
Permission Regions for Race-Free Parallelism

Edwin Westbrook Jisheng Zhao Zoran Budimlić Vivek Sarkar
Rice University

{emw4, jisheng.zhao, zoran, vsarkar}@rice.edu

Abstract. It is difficult to write parallel programs that are correct. This
is because of the potential for data races, where parallel tasks can modify
each other’s data in complex and unexpected ways. A classic approach
to this problem is dynamic race detection, which has the benefits over
other approaches that it works transparently to the programmer and it
can work with any pattern of synchronization. Unfortunately, dynamic
race detection is very slow; further, it can only detect low-level races,
not high-level races, also known as atomicity violations. In this paper,
we present a new approach to dynamic race detection that works by
inserting constructs called permission regions, which specify regions of
code that have permission to read or write certain variables. Dynamic
checks are then used to ensure that no conflicting permission regions
execute in parallel, essentially increasing the granularity of checks in
dynamic race detection. We demonstrate that permission regions can
be used to achieve significantly better performance than dynamic race
detection while maintaining the scalability of the uninstrumented code,
to the point where they could be used in actual production code.

1 Introduction

As Moore’s Law becomes obsolete and chip manufacturers turn towards multi-
core for performance, parallel programming is becoming more and more essential
for scalability. Unfortunately, it is difficult to write parallel programs that are
correct because of the potential for data races, where parallel tasks can modify
each other’s data in complex and unexpected ways. Except rare cases of paral-
lelism experts writing race-tolerant code, a data race is a bug, as it can cause
code to run in ways that were not intended by the programmer. It is a more
devious sort of bug than most, however, because it is not even possible to know
when a data race occurs.

A classic approach to dealing with data races is dynamic race detection [17,
21, 30, 20, 32, 36, 18]. Under this approach, each memory access of a program is
instrumented to check, at runtime, whether it conflicts with a parallel access.
This approach has two powerful benefits: it works transparently to the program-
mer, since the instrumentation is done by the compiler or runtime system; and
it can work with any pattern of synchronization, including barriers and lock-
free concurrent data structures, since the dynamic checks need not be aware
of how synchronization is achieved. This last point is in contrast with many
other approaches, such as static race detection [12, 38, 4, 19, 3], transactional

memory [28], or approaches to deterministic parallelism [15, 35], which gener-
ally require very specific approaches to synchronization and parallelism. Unfor-
tunately, dynamic race detection is very slow, limiting its usefulness in practice.
In addition, dynamic race detection cannot detect high-level races, or atomicity
violations, where a task modifies the data of another in the abscence of standard,
or low-level, data races. 1. High-level races are especially insidious because they
depend on programmer intent, and can occur even in well-synchronized code.

In this paper, we introduce a new programming language model that en-
ables a form of “always on” race detection for both low- and high-level races.
More specifically, our approach enforces a property which we call the permission
property, which ensures that no task is permitted to write to a memory loca-
tion while another task has permission to access that location. The permission
property is stronger than race-freedom, and in fact corresponds to the way most
programmers write code. To enforce this property, we introduce a new construct
called a permission region. These constructs mark a region of code with read
and write sets of variables, to indicate that the region has permission to read or
write those variables while it executes. Two permission regions are said to con-
flict when the write set of one overlaps the read or write set of the other. The
runtime system then ensures that no two conflicting permission regions execute
in parallel, throwing an exception if a conflict is detected.

Permission regions can be seen as an extension of dynamic race detection that
increases the granularity of dynamic checks to entire regions of code, instead of to
individual memory accesses. They are inserted by the compiler in a manner that
is guaranteed to ensure race-freedom, but can also be used by the user to increase
the granularity of checking even further, specifying atomicity requirements of
their code. User insertion can also increase performance and scalability.

The rest of the paper is organized as follows. Section 2 introduces the Habanero-
Java (HJ) parallel programming language and the Java Memory Model. Section 3
introduces permission regions as an extension of HJ. Section 4 presents compiler
techniques to automatically insert permission regions into HJ programs. Sec-
tion 5 shows the performance evaluation of our implementation of permission
regions on a set of HJ benchmarks. Section 6 discusses related work, and Sec-
tion 7 presents conclusions and directions for future work.

