ←↩
DeclarativeSelector {

2 public void registerGuards() {
3 // disable producer msgs if buffer might overflow
4 guard(MBX_PRODUCER ,
5 (theMsg) -> dataBuffer.size() < thresholdSize)
6 // disable consumer msgs when buffer empty
7 guard(MBX_CONSUMER ,
8 (theMsg) -> !dataBuffer.isEmpty())
9 }

10 public void doProcess(MessageType theMsg) {
11 if(theMsg instanceof ProducerMsg) {
12 ProducerMsg dm = new ProducerMsg(theMsg);
13 // store the data in the buffer
14 dataBuffer.add(dm);
15 // request producer to produce next data
16 dm.producer.send(ProduceDataMsg.ONLY);
17 }else if(theMsg instance of ConsumerMsg) {
18 ConsumerMsg cm = new ComsumerMsg(theMsg);
19 // send data item to consumer
20 cm.consumer.send(dataBuffer.poll());
21 this.tryExit();
22 }else if(theMsg instance of ProdExitMsg){
23 numTerminatedProducers += 1;
24 this.tryExit();
25 } } }

Figure 6: Using Selectors to solve solve the Producer-Consumer with
Bounded-Buffer Pattern. The Buffer selector maintains two mailboxes,
one to receive messages from producers and another to receive messages
from consumers. The use of declarative guards separates the enable
and disable logic of mailboxes into the guard registration method,
registerGuards.

able mailboxes. This method avoids maintaining separate sets of
available producers and consumers in a purely Actor-based model.

3. DISTRIBUTED SELECTOR: INTERFACE
The design of our Distributed Selector (DS) model is based on

the Habanero Java Runtime Library (HJlib) [3]. We expand the
shared-memory implementation of the Selector Model to achieve
remote message passing, remote selector creating and bounded global
termination in a transparent manner. The DS model refers to each
single HJ runtime instance as a place. A physical computing node
can serve as a single or multiple places, given each place has its
own logically isolated address space. In general, selectors are lo-
cated at the same place to show logical affinity and/or to exploit
data locality in both communication patterns and logical function-
ality. Figure 7 shows the DS library class hierarchy.

Both hj.distributed.SelectorHandle and hj.distribut-
ed.DistributedSelector inherits from the hj.distributed.-
ISelector interface. The hj.distributed.SelectorHandle
is the single point of access to a Selector object in user programs,
while hj.distributed.DistributedSelector extends its shared-
memory predecessor but remains exclusive to access internally to
the package. A user program can use the factory method hj.distri-
butedHJSelector.newSelector to obtain a SelectorHandle in-
stance. The factory method abstracts away the difference between
creating a selector locally or at a remote location by allowing the
user to omit the location of the selector to be created. The in-
troduction of hj.distributed.SelectorHandle eliminates any
possibility of sharing state by disallowing the user to directly in-
teract with Selector references. More importantly, the separation
of Selector object and the access handle gives a lightweight vehi-
cle of communicating Selector object information across the dis-
tributed system, as well as routing messages when needed. Given
the lightweight handle, programmers will not have the need to deal
explicitly with the low-level complexities of distributed coordina-
tion.

The runtime also features automatic system bootstrap and termi-

1 public class HJSelector{
2 pubic SelectorHandle newSelector(Class<T> classType←↩

, Object... args);
3 pubic SelectorHandle newSelector(int placeId, Class←↩

<T> classType , Object... args);
4 }

6 public interface ISelector{...}

8 public class SelectorHandle <MessageType > implements ←↩
ISelector , Serializable {

9 private long _UID;
10 public void send(final int mailboxId , final ←↩

MessageType message);
11 public long getUID();
12 public void start();
13 }

15 public abstract class DistributedSelector <MessageType←↩
> extends Selector<MessageType > implements ←↩
ISelector {

16 private SelectorHandle _handle;
17 public final void send(int mailboxId , final ←↩

MessageType message);
18 public final void start();
19 }

Figure 7: The HJ Distributed Selector class hierarchy. The
DistributedSelector class is not accessible to users

