A One Year Retrospective on a MOOC 1n Parallel,
Concurrent, and Distributed Programming in Java

Vivek Sarkar
Georgia Institute of Technology
vsarkar @ gatech.edu

Max Grossman
Rice University

Abstract—Much progress has been made on integrating paral-
lel programming into the core Computer Science curriculum of
top-tier universities in the United States. For example, “COMP
322: Introduction to Parallel Programming” at Rice University
is a required course for all undergraduate students pursuing
a bachelors degree. It teaches a wide range of parallel pro-
gramming paradigms, from task-parallel to SPMD to actor-based
programming.

However, courses like COMP 322 do little to support members
of the Computer Science community that need to develop
these skills but who are not currently enrolled in a four-
year program with parallel programming in the curriculum.
This group includes (1) working professionals, (2) students at
USA universities without parallel programming courses, or (3)
students in countries other than the USA without access to a
parallel programming course.

To serve these groups, Rice University launched the “Parallel,
Concurrent, and Distributed Programming in Java” Coursera
specialization on July 31, 2017. In 2017, the authors of that
specialization also wrote an experiences paper about launching
the specialization.

In this paper, the sequel to our previous publication, we look
back at the first year of the Coursera specialization. In particular,
we ask the following questions: (1) how did our assumptions
about the student body for this course hold up?, (2) how has
the course changed since launch?, and (3) what can we learn
about how students are progressing through the specialization
from Coursera’s built-in analytics?

Index Terms—parallel programming, pedagogy, concurrent,
distributed, online, MOOC, Coursera

I. INTRODUCTION

Massive Open Online Courses, or MOOCs for short, have
proven to be an effective strategy for scaling advanced and
technical education beyond the walls of four-year universities.
MOOCs have seen success in everything from data science [6]]
to finance [3]] to social psychology [15]].

Arguably the field that has seen the most MOOCs generated
is Computer Science. Today, online students can learn specific
languages (e.g. R, Python, Java), algorithms, cryptography,
machine learning, and even topics in quantum computing
from courses offered by top professors from well-known
institutions. One would be hard-pressed to find an area of
Computer Science with no representation in the set of available
MOOC:s.

However, up until 2017, there were relatively few offerings
of online parallel programming courses [11} [12] and most of
them were narrow in scope. They included:

max.grossman@rice.edu

Shams Imam
Two Sigma
shams.imam @twosigma.com

Zoran Budimlic
Rice University
zoran @rice.edu

1) “Heterogeneous Parallel Programming” [18]]: Offered
by Professor Wen-Mei Hwu of the University of Illi-
nois Urbana-Champaign on the Coursera platform, this
course focuses on teaching the essential parallel pro-
gramming concepts for programming multi-core CPUs
and GPUs using OpenCL or CUDA.

2) Udacity CUDA course [9]: With a similar focus to
Professor Hwu’s course, this offering on the Udac-
ity platform focuses specifically on teaching how to
program with CUDA without much discussion of the
fundamentals of parallelism.

3) “Clouds, Distributed Systems, and Networking” special-
ization [2]: A suite of courses offered by the University
of Illinois Urbana-Champaign on the Coursera platform,
that focuses on topics in cloud computing. Unlike previ-
ous courses, this course teaches both abstract concepts
and practical aspects of cloud computing.

4) “Parallel programming” [8]]: This course teaches shared-
memory parallelism in the Scala programming language.
Students are asked to write correct parallel programs, but
are not graded on the performance of their implementa-
tions.

While all of the above courses are of the highest quality,
their scope is generally limited: CUDA programming, OpenCL
programming, cloud computing, and parallel programming
in Scala. The MOOC community lacked a general-purpose
introduction to parallel computing.

However, on July 31, 2017, Rice University launched
the “Parallel, Concurrent, and Distributed Programming in
Java” specialization on the Coursera platform [1] (PCDP for
short). This specialization included three courses: “Parallel
Programming in Java”, “Concurrent Programming in Java”,
and “Distributed Programming in Java”.

“Parallel Programming in Java” focuses on how to cre-
ate and coordinate parallelism, with topics in both task
and dataflow parallelism. “Concurrent Programming in Java”
builds on the foundation provided in the Parallel course, and
focuses on managing concurrent accesses to data structures
shared by multiple threads. Finally, “Distributed Program-
ming in Java” emphasizes topics in multi-process parallelism,
such as big data frameworks like Apache Spark or high-
performance computing frameworks like MPI.