2 Background: Data Races in Habanero-Java

In this section, we briefly introduce Habanero Java (HJ) [23] and explain low- and
high-level races. HJ is an extension of Java with several constructs for parallelism
and synchronization; in this paper, we consider only async and finish , which
respectively spawn a child task and wait for all tasks spawned in a lexically-
scoped block to complete.2 These constructs are borrowed from X10 [16], and
are similar to the spawn and sync constructs of Cilk, respectively.

1 We borrow the terms “low-level race” and “high-level race” from Artho et al. [2].
2 We use the term “task” here instead of “thread” to distinguish semantically parallel

tasks from the OS threads to which they might be mapped by an implementation.

v o i d push (SNode n) {

n.next = t h i s .next;
t h i s .next = n;

}

(a) Task 1

SNode pop () {

SNode tmp = t h i s .next;
i f (tmp != n u l l)

t h i s .next = tmp.next;

r e t u r n tmp;

}

(b) Task 2

Fig. 1. A Simple Data Race

A low-level race in Java, and similarly in HJ, is defined by the Java Memory
Model (JMM). We refer the reader to other work [22, 29, 39] for the technical
details, but conceptually a low-level race occurs when two accesses to the same
memory location, one of which is a write, occur in distinct tasks without some
form of synchronization between them. The difficulty of low-level races is that,
in their presence, the actions of a task can appear to happen in a different
order to other tasks running in parallel. When a program has no low-level races,
however, then the JMM ensures sequential consistency (SC), meaning it behaves
as if each instruction of each task appears to be atomic. When there are low-level
races, however, the possible behavior can be quite complex, making the program
dificult to understand.

As an example, consider the two tasks depicted in Figure 1, which perform
a push and a pop of the stack this in parallel. (this is assumed to be the same
in both tasks.) Since there is no synchronization between them, the write of
this.next in task 1 has a low-level race with the read of the same field in task 2.
This means that, under the JMM, task 1 can appear to occur in a different order
to task 2, allowing task 2 to see the newly pushed node n with the old value of
n.next. In this scenario, the third line of the pop() method in task 2 would set
this.next to the old value of n.next, completely obliterating the remainder of
the stack after this .

Even assuming SC (e.g., if every instruction were protected by a lock), the
code may still execute incorrectly if task 1 runs to completion directly after the
read of this.next in task 2, since n would be removed from the stack when task
2 sets this.next. This represents a high-level race, or atomicity violation, as
task 2 intuitively assumes that this.next does not change between the read and
the write of this field.

3 Permission Regions

The syntax of a permission region is as follows:

permit read (x1, . . . , xm) w r i t e (y1, . . . , yn) { BODY }

This statement executes BODY under the assertion that, while BODY executes,
no conflicting permit statement will execute in a different task at the same time.
We call the the variables xi and yj the read and write variables of the permission

v o i d push (SNode n) {

permit w r i t e (t h i s ,n) {

n.next = next;

next = n;

}

}

(a) Thread 1

SNode pop () {

permit w r i t e (t h i s) {

SNode tmp = next;

i f (tmp != n u l l)
permit read (tmp)

next = n.next;

r e t u r n tmp;

}

}

(b) Thread 2

Fig. 2. Adding permit to Figure 1

region, respectively, and the set of objects they refer to during execution the read
and write sets. Two permit statements are said to be conflicting if the write set
of one overlaps the read or write sets of the other. If a permission region begins
executing while a conflicting permission region is already executing in parallel, an
exception is thrown. Otherwise, the permission region’s execution is guaranteed
to be in isolation relative to its read and write sets. This means that the body
cannot see any writes from another task after entering the permission region, nor
can any parallel task see its writes until the permission region has completed.
“Completion” includes both normal and exceptional exit from BODY .

As an example, Figure 2 shows how our compiler annotates the racy example
of Figure 1. The push() method is annotated with a permission region whose
write variables include this , the stack on which a stack node is pushed, and n, the
stack node being pushed onto the current stack. This permission region ensures
that the call to push() must have write permission to these two objects while it
executes. The pop() method is annotated with two permission regions: the first
has write variable this , since this may possibly be modified to remove the next
element of the stack; the second has read variable n, which represents the top
node of the stack, since the next element of the stack after n must be read. Again,
these permission regions ensure that pop() must have these permission on these
two variables. Thus if one of push() and pop() begins executing before the other
completes, then that method will throw a permission violation exception.

