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Abstract
Computing the product of two sparse matrices (SpGEMM)
is a fundamental operation in various combinatorial and
graph algorithms as well as various bioinformatics and data
analytics applications for computing inner-product similari-
ties. For an important class of algorithms, only a subset of
the output entries are needed, and the resulting operation
is known as Masked SpGEMM since a subset of the output
entries is considered to be “masked out”. In this work, we
investigate various novel algorithms and data structures for
this rather challenging and important computation, and pro-
vide guidelines on how to design a fast Masked-SpGEMM
for shared-memory architectures.

CCS Concepts: • Software and its engineering→ Soft-
ware performance; • Mathematics of computing →
Computations on matrices; Graph algorithms.
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1 Introduction
Masked sparse-sparsematrixmultiplication (Masked SpGEMM)
is the problem of computing the product of two sparse matri-
ces only for the set of entries given by the nonzero structure
of the mask. The mask can be thought as a sparse matrix
whose pattern determines which elements should exist in
the output matrix. While the first use of this primitive was
in the context of triangle counting, its applications include
any multi-source graph traversal where the mask serves as a
filter to avoid rediscovery of previously discovered vertices.
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The existence of a mask in the multiplication introduces
new optimization opportunities as well as challenges. A sim-
ple way to perform Masked SpGEMM is to compute the
multiplication as if the mask does not exist and then ap-
ply the mask to the output matrix, which causes unneces-
sary computation if the overlap between the output ma-
trix and the mask is low. The mask needs to be consid-
ered as part of the multiplication to attain good perfor-
mance, which is the focus of this work. Our code imple-
menting our algorithms and data structures is available at
https://github.com/PASSIONLab/MaskedSpGEMM.

2 Algorithms
We describe four novel algorithms for Masked SpGEMM:
Hash, Masked Sparse Accumulator (MSA), Mask Compressed
Accumulator (MCA), and Heap. Three of these algorithms
–Hash, MSA, and Heap– are novel improvements to the
SpGEMM algorithms described in [1, 3, 5], whereas MCA,
to the best of our knowledge, is a completely new algo-
rithm specifically developed for Masked SpGEMM. All al-
gorithms belong to the category of row-by-row push-based
algorithms. The computational flow of row-by-row Masked
SpGEMM algorithms is illustrated Figure 1. Each row C𝑖∗
is calculated as element-wise multiplication ofM𝑖∗ and lin-
ear combination of each row B𝑘∗ for which A𝑖𝑘 ≠ 0, i.e.,
C𝑖∗ = M𝑖∗ ⊙

∑
A𝑖𝑘≠0 A𝑖𝑘B𝑘∗.

2.1 Accumulator
A key component in all the Masked SpGEMM algorithms is
the accumulator, which is basically a data structure to merge
scaled rows and can be considered as a set union operation.
The design and the implementation of the accumulator has a
significant impact on memory hierarchy behavior and there-
fore on the performance of Masked SpGEMM, and is the
key differentiating feature between our proposed algorithms.
In the following subsections we give a brief description of
each accumulator. A more detailed description of different
accumulators and our algorithms can be found in [4].
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for i = 1:n 
  Ci* = Mi* .* (Ai* x B) 
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Figure 1. Row-wise Masked SpGEMM using an accumulator to compute output row C𝑖∗. The rows corresponding to the
column indices of entries in row A𝑖∗ are merged and filtered through the respective mask entries to compute C𝑖∗. This merging
and filtering process can be performed in a number of ways.

2.2 Masked Sparse Accumulator (MSA)
Internally, MSA uses two dense arrays, 𝑣𝑎𝑙𝑢𝑒𝑠 and states,
each with ncols(B) length. The algorithm that uses MSA as
accumulator has three main steps. First, the algorithm marks
the values in the MSA that should not be discarded based on
mask. Second, the algorithm finds all products A𝑖𝑘B𝑘 𝑗 ≠ 0
and inserts them into MSA. Finally, the algorithm gathers all
values from MSA, and resets the states in MSA.
2.3 Hash Accumulator
In practice, the arrays in the MSA accumulator are too large
to fit in L1 cache, even though they usually have only a few
nonzeros, so indexing an element of these arrays usually
incurs a cache miss in the MSA algorithm. To overcome this
issue, we utilize a hash map instead of dense arrays for stor-
ing values and states, reducing cache misses but increasing
access overhead.
2.4 Mask Compressed Accumulator (MCA)
Mask Compressed Accumulator (MCA) algorithm is based
on the observation that the number of elements in the accu-
mulator cannot be greater than the number of nonzeros in
the rowM𝑖∗. The MCA accumulator uses size 𝑛𝑛𝑧 (M𝑖∗) for
the 𝑣𝑎𝑙𝑢𝑒𝑠 and 𝑠𝑡𝑎𝑡𝑒𝑠 arrays. To indexing MCA, we first find
intersection between each row of B and current row ofM.
2.5 Masked Heap SpGEMM Algorithm
Masked SpGEMM algorithm is based on column-column
Heap algorithm developed by Buluç and Gilbert [1]. Like the
base algorithm, our heap algorithm requires that the indices
in mask M and column indices in matrix B are sorted. Since
the column indices are sorted, we can merge A𝑖𝑘B𝑘 𝑗 product
using the algorithm similar to multi-way merge and then
intersect the result with elements from the mask.

3 Experimental Setup and Results
The experiments were conducted on a computer node with
two Haswell with Intel Xeon E5-2698 processors. We com-
pare our algorithms with SuiteSparse:GraphBLAS [2] using
𝑘-truss benchmark and 26 real-world matrices.

Figure 2 compares performance profiles of our three best
performing algorithms and SS:GB. Our MSA implementation
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Figure 2. K-Truss: our algorithms vs. SS:GB.

significantly outperforms other implementations including
SS:GB implementations.

4 Conclusion
In this paper, we presented four novel algorithms for per-
forming parallel masked sparse-sparse matrix multiplication.
We investigated Masked SpGEMM operation from various
design and optimization standpoints to evaluate whether the
challenges posed for plain SpGEMM still hold. We shown
that our methods significantly outperform the SS:GB [2] li-
brary, which is, to the best of our knowledge, the fastest
Masked SpGEMM implementation in existence to-date.
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