
Composability for Application-specific

Transactional Optimizations

Rui Zhang, Zoran Budimlić, William N. Scherer III
Department of Computer Science, Rice University

Software Transactional Memory (STM) has made great ad-
vances towards acceptance into mainstream programming by
promising a programming model that significantly reduces the
complexity of writing concurrent programs. Unfortunately, the
mechanisms in current STM implementations that enforce the fun-
damental properties of transactions — atomicity, consistency, and
isolation — also introduce considerable performance overhead.
This performance impact can be so significant that in practice,
programmers are tempted to leverage their knowledge of a spe-
cific application to carefully bypass STM calls and instead access
shared memory directly. While this technique can be very effective
in improving performance, it breaks the consistency and isolation
properties of transactions, which have to be handled manually by
the programmer for a specific application. It also breaks another
desirable property of transactions: composability.

In this paper, we identify the composability problem and pro-
pose two STM system extensions to provide transaction compos-
ability in the presence of direct shared memory reads by transac-
tions. TxFastRead gives the programmer the performance of a di-
rect memory access to the shared memory data when used from
a non-nested transaction, while performing necessary bookkeeping
to guarantee composability when used from a nested transaction.
TxFlush ensures consistency between nested transactions that use
TxFastRead and can be inserted by the programmer or automat-
ically by the compiler. These extensions give the programmer a
similar level of flexibility and performance when optimizing the
STM application as existing practices, while preserving compos-
ability. We propose two implementation schemes for these exten-
sions: Lookup Scheme and Partial Commit Scheme. We evaluate
our implementation of these extensions on several benchmarks on
a 16-way SMP. The results show that our extensions provide per-
formance competitive with hand-optimized non-composable tech-
niques, while still maintaining transactional composability.

1. Introduction

One problem Transactional Memory faces is its performance over-
head. The overhead can be sufficiently large to compel program-
mers to carefully bypass certain TM calls based on application-
specific knowledge. Such an optimization usually breaks isolation
and consistency [10], two key properties of transactions, forcing
the programmer to encode consistency checking into the applica-
tion by hand. However, this type of optimization can also break
composability, another desirable property of transactions; nesting
transactions optimized in such a way can lead to incorrect results.
In this paper we identify a composability problem associated with
optimizing Software Transactional Memory (STM) [4, 5, 6, 7, 9,
12, 16] application performance using application-specific knowl-
edge. We also propose an extension to STM systems that addresses
this problem. Our proposed extension offers comparable flexibility
in optimizing STM performance while maintaining the compos-
ability.

1.1 Optimization vs. Composability

In the course of optimizing STM applications through reading the
shared data directly, programmers can rely on the STM system for
atomicity guarantees, but rely on themselves for consistency and
isolation guarantees. We note that atomicity is guaranteed provided
that user-level code only reads directly from the shared data and
write access to shared data is performed via transactional interfaces.
Guaranteeing atomicity for user-level direct write updates would
require mechanisms such as user-level clean up procedures, which
is beyond the scope of this work.

There is a lurking composability problem associated with the
existing practice of optimizing transactions by performing direct
reads to shared memory (which we explain in Section 3). When
a transaction is optimized based on application-specific informa-
tion this way, it can no longer be safely composed to write larger
transactions. In order to compose these optimized transactions, a
developer would need to both understand the implementation de-
tails of the optimized transaction and reason about the correctness.
This is very unfriendly to a software developer.

To meet the need of further optimizing STM applications perfor-
mance, we propose STM system extensions to enable programmers
to perform such optimizations. These extensions provide compos-
ability support and thus allow optimized transactions to be com-
posed into larger ones.

We illustrate the composability problem itself in section 3. In
section 4 we show our proposed interface extensions. We show the
experimental results in section 5, discuss the results and conclude
in sections 6 and 7 respectively.

2. Related Work

In order to improve STM performance, researchers have explored
different STM designs, careful performance tuning of the system,
and different validation techniques. These efforts focus on pure sys-
tem performance, allowing the programmer to write transactions
following strict specifications. There are also other types of work
that consider approaches to performance improvement through re-
laxing some of the transactional properties and extending the tools
programmers can use to encode program-specific knowledge in
their applications. These techniques sacrifice some programmabil-
ity for better performance. Since they are not strictly conforming
to TM requirements, programmers need to spend more time and
effort on reasoning about correctness of their applications. These
techniques include early release [9], open nesting [13, 14, 15], and
reduced-overhead shared memory access [2].

Early release was first proposed by Herlihy et al. [9] to reduce
contention in the DSTM system. It allows a transaction to release
reads before the transaction commits. A transactional read, once
released, does not conflict with other concurrent transactions or in-
cur validation overhead. This reduces the probability of aborting
the transaction and improves overall performance. Early release re-
quires more programming effort because it lays the burden of ensur-
ing there are no conflicts on the programmer. Besides the program-
ming effort, transactions using early release are not composable, so
this technique affects program modularity as well. For example, a



transaction A verifies if a node exists in a sorted linked list. It can go

through the list and early release every node it opens. Thus, when

transaction A finishes, all reads are already released. If the informa-

tion gathered in transaction A is used in a later nested transaction

B, the later transaction can no longer validate if the condition is still

true because all relevant nodes have been released.