1 selectorSystem {
2 init {
3 place : p0,
4 hostname:cn16.davinci.rice.edu,
5 port: 5000,
6 }
7 remote : [
8 {
9 place : p1

10 hostname:cn20.davinci.rice.edu,
11 port: 5002,
12 },
13 {
14 place : p2
15 hostname:cn35.davinci.rice.edu,
16 port: 5002,
17 }
18 ]
19 }

Figure 8: Sample configuration file, nodes are on Rice University’s
DAVinCI cluster.

nation. To set up the DS system, users provide a configuration file
(see Figure 8) in which the IP addresses (or host names) and ports
for all computing nodes are specified. If two places are assigned the
same node, the system will run on multiple JVM instances (using
different ports) on the same node. The init keyword specifies the
bootstrap master node, while the remote keyword indicates other
predefined places in the bootstrap. The runtime reads information
from the configuration file and boots up the system. By ensuring
that the master node has the program executable and SSH access
to all places specified in the configuration file, the runtime stages
all executable on all remote nodes and initiates the bootstrap se-
quence. The runtime will exit the program after all user created
selectors have safely terminated. The current implementation re-
quires user to set the username and password for remote hosts as
environment variables. The runtime can be extended to support
more configurations like memory usage limit and thread count in
the bootstrap config files.

4. DISTRIBUTED SELECTOR: DESIGN
WORKFLOW

In this section, we give an overview of the runtime system de-



sign and implementation, and the subsections are divided into sys-
tem structure (Section 4.1), initialization(Section 4.2), communica-
tion(Section 4.3), and termination (Section 4.4).

4.1 System Structure
Figure 9 shows the decomposition of the Distributed Selector

system1. Each node is represented as a place [15]. A selector run-
time system on one node (place) consists of multiple user-defined
selectors, and two service actors: System Actor and Proxy Actor,
and multiple user-defined selectors. Section 4.2 explains how these
actors are initialized. The user can choose to denote a specific place
in the configuration file as the Master Node.

Figure 9: The Distributed Selector System

In this diagram, the distributed selector system refers to the sys-
tem on which an HJDS program is executed. It contains a collec-
tion of computing nodes referred to as places. place refers to an
individual HJ runtime instance. This concept is inherited from the
place abstraction in HJlib to describe affinity among selector ob-
jects [3]. Usually, one physical computing node will be denoted as
a single place, but the runtime puts no restriction on the number of
places one computing node may have. When a physical computing
node contains multiple places, each place needs a distinct port for
message passing (see Figure 8). The term selector system refers to
the HJ runtime instance on a single place. It contains the System
Actor and the Proxy Actor. The System Actor is the service actor
that maintains the internal state of its Selector System, as well as
communicating such information to the rest of the distributed sys-
tem. The System Actor on a Master Node maintains the internal
state of the entire Distributed Selector system. The System Actor

1In general, there can be more than one place per physical node.

is also responsible for managing the system termination process for
the Global Finish Scope.

The Proxy Actor is responsible for coordinating the messages
between local and remote selectors, including remote selector cre-
ation and termination requests, as well as remote message passing.
The user-end view of the Selector System includes instances of lo-
cal user-defined selectors throughout the program execution as in
[15]. Each Proxy Actor maintains a local registry of all the se-
lectors that are located in the same place for easy communication
between local selectors. Any message to a non-local selector will
be sent to the Proxy Actor of the remote selector (whose location
encoded in the selector handle), and the Proxy Actor forwards the
message directly to local selector instances.

In the distributed selector system, Master Node refers to the
place that controls system bootstrap and the global termination se-
quence. The user designates one of the available computing nodes
to be the Master Node. It is responsible for managing the state
of the entire DS program, including the initiation and termination
of the distributed system. Support for multiple master nodes for in-
creased fault tolerance and scalability is a subject of our in-progress
work.

The system defines its Global Finish Scope as the enclosing join
operation around the user program. Derived from the finish con-
struct in AFM [3, 14], the single Global Finish Scope for the entire
DS program waits for all tasks created by user code to finish and
then automatically terminates the distributed system. The process
for system termination is explained in detail in Section 4.4.