Each of these courses was split into multiple weeks, and
each week included multiple lecture videos, readings, and a

hands-on programming exercise. In designing these courses,
it was important to acknowledge the expected mix of students
— while some may be interested in a purely academic sense,
many would expect to gain hands-on experience that could
then be applied in the workforce. More details about the PCDP
specialization can be found in the original experiences paper
published on it, “Preparing an Online Java Parallel Computing
Course” [[14].

It has now been over a year since the launch of this
specialization, with over 16, 000 all-time active learners across
all courses. To our knowledge, there has been no new launches
of courses in general-purpose concurrent and parallel pro-
gramming since the launch of the PCDP specialization. As a
retrospective, we explore the following four questions in this
paper:

1) How did our assumptions about the student body for this

course hold up?

2) How has the course changed since launch?

3) What can we learn about how students are progressing
through the specialization from Coursera’s built-in ana-
lytics?

The insights and experiences shared in this paper can serve
as useful guidance for other HPC educators looking to launch
their own online courses, or looking to use material from the
Coursera specialization in their in-person offerings.

II. THE LEARNERS

Coursera defines active learners as “unique enrolled learners
who viewed a reading or discussion, began watching a video,
or began an assessment; includes both mobile and web users”.
In total, we have received 8, 390 active learners in the Parallel
course, 4,316 in the Concurrent course, and 3,736 in the
Distributed course as of August 22, 2018. We see course
completion rates of 42.3% in Parallel, 53.2% in Concurrent,
and 49.4% in Distributed (see Section for more details).
While we do not have the ability to uniquely identify learner
enrollment across courses, we suspect that there is a strong
overlap of learner populations across all three courses.

In the paper describing the PCDP Coursera specializa-
tion [14], we stated that we had two expectations about the
type of learners for which this specialization would be most
valuable:

1) Learners who were already in the workforce, and were
looking to broaden their skill sets.

2) Learners who were full-time or part-time students, but
lacked access to parallel programming courses.

Fortunately, the Coursera platform includes built-in analyt-
ics that can help instructors learn about the make up of learners
in their courses. Using these analytics, we can demonstrate that
our expectations aligned well with the actual demographics of
the learner population.

A. Employment and Part/Full-Time Students

Figure [I] reports the percentage of learners who are (1)
employed full-time, or (2) a part/full-time student, in each

80%
70% 66% 69% 66%
60%

§ s0%

40% 37% i

30%

% of Lear

20%
10%
0%
Distributed

Parallel Concurrent

o Full-Time Employment Full- or Part-Time Students

Fig. 1. Percentage of learners in each course that self-reported as being either
employed full-time or a part/full-time student. Note that there may be overlap
in these groups. For example, a single respondent could report themselves as
both employed full time and a part-time student.

60%

50%

40%

30%

20%

N II II

0% - — ll - —

1317 1824 2534 3544 4554 55-64 65+
Age Ranges

Percentage of Learners

WParallel m Concurrent Distributed

Fig. 2. Percentage of learners in each course within each reporting age range.

course. Clearly, both groups are well-represented. At least two-
thirds of each course is composed of learners who are also
working full-time, indicating that our courses are serving the
stated purpose of educating professional software engineers
who no longer have access to the educational resources of a
four-year university. Note that we have no way to identify the
particular industry a learner is employed in — a learner may be
employed full-time in a role other than as a software engineer.

Additionally, greater than one-third of each course’s learners
also identify as part-time or full-time students, suggesting
that even students currently enrolled at educational institutions
lack access to parallel computing curriculum. Note that these
responses do not identify the type of institution a student is
enrolled at (e.g. high school, two-year university, four-year
university, etc).

B. Learner Age Distribution

It is also interesting to consider the age distribution of
learners in each course. Figure 2] shows this distribution
across all three courses. At a glance, we can see that (1) the
distribution of learner ages is approximately the same across
all courses, and (2) the bulk of learners fall into the age buckets
18 — 24, 35 — 44, and 45 — 54. By far the largest group is
25 — 34 years old, which mirrors the two-thirds of the student
body of each course who self-report as being employed full-
time. Hence, we can postulate that a common profile of a
learner in these courses is someone working full-time who
has either completed university or never attended, but who is

trying to leverage online materials to improve understanding
of the subject matter to either (1) advance in their current
industry, or (2) move into the software industry.

C. Learner Geographic Distribution

MOOCs have the potential to attract students from different
countries and cultural backgrounds. In our previous paper,
we explicitly called out the desire to reach an international
audience to make these material more accessible to learners
in developing and emerging nations. While the material is only
available in English, Table|l|shows the extent to which learners
from a variety of different countries have engaged with the
course, with up to 135 countries represented for a given course.