Permission regions represent a combination of static and dynamic checks.
Checking that two conflicting permission regions do not run in parallel is in
general an undecidable problem, and although there has been much work on
may-happen-in-parallel analysis (e.g., [9]), such analysis must in general be con-
servative. Thus we leave happens-in-parallel checking as a dynamic check. To
ensure the permissions property, however, we must also be sure that all reads
and writes happen inside appropriate permission regions; i.e., writes to x.f may
only occur inside a permission region whose write variables include x, and sim-
ilarly, reads of x.f may only occur inside a permission region whose read or
write variables include x. The algorithm used to insert these checks is discussed
in Section 4. We now briefly summarize some of the salient points of the design
of permission region.

Read and Write Variables can be Modified: It is allowed for the variables in the
variable set of a permission region to be modified in the body of the permission
region. For example, the following code performs a loop inside a permission
region which conditionally modifies the its write variable:

permit w r i t e (x) {

w h i l e (...) {

i f (...) { x = ...; }

}

}

This generalizes the semantics of permissions regions as follows: two permit
statements are said to be conflicting if the current values of the write set of one
overlaps the current values of the read or write sets of the other. Modifying a
read or write variable can also cause a permission region to come into conflict
with a concurrently executing permission region, and thus assignments to such
variables, such as the assignment to x above, can cause data race exceptions to
be thrown.

Final Fields: Under the JMM, reading final fields do not is never considered
a data race. Similarly, we allow such fields to be read without inserting any
permission regions.

Static Fields: Fields marked as static are global, and are not associated with a
particular object. Thus we also allow static fields to be read or write variables in
permission regions, where conflicts involving static fields can only occur between
regions that both use the field itself, not the value pointed to by the field.

Constructors: The bodies of constructors are always implicitly contained inside
a permission region with write variable this , as the purpose of a constructor
is to initialize an object before it is used. Thus, although parallelism is allowed
in constructors, passing this to another task in a constructor will cause an
exception if the other task tries to access this before the constructor finishes.

Array Views: In order to support array-based parallelism (where tasks process
pieces of an array in parallel), a permission region can specify pieces of an array
in its read or write sets. This specification is supported by having users access
arrays through array views [37, 27], which are objects in HJ that represent pieces,
or sets of cells, of an array. The notion of conflicting permission regions is then
extended to dynamically check for array views whose sets of cells overlap.

Inter-Method Permissions: It can often be useful to have permission regions cross
method boundaries. For example, accessor methods are often used in the context
of a more complex operation which is intended to be strongly isolated, and thus
requiring a permission region on this seems an extra source of overhead. To allow
inter-method permission regions, we introduce permission method annotations.
These take the form of two new keywords allowed in method signatures, reading

and writing, which mark arguments in a method signature that must be in
the read or write variables, respectively, of an enclosing permission region when
the method is called. The implicit this argument can also be modified with
these keywords by applying the keyword to an entire method, i.e., by listing the
keyword in the method signature before the return type.

For example, we could change the signature of the push() method of Figure
2 as follows:

v o i d w r i t i n g push (w r i t i n g SNode n)

This states that any calls to p.push(q) must always occur inside permission
regions for p and q. In turn, the compiler need not insert the permission regions
for this method given in Figure 2. This can be useful to reduce the number of
dynamic checks performed at runtime. It also allows the user to state stronger
atomicity requirements; for example, code containing three consecutive calls to
push() with this new signature is guaranteed to push all three elements in order
with no intervening pushes or pops in parallel, since such parallel accesses would
result in an exception.

4 Compiler Insertion of Permission Regions

In this section, we describe the algorithm our compiler uses to insert permission
regions. The basic assumption of the insertion algorithm is that, in general, a
programmer does not intend for an object to be modified in parallel while that
object is in scope. Thus our algorithm essentially tries to match permission re-
gions to variable scopes. Naturally, this approach will not always exactly capture
the programmer’s intent; i.e., this approach can lead to spurious exceptions, or
false positives, when the original code had no data races. (This is one reason
why permission regions are exposed to the user as a construct in the language.)
However, this approach is almost always correct; in fact, for the 11 benchmarks
discussed below in Section 5, accounting for about 9k lines of code, only one case
was found that led to a false positive, other than the requirement that regular
parallel application use array views in the manner discussed in Section 3. Note
also that our algorithm does not insert any of the permission method annota-
tions of Section 3, as these could potentially change the semantics of a program
in ways the user did not intend.