In the user-end view of the distributed selector system, a User-
defined Selector refers to any DS objects created through user code.
The HJ runtime fully encapsulates the bootstrap and termination of
the entire distributed system for the user program, thereby requir-
ing minimal user involvement to enable distributed execution of a
selectors program.

4.2 Initialization and Bootstrap
The HJ runtime treats each user program using DS as a single

distributed system, instead of the usual practice of having server
daemons on each computing node to host user programs, although
the users are not limited to a monolithic approach in their programs
and may model each DS program as a single service that can be
easily integrated into a larger system. In a single DS program, each
computing node is set up with a configuration file (as discussed in
??) and SSH access for the initial master node. The programmer
can adjust the number of places used in the program by modifying
the configuration files, the dynamic addition of a place is currently
work-in-progress. On the Master Node, as specified in the configu-
ration file, the HJ runtime will stage the program executable on all
remote places and start up a process on each to initiate the computa-
tion. Figure 10 demonstrates the bootstrap process in a distributed
selector program.

Upon bootstrap, the System Actor on Master Node obtains in-
formation for all other places in the system from the configuration
file. The System Actor logs into each remote location through SSH,
and starts up an idle HJ selector system there. The system actors
on each place will identify the Master Node from the configura-
tion file. When initialized successfully, these system actors send
periodical heartbeat messages to the Master Node to indicate its
state. The Master Node collects ready messages for all known re-
mote places and informs each place’s proxy actor to start program
execution. Optionally, users can choose to manually start up each
place when each place is correctly setup in accordance with the HJ
DS system requirement. This choice does not affect the automated
global termination of the system.



Figure 10: Bootstrap process of a distributed selector program.

4.3 Communication among Selectors
The HJ Distributed Selector interface provides users with a Sele-

ctor-Handle as the access point to a selector object. To send Selector-
Handles across the network; they are designed to be lightweight.
It contains a globally unique identifier for the selector object and
method handle for sending messages to the selector. Since we do
not differentiate between selectors that are created to reside locally
or on remote places, the selector needs an identifier that can encode
both scenarios. The identifier is constructed upon a request for se-
lector creation and is unique across the entire distributed system.
A selector object’s, globally unique identifier is currently a 32-bit
integer that encodes three pieces of information: 1) an 8-bit value
encoding the place p on which the selector is created; 2) an 8-bit
value encoding the place q on which the selector instance resides;
and 3) a 16-bit integer value representing a unique identifier for the
selector on p.

We use the Kryo serialization framework [6], which has been
shown to be faster than the Java serializer [5]. As a Java–oriented
framework, it is better suited for our purpose than other high-perfo-
rmance serialization tools such as Google’s Protocol Buffers, Apache
Avro, or Apache Thrift, which works across multiple languages
and platforms and have more restrictions on the data that can be
sent [4]. In theory, a selector can send and receive any message
that implements java.serializable. Our system does not limit
the message types that could be sent across the selectors. However,
it will be up to the user’s discretion to decide whether to include
objects that may result in massive data transfer.

Figure 11 shows how the Proxy Actors acts as a routing point
between local and remote selectors. When a message is sent to a
non-local selector, the SelectorHandle’s destination ID is decoded
to extract the destination of the message: a) If the destination place
matches the local place then the Proxy Actor looks up its local
registry to find the selector and forwards the message. b) If local
registry doesn’t have an entry yet, then the Proxy Actor buffers any
message to the non-existing selector. c) If the destination place is
remote then the Proxy Actor forwards the message to that specified
place. The Proxy Actor at the destination place will further use the
local registry to forward the message to the specific selector. The
topology of the selector system is tightly coupled (i.e., every place
has a symbolic link to every other place).

Figure 11: The Proxy Actor helps forward messages between local selectors
and selectors across places.

When a user-defined selector sends a special message, there are
two ways a new selector is created depending on its location:

1. If the new selector to be created is at the same place (local)
then we use java reflections to create a new selector at the
current place; the Proxy Actor is not involved in the process.

