
Commit Phase in Timestamp-based STM

Rui Zhang
Dept. of Computer Science

Rice University
Houston, TX 77005, USA
ruizhang@rice.edu

Zoran Budimlić
Dept. of Computer Science

Rice University
Houston, TX 77005, USA

zoran@rice.edu

William N. Scherer III
Dept. of Computer Science

Rice University
Houston, TX 77005, USA

scherer@rice.edu

ABSTRACT
Timestamp-based Software Transactional Memory (STM)
validation techniques use a global shared counter and times-
tamping of objects being written to reason about sequencing
of transactions and their linearization points, while reduc-
ing the number of unnecessary validations that have to be
performed, thus improving overall system performance.

During the commit phase of a timestamp-based valida-
tion scheme, several actions have to be performed: locking
of the objects being written to the memory, atomically incre-
menting a shared timestamp counter, updating timestamps
for objects being committed to memory, performing a final
validation of the transaction’s consistency, and atomically
effecting the the transaction’s changes to the outside world.
The order and manner in which these actions are performed
can affect both the correctness of the STM implementation
and the overall system performance.

We identify several commit sequence designs, prove their
correctness, and analyze their performance. We identify
cases where timestamps do not have to be unique for differ-
ent transactions committing concurrently, and cases where
unnecessary updates of the global shared counter — which
can trigger extra validations in other transactions, hurting
performance — can be avoided. We evaluate these commit
sequence designs on a set of benchmarks on a 16 proces-
sor SunFire SMP machine. We show that a carefully chosen
commit sequence can improve overall system performance by
up to 14% over the state of the art single counter timestamp-
based validation techniques, and we show that it is possible
to obtain high performance without incurring space over-
head proportional to the number of objects in the system.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

Keywords
Transactional Memory, Timestamp, Commit Sequence

1. INTRODUCTION
Transactional Memory (TM) [7, 12] has emerged as a

promising high-level programming model for the new and
omnipresent multicore machines. TM allows the program-
mer to think in terms of transactions, operations that are
guaranteed to perform atomically without introducing ex-
pensive and deadlock-prone coarse-grain locking. TMs are
particularly attractive for complex and dynamic data struc-
tures, where different processes can operate in parallel on the
data structure, and where coarse-grain locking would intro-
duce serialization on the data structure (and unacceptable
performance penalties), while fine-grain locking is difficult
to implement, error-prone and deadlock-prone.

Software Transactional Memory (STM) [2, 3, 4, 5, 6, 8,
11] systems implement the TM functionality exclusively in
software. These systems have to ensure that the state of
the shared objects in memory is consistent at all times, for
all transactions. A widely accepted method in current STM
implementations is validation: The transaction rescans the
shared objects it has accessed to confirm that they remain
consistent. Validation can be an expensive operation that,
performed unnecessarily, can degrade the system’s perfor-
mance significantly. One study [11] has shown that for some
applications, STM can spend up to 50% of the time in val-
idation, leaving only 20% for useful work (30% of the time
is spent on other overhead).

Timestamp-based validation techniques [1, 9, 13] attempt
to reduce the validation overhead by introducing a global
shared counter and/or a small field (a timestamp) into each
object. These timestamps allow the STM system to quickly
determine when a full validation of the transaction is un-
necessary when performing critical operations such as open-
ing new objects. Timestamp-based validation techniques
such as Transactional Locking II [1], Lazy Snapshot [9], and
Global Commit Counter [13] significantly reduce unneces-
sary validations at the cost of a slight increase in memory
requirements and of potential contention on a shared times-
tamp counter.

Timestamp-based Software Transactional Memory systems
associate a timestamp with each shared object to indicate
when an object was last modified. A transaction also ac-
quires a timestamp indicating its current candidate lineariza-
tion point: the time when the transaction’s effects become
visible to the outside world. This time information allows
comparisons of the order of execution among in-flight trans-

326

actions, providing the STM system an opportunity to skip
validation when opening an object that was last modified
before the transaction’s linearization point.

The design of a timestamp-based STM system faces many
trade-offs. For example, the value of the global counter cho-
sen to be the linearization point of the transaction, the value
of the global counter chosen to be the timestamp of the
objects written by the transaction, the implementation of
the shared global counter and the timestamps, and the re-
quirements that timestamps, linearization points and global
counter have to satisfy can all have a significant impact on
correctness and performance of the STM system.

Current time-based STM systems exhibit some issues:

• In Transactional Locking II, Lazy Snapshot, and Global
Commit Counter, every update transaction requires a
unique timestamp (hence a total ordering) for the ob-
jects being updated. We show that this requirement is
unnecessary, and present commit sequences that relax
this requirement and either scale better or consume
less memory space.

• Existing timestamp-based techniques update the shared
global counter more times than absolutely necessary.
These extraneous updates can in turn force unneces-
sary validations and increase the contention on the
counter itself. We demonstrate new commit strate-
gies that reduce the number of unnecessary counter
updates and that improve overall system performance
by up to 9%.

The remainder of this paper is organized as follows. In
Section 2 we describe the current state of the art in timestamp-
based validation techniques. In Section 3 we present several
variants of the commit sequence in a timestamp-based val-
idation scheme for single-version STMs. In Section 4 we
present experimental results that illustrate the impact of
commit sequences on overall system performance. In Sec-
tion 5 we conclude the paper and suggest directions for fu-
ture research.

2. RELATED WORK
Validation is a technique designed to prevent a transaction

from observing an inconsistent state in shared data. It is
closely related to the conflict detection scheme used in the
STM systems. An exhaustive conflict detection system that
detects all possible w/w, r/w, and w/r conflicts would not
need validation, but it would also be expensive.