TABLE I
TOTAL NUMBER OF COUNTRIES WITH ACTIVE LEARNERS, PER COURSE.

Course # of Countries
Parallel 135
Concurrent 123
Distributed 129
40%
35%
30%
5]
c
£ 25%
]
; 20%
é 15%
3
o
10%
5%
0% | | Hm - -
North America Asia Europe South America Africa Oceania

Continent
W Parallel m Concurrent Distributed

Fig. 3. Percentage of learners from each continent.

35%

30%

25%

20%

15%

10%

0% II I B0 NN ER mEe EEe s

3 <\‘ %&\0(\

& < R B3 » &

Percentage of Learners

o
xR

Country
W Parallel ®m Concurrent Distributed

Fig. 4. Percentage of learners from the top ten represented countries.

Figure [3] shows the percentage of active learners from each
continent, while Figure ff] shows the percentage of active learn-
ers from the ten most common countries. Again, distributions
across the three courses are fairly similar, with learners spread

throughout the world, most commonly from North America,
Asia, or Europe.

D. Learner Gender Distributions

Table |LI| shows the percentage of men and women learners
in each course. On average, Coursera courses are 62% male
and 38% female, illustrating that our learners are more pre-
dominantly male than the average. Still, a survey of HarvardX
and MITx courses reported some courses with similar ratios
(e.g. 13% female and 87% male for a course on circuits and
electronics) [3]].

TABLE II
PERCENTAGE OF MEN AND WOMEN LEARNERS.
Course % Men | % Women
Parallel 91.0% 9.0%
Concurrent 91.3% 8.7%
Distributed 90.0% 10.0%
Coursera (all courses) 62.0% 38.0%

E. Learner Reviews

Coursera also allows learners to rate courses that they take,
and provide “stories” about how they are using these courses
in their careers. Table summarizes the ratings received by
each course, all of which have a mean of well above 4 out of
5 stars.

TABLE III
LEARNER RATINGS, BROKEN DOWN BY COURSE.

Course Average Rating (out of 5) | Number of Ratings
Parallel 4.5 370
Concurrent 4.5 230
Distributed 4.4 130

Many of the learner stories shared reflect trends in the
aggregate metrics from above, underscoring the diversity of
the student population with an added personal touch:

1) “I'm a software engineer in Uruguay. Thanks you were
very helpful and clear explaining the course. I hope I
can make good use of the things a learned here at work.
Greetings!”

2) “I am ... software developer with 2 years experience and
I wanted to tell you that this is most useful specialization
course material I have found.”

3) “I am a PhD student at Nazarbayev University (Astana,
Kazakhstan), department of Electrical and Computer
Engineering. This course really helped me as I imple-
mented one of my simulations in Java streams. It also
directed to work more on phasers and barriers.”

4) “Thank you Professor for your course. I'm 52, Italian,
and I work as senior developer in a big company that
offers services B2B and B2C.”

F. Use of Material by On-Campus Courses

Additionally, one way the original PCDP paper foresaw the
course material being used by learners was through on-campus

courses, taught by instructors that leveraged the online course
as a springboard for their own curriculum.

While the open nature of the material means it is dif-
ficult to track all instances of this phenomenon (i.e., an
instructor may simply re-use course materials in their own
course without necessarily having contacted us), we know
of at least one existing case. Professor Dennis Cosgrove of
Washington University in St. Louis worked with the designers
of the PCDP specialization to leverage some of the parallel
computing infrastructure, readings, and lecture videos in his
on-campus course “CSE 231: Intro to Parallel and Concurrent
Programming”.

We hope that other instructors will be able to continue to
leverage the work put into the online course and supporting
infrastructure in developing and expanding on-campus offer-
ings.

III. COURSE CHANGES SINCE LAUNCH

Changes to the course are important for the continuous
improvement of the course. They allow the course to address
needs of the learners by incorporating feedback. We break the
changes to the PCDP specialization into four groups:

1) Changes to course material and curriculum.
2) Changes to course mini-projects.

3) Changes to the course autograder.

4) Changes to the supporting PCDP library.

A. Course Material Changes

While there have been small corrections to reading material
and lecture videos (e.g. due to instructor misspeaks), the
course material for all three courses in the specialization has
remained relatively fixed since the launch. The most common
feedback received from learners is generally concerning cor-
rections to the subtitles added to lecture videos. The relative
lack of changes to the course curricula, complimented with
our relatively high ratings, attest to the learners agreeing with
the course design and finding it useful.