2. If the new selector to be created is at a different place, the
Proxy Actor sends over the selector parameters to the desti-
nation place to create it locally at that place.

4.4 Global Termination
The DS program waits for all the tasks that the user code created

to finish and then terminates the distributed system. The Master
Node initiates the global termination process and is performed in
three stages. The System Actor at each place is responsible for the
graceful termination of that place. Each stage is discussed below
in detail:

• Stage 1: A System Actor detects its place to be idle if its
local user-defined selectors have all been terminated by the
user, and no pending selector creation is in the system. The
System Actor communicates such information to the Mas-
ter Node as a periodic heartbeat, which will be reset by any
new incoming request. When Master Node collects idle state
from all places in the system, it attempts to initiate the ter-
mination process and moves to Stage 2. During this Stage,
every node is either idle or active.

• Stage 2: The System Actor at the Master Node passes a
signal to prepare termination to any place, along with an or-
der in which the signal should be passed around. The signal
sequence is implemented as a conceptual place-ring with the
Master Node at the end of the sequence, but other arrange-
ments can be used. The signaled place confirms its idle state
by passing the signal down the ring. A signal with confirma-
tion from all places to the Master Node will trigger Stage 3.
During this stage, a signaled place can short-circuit the ring
and declare its active state directly to the Master Node to re-
turn the distributed selector system to the active state thus
cancelling the global termination process. Only if none of
the places short-circuit the ring and the Stage 3 signal com-
pletes the round trip around the ring, the global termination
process moves on to the next stage. During this stage, every
node is either idle, active, or in Stage 2.

• Stage 3: In the final stage of the global termination process,
the Master Node knows all places are ready to exit, and sends
a termination signal down the place-ring.



Each place shuts down after forwarding the message to the
next place. The system gracefully exits by terminating each
place and finally the bootstrap place. During this stage, every
node is either in Stage 2, or it has been shut down.

5. MICRO-BENCHMARKS
Selectors can act naturally as a programming primitive in dis-

tributed setting, and more efficiently support the aforementioned
coordination patterns than with an actor model explicitly imple-
menting multiple guarded mailboxes [15]. The Selector Model, as
a more generalized form of actors, also supports any readily avail-
able actor-based programming patterns. To demonstrate the scal-
ability and programmability of selectors, we show results of some
actor-based micro-benchmarks chosen from the SAVINA bench-
mark suite [13]. The benchmarks were run on a 12 core, 2.8GHz
Westmere nodes with 48GB of RAM per node (4 GB per core),
running Red Hat (RHEL 6.5). For benchmarking we use the num-
ber of workers equal to twelve times the number of nodes. On each
node equal number of selectors are created. Each benchmark was
run 20 times, and we report the mean and the best execution times
across these runs for a given number of nodes.

The selected benchmarks uses the master-worker parallelism to
achieve both intra-node and inter-node parallelism. Each comput-
ing node is designated as a single place, with 12 workers on each
place to minimize the effect from task scheduling on computation
time. All implementations feature multiple mailboxes to differenti-
ate control messages, and actual computational tasks, with control
messages of higher priority. The master selector in computation is
located on the Master Node of the DS system in all benchmarks.

Trapezoidal Approximation
The benchmark approximates the integral function over an in-

terval [a, b] by using the trapezoidal approximation [2, 23]. In the
benchmark, we approximate the integral of the function:

f (x) =
1

x + 1
×

√
1 + e

√
2x × sin (x3 − 1)

It achieves parallelism by dividing the approximation into several
intervals. The approximation is calculated in a master-worker style
parallelism. Each worker is a selector that (user-defined) computes
the integral approximation in parallel and send their results back
to the master selector. The master selector then collects the results
from all the worker selectors, adds them up, and displays the final
result.