We proceed as follows. Section 4.1 gives our insertion algorithm, while Section
4.2 describes two cases where this algorithm gives incorrect results and describes
why these cases are rare.

4.1 The Insertion Algorithm

As discussed above, our algorithm essentially tries to match permission regions
to variable scopes. This goal is modified by a number of concerns. First, per-
mission regions do not cross async statements; in fact, inserting an permission
region for x outside an async statement is drastically different than inserting
it inside the body of the async statement, since the former means the parent

process can access x while the latter means the child task can access x. Second,
if x is only accessed within the bodies of isolated statements — which spec-
ify critical sections in HJ (instead of using monitors like Java’s synchronized
keyword) — then the algorithm assumes that x should only be accessed inside
critical sections, and permission regions for x are only inserted inside the body
of isolated statements. Finally, if the programmer explicitly writes a permit
statement then the algorithm respects the placement of that permission region.

The inference algorithm works on a per-method basis by considering the
abstract syntax tree (AST) of a method body. The algorithm first finds all nodes
n in the AST where read or write access to each variable x is required such that
n does not already occur inside of an appropriate permission region. Read or
write access could be required either because of access to a field x.f or because
of a method call that specifies reading or writing for an argument position for
which x is passed. Next, for each such node n that requires access to x in the
AST, the algorithm finds the highest ancestor a of n such that the path from a
to n does not contain an async or an isolated . A permission region for x is then
inserted around a in the AST, with x in the appropriate variable set.

4.2 Limitations of the Insertion Algorithm

The inference algorithm presented above yields false positiives in two poten-
tial programming patterns, which we call intra-scope parallel access and task-
dependent conditionals. The first of these, intra-scope parallel access, is when a
region of code that accesses x somehow passes x to a parallel task. Such code
might look like this, where compute() performs some parallel computation on
its argument:

x.f = ...; compute(x); ... = x.f;

In this case, the user does expect x to be accessed in parallel while compute()

executes, and thus the proper placement of permission regions for x would be
to have two regions, neither of which contains the call to compute(). Our algo-
rithm, however, inserts a single region around the whole piece of code, yielding a
false positive and requiring manual insertion by the user. This pattern occurred
exactly once in our study of over 9000 lines of HJ benchmarks, specifically in
the PDFS benchmark, so it is not incredibly common.

The second pattern that can lead to false positives, task-dependent condi-
tionals, occurs when accesses to an object are guarded by a conditional that
picks out a specific task, like this:

i f (isTask1) { x.f = ...; }

Our inference algorithm will insert the permission region around the entire con-
ditional; however, if this code is called in parallel by multiple tasks, where only
one task has isTask1 set to true, then the proper place for the permission re-
gion is arguably inside the conditional. This is a very rare programming pattern,
though, that we have not seen in any of our benchmarks. Further, the problem
only appears when the condition is guaranteed to hold for at most one parallel
task, otherwise, there really is a potential race, which should indeed be reported.

Table 1. List of Benchmarks

Type Benchmark Name LoC LoC for # of # of
Suite sub-views reading writing

Loop Parallelism

NPB CG 1070 22 5 0

JGF

Series 225 2 0 0
LUFact 467 0 1 1
SOR 175 4 0 0
Crypt 402 4 0 0
Moldyn 741 29 6 18
RayTracer 810 22 31 22

Function Parallelism
BOTS

NQueens 95 0 1 0
Fibnacci 70 0 0 0
FFT 4480 209 0 0
PDFS 537 0 0 2

5 Performance Evaluation

In this section we evaluate permission regions along two dimensions, performance
and usability. To do this, we considered 11 benchmarks for HJ, including small-
to large-scale benchmarks from the JavaGrande benchmark suite [26], the NAS
Parallel Benchmark suite [13], the BOTS benchmark suite [10], and a Parallel
Depth First Search application (PDFS). These are listed in Table 1, which also
separates the benchmarks into loop vs functional parallelism in column 1 and
gives the number of lines of code (LoC) in column 4.