B. Changes to Course Mini-Projects

Each course in the PCDP specialization is broken up
into 4 weeks. Each week includes a hands-on mini-project
where learners take a skeleton Java program and extend it in
some way that illustrates concepts learned during the week.
Apache Maven [16] was used as the build system for these
projects, and JUnit tests were provided to learners to verify
the correctness and performance of their code. These mini-
projects were tested pre-launch by at least two Rice University
undergraduates per mini-project, who had completed Rice’s
introduction to parallel programming course.

While updates to these mini-projects were few and far
between, they were necessary after course launch as learners
uncovered issues with the mini-project code:

1) Parallel Mini-Project 1: The data set sizes and number

of test repeats were both increased in order to reduce
inconsistent performance test results. Java’s Fork/Join

common pool was also replaced with an explicitly
created and sized ForkJoin pool.

2) Parallel Mini-Project 3: The number of test repeats
was increased and test results for only two cores were
removed from the grading criteria to avoid inconsistent
results.

3) Parallel Mini-Project 4: The initialization of test data
structures was modified to ensure that if data races
occurred in the provided solution, they would appear
as incorrect results. Designing test cases that would be
fragile to data races was one challenge of the overall
mini-project development, so as to prevent learners
passing tests by chance.

4) Concurrent Mini-Project 4: Removed percent symbols
from the output of some tests, as the auto-grading system
was failing to parse them.

Given that the course has been live for over a year now, that
means we have only had to update mini-projects less than once
every three months, despite thousands of learners progressing
through these courses.

C. Changes to Course Autograder

Note that by far the greatest point of concern to date with the
mini-projects has been inconsistent performance test results
on the Coursera auto-grading infrastructure. While students
are able to run mini-project tests locally on their personal
laptops, grades are assigned based on passing correctness
and performance tests being run in the Coursera auto-grading
cloud. The Coursera auto-grading cloud is a containerized
environment maintained by Coursera and offered to courses to
use for grading programming assignments. During the design
of the course, we developed a number of re-usable scripts for
deploying assignments into the Coursera cloud and running
their tests.

The only changes needed to these scripts were related to
filtering or replacing outputs from learner or instructor code
that would cause the parsing of the autograder output by the
Coursera infrastructure to fail.

D. Changes to PCDP library

Much of the PCDP specialization is taught using standard
Java constructs. However, a simple, pedagogic, task-parallel
programming library was also designed in support of the
PCDP specialization as a simpler way to get started in parallel
programming. This library is called PCDPIlib, and is avail-
able open source with an EPL — v1.0 at https://github.com/
habanero-rice/PCDP.

While no changes have been made to PCDPlib by the
instructors of the PCDP specialization, we have been happy
to accept changes from learners, including both performance
and semantics improvements to the code base. One of the
hopes stated in the original PCDP paper was that by open
sourcing this piece of the course infrastructure, more advanced
learners who wanted to understand the inner workings of
parallel runtimes would be able to do so by looking beneath
parallel programming APIs they were already familiar with.

https://github.com/habanero-rice/PCDP
https://github.com/habanero-rice/PCDP

Hence, PCDPIib’s design was kept deliberately simple and
readable. These change requests from learners indicate that this
strategy is already paying off, and that learners are leveraging
the openness of our pedagogic software stack.

IV. LEARNER PROGRESSION

It is also interesting to consider how learners are progressing
through each course in the PCDP specialization. While the
built-in Coursera analytics do not offer information on the
amount of time taken to complete modules, they do offer fine-
grained information on where learners drop out of a given
course based on which weeks and pages of a course they view.
From this, we can learn useful things about the behavior of
online learners.

A. Overall Completion Rates

The total number of learners reported by Coursera for a
given course is defined as the “number of unique learners
who enrolled in the course”. The eligible learners for a course
are a subset of total learners who “are eligible to complete
the course, by being able to access the graded assessments”.
In the case of the PCDP specialization, “graded assessments”
primarily refers to quizzes and mini-projects.

It is important to note that Coursera follows a subscription
model — learners pay a fixed monthly fee and then may
enroll in as many courses as possible. Additionally, each
course in the PCDP specialization includes free and publicly
accessible content, but to complete the majority of the graded
assignments you must be on a Coursera subscription. Hence,
eligible learners are those learners enrolled in the course who
also had an active Coursera subscription at the time.