To increase concurrency, different conflict detection strate-
gies have been developed. Invisible reads [6] hide the read
of an object from concurrent transactions which are there-
after able to modify the object. This makes write after read
no longer a conflict. Lazy writes [2] hide the write from
other transactions and allows modifications to them by other
transactions, making read after write and write after write
no longer a conflict. To avoid entering an inconsistent state,
a transaction needs to validate the objects it has read (in-
cluding the writes that are lazily acquired) at appropriate
times in program execution.

Incremental validation [6] is a strategy that validates previously-
accessed objects each time the transaction opens a new ob-
ject. If any change in the past is detected, the validation
fails. This strategy guarantees a consistent state but im-

poses a substantial overhead [13], quadratic in the number
of objects opened in a transaction.

In this section, we discuss three existing state of the art
timestamp-based STM systems: Transactional Locking II
(TL II) [1], Lazy Snapshot (LSS) [9] and Global Commit
Counter (GCC) [13]. We will focus on the design of the
shared global counter, method to update this counter, the
format of the timestamp, and the impact of the different
design choices these techniques make on performance.

Riegel, Fetzer, and Felber [10] use perfectly synchronized
real-time clocks or externally synchronized physical clocks
as the time base for better scalability. In contrast to our
work, their scheme requires external support and focuses
on the scalability of the time base itself. Our work focuses
on reducing the number of unnecessary updates to the time
base to improve the scalability of the system and requires
no external hardware support.

For convenience, we use some short variable names for al-
gorithms in this paper. We explain the meaning of these
variables here. T is a transaction. Oi is an object. m is
the mode to open an object. m can be read-only or read-
write. T.update is the flag to indicate if the transaction is
a read-only transaction or update transaction. T.ts is the
transaction’s timestamp. It is used to reason about the or-
dering of the transaction and the objects. TS is the variable
to save the timestamp to be written into the objects being
updated. TSC is the timestamp counter. It is a shared
integer. T.O is a list keeping the objects that need to be
verified when doing a validation. V ALIDATE(T) checks
if the invisible reads and lazy writes have been modified or
acquired by other transactions. If they are, transaction T is
aborted, otherwise it proceeds forward.

2.1 Transactional Locking II (TL II)
TL II can save the overhead of bookkeeping invisible reads

for read-only transaction. The reason is it fixes its lineariza-
tion point at the beginning of read-only transactions and
does not validate.

TL II always performs a validation in the commit phase
for update transactions. It updates the shared counter and
acquires a unique timestamp using either a looped CAS for
a single counter or a non-looped CAS for a tuple (consisting
of a timestamp and the thread ID). It performs unnecessary
updates to the shared counter when the validation fails.

TL II also suggests one timestamp implementation to re-
duce the contention on the global shared counter by pairing
the original timestamp with a thread ID for each shared
object. Unfortunately, the paper does not give any experi-
mental results on this suggested timestamp implementation.
The tuple of the thread ID and the timestamp is unique for
each update transaction and satisfies the uniqueness require-
ment, allowing the commit phase to avoid the use of CAS
in a loop to force the shared counter update.

Having the commit sequence always perform validation is
a sufficient condition to relax the requirement for timestamp
uniqueness. It also saves the per-object space overhead for
storing the last updater’s thread ID. We discuss this variant
and evaluate its performance in Sections 3 and 4.

To more directly compare different commit sequences, we
changed TL II’s OPEN function to make it compatible with
other versions. This change consists of updating the transac-
tion’s timestamp and revalidating, instead of aborting, when
an OPEN detects that an object has been modified at a time

327

later than the transaction’s candidate linearization point.

Function TL II OPEN(T, Oi, m) single counter version

if m = write then1

T.update← true;2

if Oi.ts > T.ts then3

T.ts← TSC;4

V ALIDATE(T);5

T.O ← T.O ∪Oi;6

Function TL II COMMIT(T) single counter version

if T.update then1

ACQUIRE(T);2

TS ← TSC;3

while TS != CAS(&TSC, TS, TS+1) do4

TS ← TSC;5

TS ← TS + 1;6

V ALIDATE(T);7

foreach Oi in T.O do8

Oi.ts← TS;9

CAS(&TX STATUS,ACTIV E, COMMITTED);10

Function TL II OPEN(T, Oi, m) tuple version

if m = write then1

T.update← true;2

if Oi.ts > T.ts or (Oi.ts = T.ts and Oi.id != ID) then3

T.ts← TSC;4

V ALIDATE(T);5

T.O ← T.O ∪Oi;6

2.2 Lazy Snapshot (LSS)
LSS skips validation in the commit phase for read-only

transactions. It generates a unique timestamp using an
atomic fetch-and-increment instruction for each update trans-
action, thereby serializing all update transactions when in-
crementing the shared counter. In our experiments we use
a looped CAS to simulate the atomic fetch-and-increment
instruction. LSS also skips validation when the timestamp
counter is unchanged since its last validation: If no compet-
ing transaction has committed, then no new conflicts can
have been generated. However, if a final validation should
fail, LSS will have unnecessarily updated the shared counter.