The communication between works and the master selector in
this benchmark is fairly limited. The amount of work for each
worker is divided up among workers with configuration parameters
from the master along with their activation signal. Each worker
processes all computation tasks assigned to it to report to the mas-
ter, and the master signals its workers to exit after collecting all
results. In such scenario, the system is less affected by the over-
head resulting from system setup and remote message transfer; thus
we set up the experiment to explore the weak scaling property by
keeping the computation effort constant on each node. The result
in Figure 12 shows steady scalability over 2 to 12 nodes with in-
creasing workload under minimal communication among selectors.

Precise Pi Computation
This benchmark computes the value of Pi to a pre-configured

precision using a digit extraction algorithm. The following formula
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Figure 12: Trapezoidal Approximation : Shows weak scaling computing
approximation with 10_000_000 pieces to calculate for each worker. Num-
ber of workers per node is constant (12), and as the number of nodes in-
creases we increase the total number of pieces to keep the amount of work
on each node constant. Mean Execution time in milliseconds from 20 it-
erations. The error bar on mean execution time plot shows the standard
deviation of the 20 iterations.

can be used to compute π:
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Figure 13: Precise Pi : Shows strong scaling for the calculation of Pi with
a precision of 80_000. Number of workers per node is constant (12). Work
is evenly distributed among all selectors. Mean Execution time in millisec-
onds from 20 iterations. The error bar on mean execution time plot shows
the standard deviation of the 20 iterations.

Similar to the Trapezoidal Approximation, the Precise Pi Com-
putation represents a master-worker style parallelism. In this sce-
nario, however, the amount of communication between the master
and its workers are much more frequent, though still with a small
message body. In the Precise Pi implementation, the master selec-
tor incrementally finds work and allocates fragments of the work to
the worker selectors, while it collects partial results until reaching
the desired precision.
In this benchmark, we explore distributed selector scalability when
message exchange grows with the expansion of the system. We ob-



serve a general linear strong scaling trend, with a slow decrease in
speedup as the number of nodes used increase, as shown in Fig-
ure 13. Both the increased message amount from having more
workers and the increased average message delivery time from the
physical span of the computing nodes the system uses can attribute
to overheads that prevent linear scalability.

NQueens First K Solutions
The NQueens benchmark finds the first K solutions to placing N

queens on the chessboard of size N × N in a way that no queen can
threaten each other.

This benchmark uses the classic master-worker programming
model with a depth-first search to exhaustively enumerate through
all solutions and prematurely terminates at finding the first K so-
lutions. The master selector initiates computation by passing an
empty N × N board (as a partial solution) to each worker. Each
time a worker successfully place a non-attacking queen on the par-
tial solution, the worker reports the partial board back to master
as a new work item. Each time a worker reports a board config-
uration to the Master Node selector, the master either assigns the
partial solution to a worker in a round-robin fashion or records that
a valid solution is found. The algorithm exploits the priority fea-
ture in our Distributed Selector implementation for more than the
purpose of progress control, and places a higher priority on work
items that contain complete partial solutions (i.e. with more safely
placed queens). The priority restriction on partial solutions reduces
the process on duplicate work items and supports early termination
of the program by putting complete solution at highest priority to
process aside from control messages. When K solutions have been
found, the master will send out a termination message (of highest
priority) to all workers.
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Figure 14: NQueens : Shows strong scaling of computing the NQueens
problem on a 17×17 board using the described algorithm. Workers compute
solutions sequentially when given a partial solution with six placed queens.
The number of workers per node is constant (12). The solution limit is set
to 1_477_251, which is a tenth of the size of a complete solution set. Mean
Execution time in milliseconds from 20 iterations. The error bar on mean
execution time plot shows the standard deviation of the 20 iterations.

With a naive actor-based implementation, a solution limit to al-
low termination has no effect on the program, and the program has
to exhaustively compute the solution space. Without using prior-
ity, depth-first search with a divide-and-conquer style, as shown
above, is hard to implement, since messages are processed in their
received order, and no guarantee is made on processing partial so-

lutions deeper in the search tree. While the priority feature can be
emulated in an actor model through explicit pattern matching on its
mailbox, the overhead generated for each message can be collec-
tively large for a significant amount of message exchange, like in
the NQueens K case.