Table lists the total learners, eligible learners, and com-
pletion rate for eligible learners across all three courses. Pre-
vious studies have reported average completion rates around
15% for MOOCs [[7, [13]]. We note that our completion rates
are significantly higher than those reported in previous studies.

For example, Harvard and MIT reported about 5% comple-
tion rates [5]. However, to some extent this is a misleading
comparison — this 5% rate is calculated as the total number
of certified learners out of the total number of registered
learners. There is no cost (monetary or otherwise) to register
in the HarvardX [4] or MITx [10] platforms, whereas eligible
learners (on which our completion rates are based) must have
a paid Coursera subscription. That monetary investment may
act as an incentive to completion.

TABLE IV
OVERALL LEARNER COMPLETION RATE INFORMATION, BROKEN DOWN
BY PCDP COURSE. THE REPORTED % COMPLETED IS A PERCENTAGE OF
ELIGIBLE LEARNERS.

Course Total Learners | Eligible Learners | % Completed
Parallel 11,304 2,151 42.3%
Concurrent 6,629 1,211 53.2%
Distributed 6,379 929 49.4%

B. Module Completion Rates

Each course is split into multiple modules/weeks. Across
all courses, Module 1 refers to an introductory module which
includes general course information and a test mini-project that
doesn’t require students to write any code, but helps ensure
their local development environments are correctly configured
and gets them familiar with the Coursera autograder.

Modules 2, 3, 5, and 6 are then content modules which
include video lectures, readings, and mini-projects. Module 4
focuses on a video interview between the instructors of the
course and industry experts, presenting a discussion of the
real-world usefulness of the practices and techniques being
taught in the current course. This module aims to motivate
students. Module 7 simply contains content pointing to the
other courses in the specialization.

Figure [3] plots the percentage of eligible learners in each
course that complete each module. It is interesting to see
that the steepest drop occurs from enrolling in the course
to completing the first module, as the first module does
not actually include learning any content or completing any
assessments. This suggests that many eligible learners register
for the course but never return, or that many eligible learners
simply read the material without investing time in completing
the assessments.

100%
90%
80%
70%

60%

Percentage of Eligible Learners

50%

40%
> N Vv > & 9 © A

Course Progression

------ Parallel Concurrent Distributed

Fig. 5. Percentage of eligible learners that complete each module.

Figure [6] plots the same data as Figure [35] but instead shows
the percentage of remaining learners that drop out at each
module, across all courses. Visualizing the data in this way
makes the significance of the drop rate before completing the
first module even more apparent.

As an experiment, if we classify “engaged learners” as those
learners who at least complete the introductory first module
and mini-project we can compute arguably more accurate
completion percentages for each course. This strategy can also
partially measure learner engagement due to the course design
and content. Using this metric, out of all engaged learners:
59.4% for Parallel, 71.1% for Concurrent, and 78.1% for
Distributed complete the course after completing Module 1.
This suggests a trend where learners become more invested

40%

35%

30%

25

X

20%

) 15%
10% I
0% I I II II II - Am
> v » ™ “ ©

Course Progression

Percentage of Eligible Learners

w
x

m Parallel m Concurrent Distributed

Fig. 6. Percentage of enrolled learners that dropout at each module.

and more likely to complete each course as they advance
through the specialization, or as they try more advanced
courses.

Coursera also exposes sub-module tracking metrics, break-
ing each module into five checkpoints:

1) Started Item: Learners starts any item in a module.

2) Completed Item: Learners completes any item in a
module.

3) Started Assessment: Learner starts any assessment in a
module.

4) Completed Assessment: Learner completes any assess-
ment in a module.

5) Completed Module: Learner passes all graded assess-
ments in a module.

Looking at these more fine grain metrics, we note that for
each course the largest drop in engaged eligible learners occurs
from “Completed Item” in Module 1 to “Started Assessment”
in Module 1. This suggests that learners read the overview of
the course but do not proceed to the test mini-project. It is
unclear whether they then skip to additional readings in later
modules, or exit the courses entirely and never return.

C. Module Completion Rates Breakdown by Subscription Type

One other item of interest noted during a review of the
Coursera analytics was a significant difference in overall com-
pletion rates and per-module completion rates as a function
of a user’s subscription type. In the platform, Coursera calls
out four different types of learners as subsets of all eligible
learners:

1) Paid Learners: Personal accounts with a paid subscrip-
tion.

2) Organization Learners: Accounts that have gained
access to paid resources through membership in an
organization (e.g. employees of a company with an
agreement with Coursera).

3) Finaid Learners: Personal accounts that have applied
for free access to paid resources for a specific course.