2.3 Global Commit Counter (GCC)
GCC is not a typical timestamp-based STM because it

does not keep timestamps in shared objects. It uses a sin-
gle counter as the time base. It skips the validation in the
commit phase when there is no change to the counter since
last time it was visited. It uses a looped CAS to update the
shared counter (and ensure that the counter does get up-
dated by the current transaction, in addition to any other
updates that may happen to it at the same time by other
transactions). It uses a unique timestamp for each update
transaction. It performs a full validation when read-only

Function TL II COMMIT(T) tuple version

if T.update then1

ACQUIRE(T);2

if T.ts = TSC then3

TSnew ← CAS(&TSC,T.ts, T.ts + 1);4

if TSnew != T.ts then5

TS ← TSnew;6

else7

TS ← TSC;8

V ALIDATE(T);9

foreach Oi in T.O do10

Oi.ts← TS;11

Oi.id← ID;12

CAS(&TX STATUS,ACTIV E, COMMITTED);13

Function Lazy Snapshot OPEN(T, Oi, m)

if m = write then1

T.update← true;2

if Oi.ts > T.ts then3

T.ts← TSC;4

V ALIDATE(T);5

T.O ← T.O ∪Oi;6

transaction opens an object and detects a change to the
global counter. As detailed in Section 3.4, this design ad-
mits a subtle race condition in which conflicting transactions
may incorrectly commit together.

Overall, the various timestamp designs use two different
methods to update the shared counter.
Forced update is used when the shared counter has to
be updated. This is often implemented using a looped cas.

Function Lazy Snapshot COMMIT(T)

if T.update then1

ACQUIRE(T);2

TS ← TSC;3

while TS != CAS(&TSC, TS, TS+1) do4

TS ← TSC;5

if TS != T.ts then6

V ALIDATE(T);7

TS ← TS + 1;8

foreach Oi in T.O do9

Oi.ts← TS;10

CAS(&TX STATUS,ACTIV E, COMMITTED);11

Function GCC OPEN(T, Oi, m)

if m = write then1

T.update← true;2

if T.ts != TSC then3

T.ts← TSC;4

V ALIDATE(T);5

T.O ← T.O ∪Oi;6

328

Function GCC COMMIT(T)

ACQUIRE(T);1

if !TRY COMMIT(T) then2

V ALIDATE(T);3

TS ← TSC;4

while TS = CAS(&TSC, TS, TS + 1) do5

TS ← TSC;6

CAS(&TX STATUS,ACTIV E, COMMITTED);7

Function GCC TRY_COMMIT(T)

if T.update then1

TSnew ← CAS(&TSC,T.ts, T.ts + 1);2

if TSnew = T.ts then3

result← TRUE;4

else5

result← FALSE;6

else7

if TSC = T.ts then8

result← TRUE;9

else10

result← FALSE;11

return result12

If used in a design where each update transaction uses a
unique timestamp, all update transactions are serialized at
updating the shared counter. This can become a bottleneck
in highly parallel system where many transactions can reach
their commit phase around the same time.
Non-forced updates can be performed when only an at-
tempt to update the shared counter is sufficient to guarantee
consistency. If the attempt succeeds (the CAS to update the
shared counter succeeds), the comit sequence can continue
as planned. If the attempt fails, a validation is needed to
ensure consistency. The contention for the shared counter
is greatly reduced in this case. TL II’s suggested tuple im-
plementation uses this scheme to update the counter part of
the timestamp.

Another issue associated with existing designs is of un-
necessary updates to the shared counter, which can force
other transactions to perform an avoidable final validation
at commit time.

3. COMMIT SEQUENCE DESIGN
In this section we present several alternatives to the the

commit sequences in the existing time-based STM systems.
In particular, we relax the requirement for the uniqueness of
timestamps and address the false update problem that can
force transactions to perform unneeded validations (and by
slowing their completion, increase the window for potential
conflicts with other transactions). False updates occur when
a transaction leads to a shared counter update that does not
correspond to the completion of any transaction.

3.1 Non-unique Timestamps
In existing timestamp-based STM systems, every write

transaction needs to acquire a unique timestamp for the ob-
jects it updates. This uniqueness is achieved via a single in-
teger timestamp or a tuple that has non-unique timestamp

and a thread ID. Using a single unique integer requires an
atomic increment to a shared timestamp counter for each up-
date transaction, which serializes update transactions and
reduces the scalability of the STM system. Using a tuple
with thread ID reduces contention because the thread ID is
not shared; this avoids serializing all update transactions on
the shared counter, but incurs additional space overhead.

Timestamp uniqueness is a sufficient condition for enforc-
ing an order among transactions. However, as we demon-
strate in this paper, it is a more powerful property than
strictly necessary, and leads to space and/or contention over-
heads. We present a method for relaxing the uniqueness
requirement for timestamps and show that it can yield re-
duced contention on a shared counter without incurring the
space overhead.

Our method is based on the observation that disjoint trans-
actions can share a common timestamp if they commit con-
currently. Within the commit sequence, an ACQUIRE oper-
ation ensures that any write/write inter-transactional con-
flicts are detected. Read/write conflicts, meanwhile, can
be subsequently detected by a VALIDATE operation; so if two
transactions have both successfully completed ACQUIRE, they
may safely share their timestamp provided they both validate
their read set. Any moment in time between the ACQUIRE

and the final commit can be used as the effective times-
tamp for a transaction. Although a transaction can still be
aborted by a competitor after its ACQUIRE, this case is han-
dled by the aborted transaction’s status word update: when
updating from ACTIVE to COMMITTED fails, the new versions
of objects, with updated timestamps, are never effected as
current. We argue more carefully the correctness of these
claims later in this section.

Many authors have noted that, where possible, skipping
validation during commit can improve transactional system
throughput; this is done when the shared timestamp counter
has not changed. When the counter has changed, we can
choose either to abort and restart the transaction, or to force
another update of the counter and validate the transaction.

3.2 False Update Avoidance
We consider two scenarios for false updates in timestamp-

based STMs that occur after the shared counter is updated
as part of the commit sequence. The first scenario occurs
when the transaction’s own subsequent validation fails and it
aborts. The second occurs when another transaction aborts
(i.e. it detects a conflict) the one that has updated the
timestamp. Both scenarios can potentially lead to redun-
dant validation in otherwise uninvolved transactions when
the STM system tries to skip a final commit-time validation.
Since false update can potentially trigger a validation in each
concurrently executing transaction, in a worst-case scenario
the total amount of extra validation work performed can
grow linearly with the number of transactional threads in a
system — a clear scalability problem.