For each benchmark, we performed the following experiment. We first con-
verted any parallel array processing in the benchmark to use array views, as
discussed in Section 3. Table 1 gives the number of lines of code that were mod-
ified in column 5. We then ran the code to determine if there were any false
positives; as discussed above in Section 4, there was exactly one false positive
in the PDFS benchmark. Next, we timed the benchmark with and without per-
mission regions, to measure the slowdown of permission regions. Finally, for the
5 benchmarks with the biggest slowdowns, we added permission method an-
notations to key methods to increase performance and timed the results. The
numbers of reading and writing keywords added to each benchmark are given
in columns 6 and 7 of Table 1, respectively. All timing results were obtained on
a 16-way (quad-socket, quad-core per socket) Intel Xeon 2.4GHz system with
30GB of memory, running Red Hat Linux (RHEL 5) and Sun JDK 1.6 64-bit
version. We used the linux taskset command to physically restrict the number
of cores involved in the experiment, from 1 to 16 cores, to measure scalability.

From a usability perspective, the results of our experiments were quite promis-
ing, when measured in terms of lines of code that must be modified to use permis-
sion regions. The biggest change required was modifying the benchmarks to use
array views, requiring an average of 3% of the lines of code to be edited. Other
work [37, 27] has demonstrated that array views are useful for other reasons as
well, so this cannot be held against permission regions too seriously. Otherwise,
only one permission region had to be added to remove a false positive, and the

!"

!#$"

%"

%#$"

&"

&#$"

'"

()" *+,-+*" ./01(2" *3," (,452" 63.748" 89/++8*" :;" <2" 570*" ,142,1(+," =+36+18%"=+36+18&"

%" &" >" ?" %@"

9.93 13.97 22.99 27.49 20.91

w/ raytracer w/o raytracer

!"

!#$"

%"

%#$"

&"

&#$"

'"

()" *+,-+*" ./01(2" *3," (,452" 63.748" 89/++8*" :;" <2" 570*" ,142,1(+," =+36+18%"=+36+18&"

%" &" >" ?" %@"

w/ raytracer w/o raytracer

6.96 10.95 14.17 16.08 15.73
a. Slowdown of Instrumented with Automatic Inference vs. Uninstrumented Code

b. Slowdown of Instrumented with Automatic Inference and User Added Annotation vs. Uninstrumented Code

Fig. 3. Slowdown of Instrumented Code vs. Uninstrumented Code

“optimization” step of adding permission method annotation modified less than
1% of the code on average.

The timing results are given by the two graphs in Figure 3. These graphs
give the slowdowns for each benchmark instrumented with permission regions as
compared to the uninstrumented benchmark without permission regions, using
1, 2, 4, 8, and 16 cores. The first graph gives the slowdowns for the first timing
experiment, after removing false positives, while the second gives those for the
second timing experiment, including the permission method annotations. Most of
the benchmarks run less than 2.5× slower than their uninstrumented versions,
with a geometric mean around 1.5×. Compared with most of the state-of-art
data race detection implementations [17, 30, 20, 2, 32, 36], which typically result
in a slowdown of an order of magnitude or more, our overhead is relatively low.
The main reason for the relatively low overhead is granularity; we are checking
object permissions once for each region rather than for each memory access. In
addition, the permission method annotations significantly improved performance
of 3 of the 5 benchmarks with whic they were used, the lufact, moldyn, and
RayTracer benchmarks.

One benchmark that deserves a separate discussion is the RayTracer bench-
mark which has a 27.49× slowdown when running on 8 threads. The reason for
this drastic performance penalty is that RayTracer uses objects (3-dimensional
Points) as the basic computation units, which forces the compiler to insert per-
mission regions around each object access to ensure the correct permissions.
These object accesses are done within the innermost loop of the main kernel,
which does not have significant additional computation to hide the overhead.
More advanced compiler optimizations such as loop interchange and loop un-

rolling should be able to enable the compiler to create large enough permission
regions to eliminate a significant part of this overhead. This is future work,
however.

6 Related Work

There have been significant recent work on runtime systems which detect low-
level data races before they happen and throw exceptions, thus ensuring sequen-
tial consistency. DRFx [8, 14] is similar to our work except that all the regions
are automatically inserted by the compiler. This and similar [11, 7] approaches
cannot prevent high-level data races, which one of the main advantages of the
permission regions described in this paper.

In Deterministic Parallel Java [35, 15], e ach object has to be associated with
a specific region when allocated, which limits expressivity of the programming
model. Also, methods must be annotated with effects, with an average of 12%
of the lines of code requiring annotation.