TABLE V
COURSE COMPLETION RATE AS A PERCENTAGE OF ALL ELIGIBLE
LEARNERS AND SUB-GROUPS OF ELIGIBLE LEARNERS (PAID,
ORGANIZATION, AND FINAID LEARNERS).

Subscription % Completed
All Eligible Learners 42.3%
Paid Learners 46.3%
Organization Learners 37.0%
Finaid Learners 18.1%

4) Other Access Learners: Learners that do not fall into
any of the above three buckets. It is unclear at this time
what types of accounts these are, so we ignore them
during this analysis.

Table [V] shows the final completion rates for all eligible
learners and paid, organization, and finaid learners (which are
each a disjoint subset of eligible learners). While paid learners
see completion rates slightly higher than the average across
all eligible learners, both organization and finaid accounts see
lower completion rates. In particular, finaid learners see only
18% completion rates. We postulate two interpretations of this
data: (1) finaid learners generally come from lower economic
backgrounds and therefore may have other stressors outside of
the learning platform that make it more difficult to complete
the same material, and/or (2) neither organization nor finaid
learners are required to invest financially in the courses and
so are less motivated to complete them.

V. DISCUSSION

In previous sections of this paper, a quantitative overview
of course metrics and changes was provided. In this section,
we talk more anecdotally about our experiences supporting an
online course for the past year.

A. Course Forums

Perhaps the most time-consuming and difficult part of
maintaining a launched course is monitoring and responding to
the course forums. As course enrollment grows, questions on
the forums can pile up quickly. This problem is exacerbated by
the fact that instructors of Coursera courses are generally kept
busy by full-time jobs, and it is often difficult to reserve time
daily for reading and responding to forum questions. While
online platforms often promise crowd-sourced teaching assis-
tants from students that have already completed the course, for
the PCDP specialization this has not been realized to a large
extent. Even when online teaching assistants are supporting
the course, it is difficult to coordinate with teaching assistants
who were not brought on by the instructors themselves.

In the case of the PCDP specialization, the best solution
we’ve found to-date is keeping a part-time student employed
on-campus through the digital learning center who (in addition
to other duties) helps with monitoring the course forums,
responding to simple requests, and highlighting more difficult
requests to the course staff during weekly meetings. While it is
helpful if this student has already completed the online course
or similar material, in our experience it is not necessary.

While this solution works today, it naturally has long-term
ramifications for the sustainability of online courses. Using a
StackOverflow like model where users can vote questions and
answers up or down and earn reputation points may be one
way to address this issue of maintaining forums.

B. Performance Test Flakiness

Performance test flakiness is arguably the primary cause of
bad learner experiences. A careful balancing act is required
between setting expected speedups low enough to account
for performance volatility, but high enough that students must
have a reasonable solution to meet them. In our experience, a
large amount of this flakiness simply derives from the lack
of transparency in the Coursera auto-grading platform, the
presence of virtualization, and the low levels of parallelism
permitted. It is difficult to tell when volatility in test results
may be due to a noisy neighbor in the Coursera platform, and
it is unclear to-date how dedicated the resources assigned to
a given auto-grading instance are. Additionally, auto-grading
instances are limited to four CPU cores, which means that
if performance scaling is expected to be sub-linear with the
number of cores for certain assignments, speedups at four
cores may still be marginal.

Of course, it is also unfair to blame the various course
platforms for this. To some extent, running performance tests
on online auto-grading platforms is an appropriation of a plat-
form whose primary purpose and use case is for programmatic
correctness verification (where performance matters to a much
lesser extent).

C. Honor Code

One issue that comes up infrequently but is still worth not-
ing is accidental honor code violations. Often, when students
are requesting advice or support on the course forums they
will invariably post their current solution or a code snippet.
Other learners may then be able to come along and use this
code snippet as a head start on the assignment. Accidental
violations like these are one example of the importance of
close forum monitoring — without regular monitoring of the
forums, they would not be caught quickly.

In response to repeated issues like the one above, the
instructors of the PCDP specialization started a dedicated e-
mail account that students can use to directly and privately
communicate with the course staff. While use of this account
is generally discouraged (as the conversation is not searchable
by the rest of the course learners), it can be useful in certain
cases. In addition, it is possible in the Coursera platform
for course staff to pull up the source code that learners
submit to the autograder. This can be another useful avenue
of communication, ensuring that both the staff and learner are
looking at the same code base.