3.3 Commit Sequence Design Alternatives
The design space for commit sequences may be organized

around several individual axis; we introduce nomenclature
for them here.

We term hard validation the case where a VALIDATE oper-
ation is performed unconditionally in the commit sequence.
In contrast, it may be skipped under certain circumstances
in soft validation. If we always perform a validation, the

329

Function V1, V2, V4 OPEN(T, Oi, m)

if m = write then1

T.update← true;2

if Oi.ts > T.ts then3

T.ts← TSC;4

V ALIDATE(T);5

T.O ← T.O ∪Oi;6

update to the time base may be placed virtually anywhere
in the commit sequence, and the expected value for the CAS

may be either the candidate linearization point or a fresh
read of the global counter. In order to skip commit-time
validation (in cases where conditions are met for doing so),
an update to the timestamp must occur before the validation
attempt.

With a hard increment, the timestamp counter is always
incremented during the commit sequence by the thread ex-
ecuting the transaction (typically via a looped CAS). With a
soft increment, the timestamps can be shared, so the counter
update can sometimes be skipped. In some of our proposed
variations to the commit sequence, it suffices for a commit-
ting transaction to observe that an update has been made
to the shared counter, whether the transaction’s executing
thread was the one that successfully performed the incre-
ment or not. This avoids full serialization of all transactions
and reduces contention on the timestamp counter, but it
also leads to non-unique timestamps.

We characterize as eager (or lazy) timestamp acquire the
case where the base value used to update the timestamp
counter is read before (or after) the ACQUIRE operation. Fi-
nally, having side effects means that the OPEN operation
needs to perform validations not only when the object’s
timestamp is greater than transaction’s timestamp, but also
in some other cases. We summarize these differences in ta-
ble 1.
Version 1: This design uses a single timestamp counter.
It does not necessarily assign a unique timestamp for each
transaction; instead it can share a timestamp across concur-
rently committing transactions. This allows it to perform
only one CAS operation on the shared timestamp counter;
even if the CAS fails, the counter is guaranteed to have
been updated. Scalability is improved as contention on the
counter is reduced, and the strict serialization of transac-
tions on the counter is relaxed, as in LSS, GCC, and TL2C.
Unlike TL2T, this version avoids using additional space for a
thread ID. One disadvantage of this design is that validation
must always be performed during the commit phase.
Version 2 (V2): This design also uses a shared timestamp
counter. It attempts to avoid false updates in the timestamp
counter by validating past reads each time a CAS fails, get-
ting a fresh read of the counter for each attempted update.
The main disadvantage of this design is that every transac-
tion must force an update to the timestamp counter, which
increases contention.

The OPEN functions in V1 and V2 are identical.
Version 3 (V3): This design is similar in most respects to
V1. The key difference from V1 is in updating the shared
timestamp counter: Where V1’s CAS uses as its expected
value a fresh read obtained after performing the ACQUIRE

operation, V3’s CAS uses the most recently read value. In

Function V1 COMMIT(T)

if T.update then1

ACQUIRE(T);2

V ALIDATE(T);3

TS ← TSC;4

if TS = TSC then5

TSnew ← CAS(&TSC,TS, TS + 1);6

if TSnew = TS then7

TS ← TS + 1;8

else9

TS ← TSnew;10

else11

TS ← TSC;12

foreach Oi in T.O do13

Oi.ts← TS;14

CAS(&TX STATUS,ACTIV E, COMMITTED);15

Function V2 COMMIT(T)

if T.update then1

ACQUIRE(T);2

TS ← T.ts + 1;3

while T.ts != TSC or T.ts = CAS(&TSC, T.ts,4

TS) do
T.ts← TSC;5

V ALIDATE(T);6

TS ← T.ts + 1;7

foreach Oi in T.O do8

Oi.ts← TS;9

CAS(&TX STATUS,ACTIV E, COMMITTED);10

Function V3 OPEN(T, Oi, m)

if m = write then1

T.update← true;2

if Oi.ts >= T.ts then3

T.ts← TSC;4

V ALIDATE(T);5

T.O ← T.O ∪Oi;6

our correctness proof for this design, we show that the AC-

QUIRE operation is a critical point; this difference forces V3
to perform additional validations on open when the object
and transaction timestamps match. This version is suitable
for systems with abundance of parallelism and where the
transactions have a very good chance to succesfully commit.
The CAS in V3 has a high probability failing and the com-
mit can take the quick path in the if statement. HashTable
is one benchmark where V3’s performance stands out. V3’s
performance matches TL II tuple version, without the addi-
tional space requirements. Due to the additional validations
when opening a object with an equal timestamp, V3’s per-
formance suffers when the validation overhead is high, as
demonstrated in LinkedList and RandomGraph.
Version 4 (V4): Our fourth design combines the ability
to share timestamps (and the corresponding reduction in
shared counter contention) from V1 with the ability to skip

330

validation increment TS acquire thread id false update side effect
V1 hard soft lazy no commit CAS fails no
V2 soft hard eager no commit CAS fails no
V3 hard soft eager no validation or commit CAS fails yes
V4 soft soft eager no commit CAS fails no

TLIIT hard soft lazy yes validation or commit CAS fails yes
TLIIC hard hard lazy no validation or commit CAS fails no
LSS soft hard eager no validation or commit CAS fails no