In Transactional Memory [28], it is difficult to allow I/O within transactions
since they may have to be restarted. Permission regions can have arbitrary code
within them, including I/O code. The semantics of nested transaction and nested
parallelism in transactional memory has also been a subject of much debate [1].
Permission regions offer a clear and intuitive semantic for nesting.

Dynamic race detection [17, 30, 20, 2, 32, 36] is not efficient enough to be “al-
ways on” as it may result in an order of magnitude slowdown over original code.

Type systems and static analyses that ensure shared accesses are guarded by
appropriate locks or other guards [34, 12, 38, 31, 4, 19, 3]; are often too restrictive
or cumbersome to use in general, preventing many concurrency patterns that
are safe and useful in practice. Static analyses and model-checking [33, 25], in
contrast, generally are incomplete and/or report false positives.

Also closely related are type systems based on linear types, such as fractional
permissions [6, 5] and Scala capabilities [24]. Linear types can be used to control
the number and allowed uses of active references to an object, allowing the pro-
grammer to express concepts such as uniqueness, immutability, and borrowing
of an object. Unfortunately, linear type systems place complex restrictions on
how objects can be used, often making it difficult for programmers to use them
effectively. The present work can be seen as a “partially dynamic” approach to
linear types, allowing linear capabilities to be acquired and changed at runtime.

There has also been much prior work on techniques that eliminate low-level
data races. One approach is static race detection, which either checks that code
properly uses locks and/or inserts proper locking into code [12, 38, 4, 19, 3]. An-
other approach is dynamic race detection, which instruments a program to detect
possible low-level races at runtime [17, 30, 20, 2, 32, 36, 18]. Finally, a third ap-
proach is to give a fail-stop semantics for racy programs, throwing an exception
if a low-level race occurs at runtime [8, 14]. Very little work exists that addresses
high-level data races, however, and this work is either entirely based on correct

use of locks [34, 2] or on transactional memory [28, 1]. The former is unsatisfac-
tory because many concurrency patterns, such as those based on array tiling, do
not use locks. Transactional memory, although promising in many aspects, has
performance issues when transactions are too big, cannot perform certain non-
transactional actions such as spawning parallel tasks or performing system calls
inside transactions, and seems to require special hardware for good performance.

7 Conclusions and Future Work

In this paper, we introduced the permission regions that enable application pro-
grammers to ensure that low-level or high-level data races will never occur during
execution of their programs. The approach is based on the permission property:
data should be only accessed by a single task in read-write mode, and any data
that can be accessed by multiple tasks must be in read-only mode. Any violation
of the permission property results in a PermissionException being thrown at
runtime prior to any data access that may participate in a data race.

The foundation of our approach lies in the insertion of read/write permis-
sion regions in the program through a combination of 1) automatic inference, 2)
manual insertion to avoid false positive PermissionException’s, and 3) manual
insertion to improve the performance of permission checks across method call
boundaries. Of the 11 benchmarks studied in this paper, 4 required no modifi-
cation by the programmer for 2) and 3), and the changes made in the remaining
7 benchmarks impacted fewer than 5% of the lines of code. Further, no paral-
lel programming expertise is necessary to understand permission regions, since
these permission annotations can enable useful runtime checking for invariants
in sequential programs as well. Finally, the overhead for checking permissions in
our approach is far lower than that of state-of-the-art approaches for data race
detection. The geometric mean of the slowdown relative to unchecked execution
on 16 cores was only 1.58× when the outlying raytracer benchmark is included,
and 1.26× if raytracer is excluded. Smaller slowdown factors were observed for
fewer numbers of cores.

In contrast, the average slowdown reported by the state-of-the-art Fast-
Track dynamic low-level data race detector [21] for comparable benchmarks was
8.5× for fine-grained location-level analysis and 5.3× for coarse-grained object-
level analysis. However, it is worth noting once again that the Permission Regions
and FastTrack approaches address different problems e.g., FastTrack does
not require any user interaction but also offers no solution for high-level data
races.

Permission regions offer a number of opportunities for future research. One
direction is to explore approaches that catch PermissionException’s and per-
form some kind of remediation to avoid the problem entirely e.g., by performing
rollbacks and executing the conflicting tasks on a single worker. Another direc-
tion is to simply log permission conflicts instead of throwing an exception, and
explore the use of conflict logs as debugging feedback at the end of program
execution. Finally, as discussed in the paper, there is a natural complementarity

between permission regions and software transactions that offers new opportu-
nities to explore hybrid combinations of both approaches.