D. Engaging Learners Quickly

Section [[V| pointed out that learners frequently drop out of
the PCDP courses after the first module, despite the fact that
the first module has little content. Therefore, one important

future improvement to the PCDP courses (and any other online
parallel computing courses) would be to explore ways of
engaging learners quickly — getting them excited about the
content while keeping the barrier to entry low. This problem
can be approached from a number of angles, for example: (1)
by offering concrete examples of impactful applications that
are only solvable using parallel computing, or (2) by pointing
out the value of skills in parallel computing on the job market.
However, today this is not something being accomplished well
by the course introduction.

In our experience with on-campus classes, one way to en-
gage learners is through visual depictions of what parallel and
high-performance computing can do. For example, in lectures
a particle simulation will be shown running sequentially and in
parallel. The combination of an eye-grabbing simulation and
a visual representation of how parallel computing helps can
be compelling for learners.

E. Maintaining Material Long-Term

Probably the largest unanswered question for the PCDP
specialization is its longevity — how long can an online course
be maintained at a steady state given only part-time staff? How
frequently are content updates needed to ensure the curriculum
remains relevant and useful for students?

For example, in one assignment students use Apache
Spark [17] to implement the PageRank algorithm. While
Apache Spark is a popular and useful framework right now,
will that be the case in 1 year? In 5 years? If not, when is
the appropriate time to update that content? How will the staff
decide what to update it to?

Of course, as pointed out previously, the recurring time
investment needed to appropriately monitor the course forums
is another challenge for maintaining an online course in the
long term.

VI. CONCLUSIONS
At the start of this paper we posed three questions:

1) How did our assumptions about the student body for this
course hold up?

2) How has the course changed since launch?

3) What can we learn about how students are progressing
through the specialization from Coursera’s built-in ana-
lytics?

Throughout this paper we have offered quantitative and
qualitative perspectives on all of these questions, generally
along several axes.

In general, our expectations for the composition of the
student body have held up. The vast majority of current
students are already working full-time and using the PCDP
specialization to supplement what existing education they
have. At the same time, approximately a third of current
students are part- or full-time students that are using the
specialization to supplement their ongoing education, possibly
because their institutions lack the resources to offer courses in
parallel or high-performance computing or they lack the time
to invest in a full course on the subject. We have also seen the

adoption of this material by on-campus classes, though to our
knowledge there are no on-campus classes built wholesale on
top of the Coursera specialization.

For the most part, there have been few changes to the
course material, mini-projects, or infrastructure since the
course launch over a year ago. Most changes have been small
grammatical or subtitle fixes that do not significantly impact
the majority of learners’ experiences.

Studying Coursera’s built-in metrics yielded a few in-
teresting (but perhaps unsurprising) metrics about learners’
progression through the courses:

1) Learners on Coursera subscriptions are eager to enroll
in the courses, but often disappear after reading the
course overview. Perhaps these enrollments are serving
as reminders and these learners will return later, but
today we see a drastic drop in participation even before
reaching the beginning of the real content in the course.

2) Learners that are financially invested in the courses see
much higher completion rates (46.3%) than learners that
gain free access to courses either through membership
in an organizational account (completion rate of 37.0%)
or through Coursera’s financial aid system (completion
rate of 18.1%).

3) The vast majority of learners that enroll in one of the
PCDP’s specialization’s courses are not subscribed to
Coursera and therefore are not able to access most of the
graded, hands-on assessments. For example, out of the
11,304 total learners for the Parallel course only 2,151
are eligible for receiving a certificate at completion of
the course.

When comparing to past publications on online courses [5],
we generally see (1) higher completion rates, and (2) a more
imbalanced learner population in terms of gender.

In general though, the PCDP specialization content is
holding up to the test of time and serving the under-served
groups of our broad Computer Science community that it was
originally intended for.

ACKNOWLEDGMENT

We would like to thank Coursera, the Rice Center for Digital
Learning and Scholarship, the teaching staff for COMP 322,
and Rice University for their support in developing the PCDP
Specialization. In particular, we would like to acknowledge the
significant support and advice provided by Seth Tyger, Annette
Howe, Chong Zhou, Jason Hwang, and Frank Chen.

REFERENCES

[1] Coursera. Parallel, Concurrent, and Distributed Program-
ming in Java Specialization. |https://www.coursera.org/
specializations/pcdp.

[2] Farivar, Reza and Singla, Ankit and Gupta, Indranil and
Godfrey, P. Brighten and Campbell, Roy H. Clouds, Dis-
tributed Systems, and Networking. https://www.coursera.
org/specializations/cloud-computing.

[3] Gautam Kaul. Introduction to Finance: Valuation
and Investing Specialization. |https://www.coursera.org/
specializations/valuation-investment.