Table 1: Commit Sequence Comparison

Function V3 COMMIT(T)

if T.update then1

ACQUIRE(T);2

if TSC = T.ts then3

TS ← T.ts + 1;4

TSnew ← CAS(&TSC,T.ts, TS);5

if TSnew != T.ts then6

TS ← TSnew;7

else8

TS ← TSC;9

V ALIDATE(T);10

foreach Oi in T.O do11

Oi.ts← TS;12

CAS(&TX STATUS,ACTIV E, COMMITTED);13

Function V4 COMMIT(T)

if T.update then1

ACQUIRE(T);2

if T.ts != TSC then3

T.ts← TSC;4

V ALIDATE(T);5

TS ← CAS(&TSC,T.ts, T.ts + 1);6

if TS = T.ts then7

TS ← TS + 1;8

else9

V ALIDATE(T);10

foreach Oi in T.O do11

Oi.ts← TS;12

CAS(&TX STATUS,ACTIV E, COMMITTED);13

validation in the commit sequence from V2. As such, it
has potentially the lowest overhead of any of our commit
sequences. Like V2, V4 shares a common OPEN function
with V1.

3.4 Theoretical Considerations
The following lemma presents a key insight into sequenc-

ing of ACQUIRE and VALIDATE operations for timestamp-based
validation techniques.

Lemma 1. Suppose that at a moment in time t3, a trans-
action T1 opens an object O for reading that was written by
a transaction T2. Let t1 be the moment in time that trans-
action T2 successfully performed its ACQUIRE operation dur-
ing its commit phase. If there was a moment in time t2 at
which transaction T1 performs a successful validation, and

if t3 > t2 > t1, then T1 does not need to validate its state at
the moment t3 when it opens the object O.

Proof. If there are more than one successful validations
performed by T1 between moments t1 and t3, we will assume
without a loss of generality that t2 is the moment when that
happens for the first time. Let t4 be the moment in time
when T1 opens the object O for the first time. There are
three possible scenarios:

• t4 < t1: the ACQUIRE action performed by T2 will
fail, since it will attempt to obtain ownership of O,
which is already open by T1 for reading. The condi-
tions that the lemma requires are not met.

• t1 < t4 < t2: if T2 hasn’t committed yet, then the
OPEN action by T1 in the moment t4 will fail, since it
will attempt to open an object that has been locked by
T2. If T2 has committed at a moment t5, then t5 < t4 <
t2 and validation at t2 by T1 will include O and ensure
that all subsequent reads of O (including the one at
t3) is consistent with the state of the transaction.

• t3 ≤ t4 < t2: let t5 be the time that T2 commits. If
t5 > t4 then the OPEN at t4 will fail. If t4 > t5 > t2
then the success of the validation at t2 guarantees that
T1 and T2 do not share any objects at t2, allowing T1

to serialize after T2 and use the object O written by
T2. If t5 < t2 then the validation at t2 ensures that
there are no conflicts between T1 and T2 and that T1

can serialize after T2, which allows T1 to open O for
reading without validation.

Informally, Lemma 1 states that for any two transactions
T1 and T2, if T1 performs a validation after T2 performs the
ACQUIRE command, then after the validation, T1 can open
any objects written by T2 without validation.

At this point, we need to emphasize an important prop-
erty of the timestamp-based validation techniques: every
time a transaction updates its linearization point T.ts to
the current value of the shared global counter TSC, it also
performs a full validation. This happens when the transac-
tion tries to open an object with a timestamp O.ts > T.ts,
and also at the beginning of the transaction. For simplic-
ity in following explanation, we can assume that a call to
V ALIDATE(T) is made at the beginning of each transac-
tion as well, since this call would not do anything because
there are no objects open by the transaction at that time.
Therefore, every update to T.ts is accompanied by a call to
V ALIDATE(T). Also, without loss of generality, we will

331

assume that the update to T.ts and the full validation hap-
pen at the same single point in time tTts, at the end of the
call to V ALIDATE(T).

Theorem 1. Algorithm V1 satisfies the consistency re-
quirement of transactional memory.

Proof. Since V 1 always performs a validation during the
commit phase, we only need to prove that V 1 does not lead
to inconsistency when opening an object.

Without loss of generality, suppose O is the object written
by transaction T1 and read by transaction T2. We prove that
for all possible timestamps written into O, there will not be
an inconsistency in T2. Let tAQ be the time that V1 performs
its ACQUIRE action on line 2.

Since any scenario where O.ts > T2.ts forces a validation
on OPEN(O), we only need to consider cases where O.ts ≤
T2.ts. Let tT2ts be the point in time when the T2.ts gets
updated to its current value. According to Lemma 1, to
prove consistency, it is sufficient to prove that tT2ts > tAQ.

Let t(line X) be the point in time when line X in func-
tion V 1 COMMIT (T) gets executed. There are three pos-
sible places where the timestamp that gets written into O
can be generated: line 8, line 10 and line 12 in function
V 1 COMMIT (T).

• O.ts is generated at line 8: CAS at line 6 was suc-
cessful. To obtain a value from TSC that is greater or
equal to TS computed at line 8, it has to be tT2ts ≥
t(line 6)⇒ tT2ts > tAQ.

• O.ts is generated at line 10: CAS at line 6 failed ⇒
someone else has updated TSC between t(line 4) and
t(line 6). To obtain a value from TSC that is greater
or equal to TSNew, it has to be tT2ts ≥ t(line 4) ⇒
tT2ts > tAQ.

• O.ts is generated at line 12: the comparison at line
5 failed ⇒ someone else has updated TSC between
t(line 4) and t(line 5). To obtain a value from TSC
that is greater or equal to TSC from line 12, it has to
be tT2ts ≥ t(line 4)⇒ tT2ts > tAQ.