References

1. Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in trans-
actional memory. In PPoPP ’08, pages 163–174, 2008.

2. Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. STVR’03,
13(4):207–227, 2003.

3. David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: a dialect of java
without data races. In OOPSLA ’00, pages 382–400, 2000.

4. Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In OOPSLA ’02, pages
211–230, 2002.

5. John Boyland. Checking interference with fractional permissions. In SAS ’03,
pages 55–72, 2003.

6. John Boyland, William Retert, and Yang Zhao. Comprehending annotations on
object-oriented programs using fractional permissions. In IWACO’09, 2009.

7. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and
transaction-aware java runtime. In PLDI ’07, 2007.

8. Abhayendra Singh et. al. Efficient processor support for DRFx, a memory model
with exceptions. In ASPLOS’11, 2011.

9. Agarwal et al. May-happen-in-parallel analysis of x10 programs. PPoPP’07, 2007.

10. Alejandro Duran et al. Barcelona openmp tasks suite: A set of benchmarks tar-
geting the exploitation of task parallelism in openmp. In ICPP’09, 2009.

11. Brandon Lucia et. al. Conflict exceptions: simplifying concurrent language seman-
tics with precise hardware exceptions for data-races. In ISCA’10, 2010.

12. Christian Hammer et. al. Dynamic detection of atomic-set-serializability violations.
In ICSE ’08, pages 231–240, 2008.

13. D. H. Bailey et al. The nas parallel benchmarks, 1994.

14. Daniel Marino et. al. Drfx: a simple and efficient memory model for concurrent
programming languages. In PLDI’10, pages 351–362, 2010.

15. Jr. Robert L. Bocchino et. al. A type and effect system for deterministic parallel
java. In OOPSLA’09, 2009.

16. P. Charles et. al. X10: an object-oriented approach to non-uniform cluster com-
puting. In OOPSLA’05, pages 519–538, New York, NY, USA, 2005. ACM.

17. Raghavan Raman et. al. Efficient data race detection for async-finish parallelism.
In RV’10, 2010.

18. Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races
in cilk programs. In SPAA’97, pages 1–11, 1997.

19. Cormac Flanagan and Stephen N. Freund. Type-based race detection for java. In
PLDI ’00, pages 219–232, 2000.

20. Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. In POPL ’04, pages 256–267, 2004.

21. Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dynamic
race detection. In PLDI’09, pages 121–133, New York, NY, USA, 2009. ACM.

22. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language
Specification. Addison Wesley, third edition, 2005.

23. Habanero multicore software research project web page. http://habanero.rice.edu,
January 2008.

24. Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In
ECOOP ’10, 2010.

25. Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking by
context inference. In PLDI ’04, pages 1–13, 2004.

26. The Java Grande Forum benchmark suite. http://www.epcc.ed.ac.uk/javagrande/javag.html.
27. Mackale Joyner. Array Optimizations for High Productivity Programming Lan-

guages. PhD thesis, Rice University, 2008.
28. James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool,

2006.
29. Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In

POPL ’05, pages 378–391, 2005.
30. Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace: effective

sampling for lightweight data-race detection. In PLDI ’09, pages 134–143, 2009.
31. Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java.

In PLDI ’06, pages 308–319, 2006.
32. Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In

PPoPP ’03, pages 167–178, 2003.
33. Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent

software. In TACAS ’05, pages 93–107, 2005.
34. Michael Roberson and Chandrasekhar Boyapati. A static analysis for automatic

detection of atomicity violations in java programs. draft available on second au-
thor’s websites, 2010.

35. Jr. Robert L. Bocchino, Stephen Heumann, Nima Honarmand, Sarita V. Adve,
Vikram S. Adve, Adam Welc, and Tatiana Shpeisman. Safe nondeterminism in a
deterministic-by-default parallel language. In POPL’11, 2011.

36. Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: a dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15:391–411, 1997.

37. Jun Shirako, Hironori Kasahara, and Vivek Sarkar. LCPC’08. In Language Exten-
sions in Support of Compiler Parallelization, pages 78–94, 2008.

38. Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization con-
straints with data in an object-oriented language. In POPL ’06, 2006.

39. Jaroslav Ševč́ık and David Aspinall. On validity of program transformations in the
java memory model. In ECOOP ’08, pages 27–51, 2008.