[4] Harvard University, edX. HarvardX: Free online courses
from Harvard University. https://www.edx.org/school/
harvardx.

[5] A. Ho, J. Reich, S. Nesterko, D. Seaton, T. Mullaney,
J. Waldo, and I. Chuang. HarvardX and MITx: The
first year of open online courses, fall 2012-summer 2013.
2014.

[6] Jeff Leek, Roger D. Peng, Brian Caffo. The Data
Scientist’s Toolbox. https://www.coursera.org/learn/
data-scientists-tools.

[7] Katy Jordan. MOOC Completion Rates: The Data. http:
/fwww.katyjordan.com/MOOCproject.html.

[8] Kuncak, Viktor and Prokopec, Aleksandar. Parallel
Programming. https://www.coursera.org/learn/parprogll

[9] Luebke, David and Owens, John and Roberts,
Mike and Lee, Cheng-Han. Intro to Parallel
Programming. https://www.udacity.com/course/

intro-to-parallel-programming--cs344.

[10] MIT, edX. MITx: Free online courses from Mas-
sachusetts Institute of Technology. https://www.edx.org/
school/mitx.

[11] MOOC List. Concurrent Programming MOOCs and

Free Online Courses. https://www.mooc-list.com/tags/

concurrent-programming,

MOOC List. Parallel Programming MOOCs and

Free Online Courses. https://www.mooc-list.com/tags/

parallel-programming,

[13] F. O. Onah, J. E. Sinclair, and R. Boyatt. Dropout Rates

of Massive Open Online Courses: Behavioural Patterns.

2014.

V. Sarkar, M. Grossman, Z. Budimlié¢, and S. Imam.

Preparing an Online Java Parallel Computing Course. In

FParallel and Distributed Processing Symposium Work-

shops (IPDPSW), 2017 IEEE International, pages 360—

366. IEEE, 2017.

Scott Plous. Social Psychology. https://www.coursera.

org/course/socialpsychology.

The Apache Software Foundation. Apache Maven. https:

//maven.apache.org/.

[17] The Apache Software Foundation. Apache Spark. https:

[15]

[16]

/Ispark.apache.org/.
[18] Wen-mei W. Hwu. Heterogeneous Parallel
Programming. http://academictorrents.com/details/

8903d0871c652b96c7b29db738cea76902d65888.

https://www.coursera.org/specializations/pcdp
https://www.coursera.org/specializations/pcdp
https://www.coursera.org/specializations/cloud-computing
https://www.coursera.org/specializations/cloud-computing
https://www.coursera.org/specializations/valuation-investment
https://www.coursera.org/specializations/valuation-investment
https://www.edx.org/school/harvardx
https://www.edx.org/school/harvardx
https://www.coursera.org/learn/data-scientists-tools
https://www.coursera.org/learn/data-scientists-tools
http://www.katyjordan.com/MOOCproject.html
http://www.katyjordan.com/MOOCproject.html
https://www.coursera.org/learn/parprog1
https://www.udacity.com/course/intro-to-parallel-programming--cs344
https://www.udacity.com/course/intro-to-parallel-programming--cs344
https://www.edx.org/school/mitx
https://www.edx.org/school/mitx
https://www.mooc-list.com/tags/concurrent-programming
https://www.mooc-list.com/tags/concurrent-programming
https://www.mooc-list.com/tags/parallel-programming
https://www.mooc-list.com/tags/parallel-programming
https://www.coursera.org/course/socialpsychology
https://www.coursera.org/course/socialpsychology
https://maven.apache.org/
https://maven.apache.org/
https://spark.apache.org/
https://spark.apache.org/
http://academictorrents.com/details/8903d0871c652b96c7b29db738cea76902d65888
http://academictorrents.com/details/8903d0871c652b96c7b29db738cea76902d65888

	Introduction
	The Learners
	Employment and Part/Full-Time Students
	Learner Age Distribution
	Learner Geographic Distribution
	Learner Gender Distributions
	Learner Reviews
	Use of Material by On-Campus Courses

	Course Changes Since Launch
	Course Material Changes
	Changes to Course Mini-Projects
	Changes to Course Autograder
	Changes to PCDP library

	Learner Progression
	Overall Completion Rates
	Module Completion Rates
	Module Completion Rates Breakdown by Subscription Type

	Discussion
	Course Forums
	Performance Test Flakiness
	Honor Code
	Engaging Learners Quickly
	Maintaining Material Long-Term

	Conclusions