Theorem 2. Algorithm V 2 satisfies the consistency re-
quirement of transactional memory.

Proof. The proof that opening an object when O.ts ≤
T.ts without a validation is identical to the proof of Theo-
rem 1, with an exception that the possible places to generate
the timestamp written into O are line 3 and line 7 in function
V 2 COMMIT (T).

• O.ts is generated at line 3: the CAS at line 4 succeeds
⇒ the only way for T2.ts to obtain a value of TSC that
is greater or equal to TS at line 3 is if tT2ts ≥ t(line 4)
⇒ tT2ts > tAQ.

• O.ts is generated at line 7: the only way to exit the
loop at line 4 is if both T.ts = TSC comparison and
CAS instructions succeed. Therefore, TSC is incre-
mented every time an update transaction commits ⇒
every update transaction has its own unique times-
tamp written to the objects it updates. Since O.ts ≤
T2.ts: at the moment tT2ts, T1 has updated TSC
which means it has finished its while loop ⇒ tT2ts ≥
t(line 8)⇒ tT2ts > tAQ.

Since algorithm V 2 does not always perform a validation
during the commit phase, we also need to prove that it does
not violate consistency when test on line 4 fails immediately
and the body of the while loop never gets executed.

They only way for the while loop at line 4 to exit imme-
diately is if both conditions on line 4 fail ⇒ T1.ts = TSC ⇒
TSC has not changed since tT1ts ⇒ no objects were up-
dated in the whole system since tT1ts. Since T1 has already
performed a validation at tT1ts, no validation is necessary
at time t(line 4).

Theorem 3. Algorithm V 3 satisfies the consistency re-
quirement of transactional memory.

Proof. Since algorithm V 3 always performs a validation
during the commit phase, we only need to prove that it
does not violate consistency when opening an object with a
timestamp O.ts < T.ts. Note that Algorithm V 3 forces a
validation when opening an object even when O.ts = T.ts,
which is not the case with Algorithms V 1 and V 2.

The proof that opening an object when O.ts ≤ T.ts with-
out a validation is identical to the proof of Theorem 1, dif-
fering points being the possible places to generate the times-
tamp written into O are line 4, line 7 and line 9 in function
V 3 COMMIT (T).

• O.ts is generated at line 4: the CAS at line 5 suc-
ceeded. Since T2.ts > T1.ts + 1 ⇒ tT2ts > t(line 5)⇒
tT2ts > tAQ

• O.ts is generated at line 7: the CAS at line 5 failed.
Since T2.ts > TSNew ⇒ tT2ts > t(line 5) ⇒ tT2ts >
tAQ

• O.ts is generated at line 9: since T2.ts > TSC at
t(line 9) ⇒ tT2ts > t(line 9)⇒ tT2ts > tAQ

We also note that testing for equality when opening an
object is necessary. The reason is the assignment at line 9.
It is possible that tT2ts < tAQ and T2.ts = O.ts = TS (at
line 9), which would allow T1 to modify the object O and
commit, and also allow T2 to open the modified O without
validation if the equality was allowed in function V 3 OPEN .
This could lead to a write-read conflict if T2 had already
opened before tT2ts a different object O2 that is also being
written by T1.

Theorem 4. Algorithm TL II counter version satisfies
the consistency requirement of transactional memory.

Proof. Algorithm TL II counter version (the Commit
phase of the Transactional Locking II validation strategy)
is a more conservative version of the algorithm V 1, which
allows the transaction an opportunity to abort when the
CAS operation fails, if it has been invalidated in the mean-
time by some other transaction. The consistency proof is
nearly identical to the proof of Theorem 1.

Theorem 5. Algorithm V 4 satisfies the consistency re-
quirement of transactional memory.

Proof. The proof that opening an object when O.ts ≤
T.ts without a validation is similar to the proof of Theo-
rem 1, with an exception that the possible places to gener-
ate the timestamp written into O are line 6 and line 8 in
function V 4 COMMIT (T).

332

• O.ts is generated at line 6: the CAS at line 6 failed
⇒ TSC has been changed (by some other thread) be-
tween t(line 3) and t(line 6) ⇒ the only way for T2.ts
to obtain a value of TSC that is greater or equal to
TS at line 6 is if tT2ts ≥ t(line 3) ⇒ tT2ts > tAQ.

• O.ts is generated at line 8: the CAS at line 6 was
succesfull ⇒ the only way for T2.ts to obtain a value
of TSC that is greater or equal to TS at line 8 is if
tT2ts ≥ t(line 6) ⇒ tT2ts > tAQ.

Since algorithm V 4 does not always perform a validation
during the commit phase, we also need to prove that it does
not violate consistency when both tests on line 3 and line 7
succeed.

If the test on line 3 was sucessful then the TSC has not
changed since tT1ts ⇒ no objects were updated in the whole
system since tT1ts. Since T1 has already performed a vali-
dation at tT1ts, no validation is necessary at time t(line 3).

If the test on line 7 was sucessful then the CAS was succes-
full as well ⇒ no objects were updated in the whole system
since tT1ts. Since T1 has already performed a validation at
tT1ts, no validation is necessary at time t(line 7).

The correctness proofs for TL II tuple version and LSS
are done in a very similar manner as V 1.

While studying the different sequences of operations in
the commit phase, we have also made an interesting discov-
ery: the most recent implementation of the Global Commit
Counter commit phase as distributed with RSTM does not
guarantee consistency. We can show this with an example
of sequence of events:

Suppose a transaction T1 reads object O1 at time t1 and
writes object O2 at time t2, while a transaction T2 writes
O1 after t1 and reads O2 before t2. These two transactions
clearly conflict and it should not be allowed that both com-
mit successfully.