This benchmark exhibits more complicated interaction pattern
between the master and its workers than with the previous two,
where either the amount of message exchange always stay small
or increase linearly with the size of the system. In this algorithm,
the master node becomes a bottleneck when the number of workers
increases, as all communication about partial results route through
the master selector. The abundance of worker selectors when we
use more nodes also poses the problem of extra duplicate partial so-
lutions, we approach this by having workers to filter through work
items they’ve worked on, but the master node still receives more
items as the system size grow. Observing the results in Figure 14
showing, we can see that as the amount of (duplicate) partial so-
lutions grows super-linearly with the number of nodes deployed,
the bottleneck of processing messages takes over, resulting in de-
creased speedup as the number of nodes increase from 4 to 12.

The three micro-benchmarks show how the HJ DS runtime per-
form under different message exchange patterns. With the Trape-
zoidal Approximation benchmark, where message exchange grows
scarcely with increased number of places in the system, we show
that computation resources can be exploited without much over-
head in its steady weak scaling. With the Precise Pi benchmark,
where the amount of message exchange between master and work-
ers grow with the number of places in the system, we see the run-
time perform with near linear strong scaling. With the more com-
plicated NQueens K benchmark, where the program exhibits a bot-
tleneck, we observe sub-linear strong scaling as expected from the
super-linear growth of message exchange as the number of places
increase. Moreover, the NQueens K benchmark displays a pro-
gramming pattern less easily achievable with a general actor model
and shows better efficiency can be achieved with a traditional im-
plementation. The system bootstrap and termination sequence for
all three benchmarks take an average of 20ms, consisting of less
than 0.001% of program execution time and confirms that the major
limitation on scalability comes from the communication patterns.

The adaptation of the micro-benchmarks from their shared-mem-
ory counter parts only involved minimal change in the code base.
The DS implementation PiPrecision and Trapezoidal Approxima-
tion display 5 and 6 lines respectively in difference of source code
attributed to API change, and both have 2 extra lines of code at-
tributed to distributed system startup call. The ease to convert be-
tween shared-memory and distributed versions of the application
also proves useful for debugging: programmers can debug with the
behavior of a shared-memory version of a selector program.

6. RELATED WORK
Akka is an open-source toolkit and runtime for building highly

concurrent, fault-tolerant and distributed systems on the JVM based
on the Actor Model [22]. The toolkit can be used as library simi-
lar to our HJ library. The Akka runtime arranges the user- defined
actors in an ancestral tree, mainly for the purpose of recovery from
single point failures. The Akka runtime requires users to explic-
itly shutdown a system of actors and relies on the user to ensure
termination of the whole system. Akka.cluster is a module ded-
icated to aiding actor-based distributed application programming,
and its significant contribution is to maintain location transparency
that follows its previous strict adaptation of AM [21]. Akka actors
support priority-enabled mailbox to some extent: the Akka priori-
tized mailboxes associate a specific message class or value to a pre-



defined priority. Although still maintaining a single mailbox, Akka
runtime arranges the received message order based on these prede-
fined priorities. The HJ Distributed Selector, on the other hand, is
more flexible and allows the user to pass the same message type
with different priorities by making no predefined association be-
tween mailboxes and the messages it hold. The distributed selector
model is capable of more efficient and easier implementation of
complex synchronization patterns [15].

Microsoft Orleans is an open-source.NET framework built at
Microsoft Research that specifically targets actor-based distributed
applications [17]. The project was initially developed to aid the
development of streaming applications focusing on high scalability
and low latency. With an industrial oriented approach, the project
focuses on programmability as well as the availability of service.
It implements its serialization layer to maximize low-latency and
can occasionally compromise consistency throughout the system.
The Orleans project contributes an elastic, scalable, and simpli-
fied message-passing implementation targeting larger cloud sys-
tems, while conforming to a traditional view of the Actor Model.