Suppose that T1.ts before entering commit phase was 3.
Suppose that T1 fails at TRY_COMMIT because the global counter
has been changed to 4 by another transaction unrelated to
T1 and T2. Then, before T2 performs the ACQUIRE, T1 suc-
cessfully validates since T2 has not acquired O1 yet. Then
before T1 commits, T2 updates T2.ts to 4 (when reading some
new object), performs the ACQUIRE operation and using CAS

changes the global counter from 4 to 5 successfully. After
this both T1 and T2 can commit successfully.

In short, if a commit phase for an update transaction at-
tempts to avoid performing the last validation, the update
to the shared counter has to happen before the last valida-
tion. One solution is to move lines 4 through 6 ahead of line
3, making the commit sequence for GCC similar to LSS.

4. EXPERIMENTAL RESULTS
We tested our commit sequence designs using Release 2 of

the Rochester Software Transactional Memory (RSTM) [8],
which offers significant performance gains relative to its pre-
decessor [13]. We evaluated each design alternative with
multiple benchmarks and various numbers of threads.

RSTM is a nonblocking library built to support transac-
tional memory in C++. It features visible and invisible read
support, eager and lazy object acquire support, and deferred
updates. We extend RSTM by adding a timestamp field to
the header of a transactional object, and by adding a candi-

New Data

Visible Reader 1

Visible Reader n

Time Stamp

…

Status Transaction Descriptor

Owner

Old Data

Data Object –

new version
Data Object –

old version

Clean Bit

Candidate
Linearization

Point

Figure 1: Metadata

date linearization point field to the transaction descriptor.
Figure 1 depicts our modifications to the RSTM metadata.

We use the following benchmarks in our experiments: a
sorted linked list (LinkedList), a sorted linked list with hand-
coded early release (LinkedListRelease), a red black tree
(RBTree), an undirected graph (RandomGraph), and a hash
table (HashTable). These benchmarks are part of the RSTM
Release 2 distribution; we have only added a read-only lookup
operation to RandomGraph.

For each benchmark, we evaluated two operation mixes:
a balanced workload with a mix of one-third each of lookup,
insert, and remove operations; and a read-heavy workload
with 80% lookups, 10% inserts, and 10% removes.

The RandomGraph benchmark consists of an adjacency
list based implementation of a graph. Insert operations add
a new node to the graph and connect randomly chosen neigh-
bors to it; delete operations remove a single node from the
graph. Transactions in RandomGraph exhibit a high prob-
ability of conflicting with one another.

HashTable implements a 256-bucket table that uses over-
flow chains. The red black tree and linked list benchmarks
contains sets of integer values in the range of 0 to 255.
LinkedListRelease uses early release to reduce contention
for early list nodes.

4.1 Test Methodology
Our test platform is a SunFire 6800 server with 16 Ul-

traSPARC III processors running at 1.2 GHz. We ran each
benchmark with various numbers of threads and (where ap-
plicable) operation mix ratios, using the standard RSTM
2.0 test driver. We tested with invisible reads, lazy object
acquisition, and the Polka contention manager. We report
results averaged across three five-second runs; spot checking
confirms that using longer test runs does not noticeably al-
ter the results. Due to space limitations, we only list part of
our experiment results here (Figure 2). Remaining results
are reported in the extended version of this paper [14].

4.2 Discussion
Transactions in the LinkedList benchmark spend a large
percentage of their execution time in validation, as the lookup,
insert and remove functions all must traverse the list from
the beginning to validate past reads and lazy writes. In
LinkedList, versions 1, 2, 4, TL II counter, and LSS achieve

333

LinkedList, 80%/10%/10%

100000

200000

300000

400000

500000

600000

700000

2 4 6 8 12 16

Number of Threads

Tx
/S

ec

RBTree, 80%/10%/10%

500000

1000000

1500000

2000000

2500000

3000000

2 4 6 8 12 16

Number of Threads

Tx
/S

ec

RandomGraph, 80%/10%/10%

40000

50000

60000

70000

80000

90000

100000

110000

2 4 6 8 12 16

Number of Threads

Tx
/S

ec

HashTable, 33%/33%/33%

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

2 4 6 8 12 16

Number of Threads

Tx
/S

ec

10000

0

1E+06

2 12

Tx
/S

ec

v1 v2 v3 v4 TL II Tuple LSS TL II Counter

Figure 2: Achieved throughput: LinkedList, RBTree, RandomGraph, and HashTable

better performance then version 3 and TL II tuple. We
attribute the poor performance of version 3 to its need to
validate when opening an object with a timestamp match-
ing the transaction’s current candidate linearization point;
these extra validations are not needed in versions 1, 2, 4, TL
II counter version and LSS. TL II tuple version performs val-
idations for objects with the same timestamps but different
thread IDs; the extra validations manifest in the results as
decreased throughput. The biggest performance difference
we observe in LinkedList is 33% between V3 and V4 at 16
threads in the read heavy workload.
HashTable features a very large degree of parallelism, since
transactions are usually short and disjoint. Transactions
typically access only a small constant number of objects;
hence validation is inexpensive, especially compared with
benchmarks such as LinkedList. This leads to better per-
formance from commit sequences that do not serialize all
updates and that minimize runtime overhead.

We observe a difference of about 16% between TL II tuple
version and TL II counter version at 16 threads in the bal-
anced workload. We atrtibute the large performance drop
from TL II counter version to its serialization of transactions
when updating the counter. Designs that reduce contention
on the shared counter by allowing shared timestamps result

in an improvement; the value of storing a thread ID stored
with each object in TL II is clearly visible. Also allow-
ing shared timestamps, version 3 nearly matches the perfor-
mance of TL II; yet it does not incur the same space over-
head from adding IDs to objects. Similarly, version 1 also
uses non-unique timestamps. Version 2 and LSS update the
time counter with every update transaction, a performance
bottleneck at higher levels of concurrency.
LinkedListRelease uses early release to trim the working
set size of transactions; the cost of validation reflects this
smaller number of objects. This reduces the inherent cost
of validation operations which in turn means that designs
that attempt to eliminate a final validation in the commit
sequence see little payoff. Further, the overall length of
transactions is long enough that contention on the shared
timestamp counter is very limited, even at high levels of
concurrency. For these reasons, all designs give similar per-
formance on this benchmark.
The tree structure of RBTree enables greater parallelism
among transactions when they modify disjoint subtrees. Since
the tree’s red-black properties limit its maximum leaf depth
to a logarithmic factor of the number of nodes, transactions
are very short. We observe some performance loss at 16
threads with versions 3 and TL II tuple, due to their need

334

for an additional validation when initially opening an object.
RandomGraph’s behavior is similar to LinkedList: Its op-
erations involve linear searches over adjacency lists in the
graph data structure; hence, validation contributes a large
part of its overhead. Further, its transactions have a high
probability of conflict, and taking the time to perform a
validation increase a window of opportunity in which an-
other transaction can discover conflict with one that is in
the process of committing and abort it. So designs that
seek to eliminate the final validation are particularly benefi-
cial here. We observe around a 15% difference in throughput
across levels of concurrency.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an in-depth analysis of

the Commit phase in timestamp-based Software Transac-
tional Memory implementations. We have shown that forc-
ing the increment of the global shared counter in the commit
phase may force unnecessary extra validation in some cases.
We have also shown that performing the final validation for
write transactions may be unnecessary in some cases.

We have presented several variants of the commit sequence
that either avoid forced updates to the shared global counter
(and thereby reduce contention on it), or avoid performing
validation in cases when it is safe to do so, or both. We
have shown that all the proposed variants of the commit
phase preserve an important property of the STM systems:
a transaction must never observe an inconsistent state of the
shared memory. We have also shown that the most current
implementation of the Global Commit Counter validation
strategy has an invalid commit phase sequence that poten-
tially allows transactions to observe an inconsistent state of
the shared memory, and have proposed a different commit
phase sequence that preserves consistency.

We have evaluated the proposed commit sequence variants
on a set of transactional memory benchmarks, and shown
variations that result in up to a 33% difference in overall
system throughput.

As future research, we plan to explore a run-time tun-
ing strategy that chooses an appropriate commit sequence
variant based on the overall system performance, current
workload characteristics, and the contention levels.

6. ACKNOWLEDGMENTS
This work has been supported by Microsoft fund R62710-

792. We thank Sun Microsystems for donating to the Uni-
versity of Rochester the SunFire 6800 machine used for ex-
periments in this paper. We also thank the Rochester Syn-
chronization Group for helping us with the source code for
their RSTM 2 system.

7. REFERENCES
[1] D. Dice, O. Shalev, and N. Shavit. Transactional

locking ii. In Proceedings of the 20th International
Symposium on Distributed Computing, DISC 2006.
Springer, Sep 2006.

[2] K. Fraser. Practical lock freedom. PhD thesis,
Cambridge University Computer Laboratory, 2003.
Also available as Technical Report
UCAM-CL-TR-579.

[3] R. Guerraoui, M. Herlihy, and B. Pochon.
Polymorphic contention management. In DISC ’05:

Proceedings of the nineteenth International Symposium
on Distributed Computing, pages 303–323. LNCS,
Springer, Sep 2005.

[4] T. Harris and K. Fraser. Language support for
lightweight transactions. In OOPSLA ’03: Proceedings
of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and
applications, pages 388–402, New York, NY, USA,
2003. ACM Press.

[5] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi.
Optimizing memory transactions. SIGPLAN Not.,
41(6):14–25, 2006.

[6] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software transactional memory for
dynamic-sized data structures. In PODC ’03:
Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92–101,
New York, NY, USA, 2003. ACM Press.

[7] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
ISCA ’93: Proceedings of the 20th annual international
symposium on Computer architecture, pages 289–300,
New York, NY, USA, 1993. ACM Press.

[8] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer III, and M. L. Scott.
Lowering the overhead of nonblocking software
transactional memory. In TRANSACT 06’:
Proceedings of the Workshop on Languages,
Compilers, and Hardware Support for Transactional
Computing, 2006.

[9] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot
algorithm with eager validation. In Proceedings of the
20th International Symposium on Distributed
Computing, DISC 2006, volume 4167 of Lecture Notes
in Computer Science, pages 284–298. Springer, Sep
2006.

[10] T. Riegel, C. Fetzer, and P. Felber. Time-based
transactional memory with scalable time bases. In
SPAA ’07: Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and architectures,
pages 221–228, New York, NY, USA, 2007. ACM.

[11] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg. Mcrt-stm: a high
performance software transactional memory system
for a multi-core runtime. In PPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
187–197, New York, NY, USA, 2006. ACM Press.

[12] N. Shavit and D. Touitou. Software transactional
memory. In PODC ’95: Proceedings of the fourteenth
annual ACM symposium on Principles of distributed
computing, pages 204–213, New York, NY, USA, 1995.
ACM Press.

[13] M. F. Spear, V. J. Marathe, W. N. Scherer III, and
M. L. Scott. Conflict detection and validation
strategies for software transactional memory. In
DISC06: 20th Intl. Symp. on Distributed Computing,
2006.

[14] R. Zhang, Z. Budimlić, and W. N. Scherer III.
Commit phase variations in timestamp-based software
transactional memory. Technical Report TR08-03,
Rice University, February 2008.

335