SALSA is a Java-based actor programming language developed
at RPI [23]. The language targets open, dynamically re-configurable
Internet and mobile applications. It focuses on the mobility of
actors in distributed system and features universal naming, active
objects, and actor migration. SALSA introduces three language
mechanisms to aid coordination between actors:token-passing con-
tinuation, join continuation, and first-class continuation. With a
major focus on providing reconfigurable sub-components at run-
time, SALSA provides daemon programs for host universal ac-
tors named Theaters and supports universal actor with the Naming
Server. Together these universal actors can host distributed SALSA
programs and provide services such as migration and message for-
warding for remote actors. The SALSA programming model differs
from the HJ distributed selectors in several ways. By allowing mi-
gration of actors, the SALSA runtime directs all remote reference
lookups to the Naming Server. The HJ runtime encodes places for
remote selectors in their references and deals with message for-
warding locally. Exiting an actor can be explicitly called in HJ
while being implicit in SALSA. HJ allows system boot-up and ter-
mination by the program, unlike the background daemon servers
that make up the distributed SALSA system. In HJ the user de-
cides the duration of keeping the server running. HJ does not have
an explicit construct to wait on multiple actor message returns like
the join continuations in SALSA, but the functionality can be eas-
ily achieved by using the join pattern with selectors. Finally, a key
difference between SALSA and HJ is that HJ Distributed Selec-
tors support selectors with multiple mailboxes in a distributed set-
ting. We were unable to include any performance comparisons with
SALSA in this paper because of running into JVM OutOfMemory
errors for the SALSA versions of the benchmarks when using the
same conïňĄgurations that we use for HJ Distributed Selectors.

The Communicating Sequential Processes (CSP) concurrency
model proposed by Tony Hoare in 1978 [10], which resembles
many key features found in the Actor Model, has also influenced
many current distributed programming languages and frameworks
whose communication pattern relies on message passing. The CSP
model influences the design of both Go [7] and Limbo [12]. The
traditional CSP view is similar to the AM with its emphasis on in-
dependent sequential processes only coordinate through message
passing. However, the traditional CSP view features anonymous
processes while AM provides identifiable actors. The fundamen-

tal difference is that CSP focuses on synchronous message passing,
while the AM completely decouples the process and all messages
are sent asynchronously. The synchronous nature of CSP messages
also influenced the use of explicit channels in Go. Messages are not
sent to processes directly, but to named channels that use buffered
communication that ensures message delivery. In the DS runtime,
all messages are delivered to named selectors asynchronously (with
implicit channels), and only system-level messages involving re-
mote selector creation or explicit selector termination will have
guaranteed delivery. While asynchronous message passing could
be emulated by buffered channels, these explicit channels pose pro-
grammers difficulty on loosely coupled distributed systems, where
locality needs to be addressed explicitly.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a Distributed Selector (DS) model, a

novel programming model for shared and distributed memory par-
allel applications. DS model allows programmers to focus on im-
plementing the algorithm for solving the problem their application
is trying to solve, without worrying whether their application will
run on a shared-memory or distributed-memory system. Our run-
time implementation supports Selectors (a strictly more powerful
version of Actors) on both shared-memory and distributed-memory
systems. This framework provides automated system bootstrap and
global termination, unlike any other distributed approaches.

Our experimental evaluation using the Savina benchmark suite
shows promising strong scaling results, making a strong case for
the DS model as a viable alternative to the existing, much harder to
program and port, parallel programming models.

For future work, we will explore automated program quiescence
detection that does not rely on the user explicitly exiting each user-
level Selector. We plan to look into dynamic load-balancing by
allowing features like the migration of Actors. Since Actors repre-
sent very light-weight primitives compared to threads, they can be
spawned and destroyed with minimal overhead. This makes Actor-
model an efficient way to model computation and applications on
embedded devices (E.g. any two-way communication application
where the sender, the receiver, and the channel can be modeled
as Actors and use the message passing paradigm to communicate).
Exploring the possibility of using Actors for these kinds of commu-
nication on embedded devices is also of future interest. Extensions
on the current work is to include dynamic joining and leaving of
nodes from the cluster for a better fault tolerance mechanism. We
will also study more closely the performance tradeoffs between tra-
ditional Actor-based libraries (such as Akka and SALSA) and our
DS model implementation.
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