Open nesting [13, 14, 15] exploits a higher semantic level of

concurrency than is defined at the physical memory access layer

where TM systems usually reside. It allows transactions to commit

even in the presence of a physical conflict not affecting the applica-

tion’s semantics. The system usually needs to support virtual con-

structs (not necessarily locks) that can be mapped to the semantic

level where the significant conflicts actually happen. A TM sys-

tem supporting open nesting works with these high level constructs

rather than raw memory access. For example, nested transactions

are commonly used with resource allocation, where it does not mat-

ter which instance of a resource goes to a transaction. In the case

of physical memory, all that matters is that different transactions

allocate disjoint blocks; two transactions that both allocate mem-

ory transactionally need not conflict. Open nesting requires deep

understanding of the application’s semantics and is more difficult

than a pure transactional approach. Also, as pointed out by Ni et

al. [15], open nesting can potentially create deadlock when nested

and is therefore not composable.

SNAP is a low overhead interface for shared memory access [2].

It provides functions to get, validate, and upgrade the snapshot of

an object. SNAP reads, unlike regular transactional reads, do not

involve bookkeeping of any information. Instead, the read returns

a snapshot of the object. SNAP validation can verify if a snapshot

held by the program is still valid. The programmer can also upgrade

a read snapshot to a write snapshot when needed. Memory accesses

in SNAP mode are neither bookkept nor validated; rather, the pro-

grammer manages correctness at the application level. It gives the

programmer the flexibility to optimize some memory accesses. The

programmer explicitly manages the way a memory location is ac-

cessed and the switch between transactional and non-transactional

modes. SNAP access mode is not composable as well.

3. Composability Problem
In this section, we identify a composability problem in the practice

of partially bypassing TM consistency mechanisms. This practice

leverages application-specific knowledge in order to recover perfor-

mance lost due to STM conservativeness. In particular, a program-

mer may choose not to use the general TM validation techniques,

but to instead read directly from shared memory and to manually

maintain data needed to ensure correctness. The programmer can

still freely rely on the TM for other guarantees such as atomicity

and consistency of the transactional reads and writes.

3.1 Definitions
Following the normal convention, we say that a transaction has a

particular semantics that it is supposed to provide, and that it is

correct if it provides these semantics under all concurrent execution

scenarios. We further say that a transaction is pure if it contains no

accesses to shared memory – reads or writes – unless those accesses

are performed via the transactional interface. In particular, a direct

read or write of memory causes a transaction to be impure. While

the purity of a transaction is independent of its correctness, sub-

stantial application-specific knowledge must be employed by the

programmer in order to ensure correctness of impure transactions.

We say that a transaction is composable if it provides the same

semantics when nested inside another transaction as it does when

executed as a standalone transaction, regardless of the concurrent

execution environment. We claim without proof that every pure

transaction is also composable; however, the next subsection details

atomic {
copy global_matrix to local_matrix;
try to find a route in local_matrix;
if a route is found

add the route to global_matrix
}

Figure 1. Labyrinth Transaction Pseudocode

several examples where impure transactions are not composable.

(In fact, we show that they can give incorrect results when nested

in certain contexts.)

In Section 4, we take a first step towards remedying these com-

posability problems by introducing an extension to transactional

memory that supports direct read access to memory. This exten-

sion consists of a fast wrapper for direct reads and a flush method

that performs special processing on memory locations that have

been read directly. Our core claim is that proper application of

our TM extension converts transactions that are impure because of

direct reads into reusable, composable transactions. Due to space

constraints, we omit proof of this claim, which may be found in

Zhang’s doctoral thesis [17].

3.2 Motivating Examples
One example that shows a composability problem comes from

the Labyrinth application in the STAMP [1] benchmark suite. It

uses Lee’s algorithm [11] to find routes for a set of sources and

destinations in a three-dimensional matrix modeled after circuit

board routing. For each source-destination pair, the routing pro-

cess expands a neighbor frontier until the destination is found, then

rewinds back to the source for a feasible route. The TM implemen-

tation conducts computation in the shared matrix, generating many

transactional reads along the search from source to destination.

These reads have a high probability of conflicting with transac-

tional writes, greatly decreasing performance. In order to improve

performance, the benchmark is implemented such that the matrix

is first copied to a local array through non-transactional reads, and

then all subsequent computation is done on the local array. The im-

plementation employs a custom consistency checking algorithm,

which is used to write back found routes to shared memory. The

custom consistency check only needs to verify nodes on the route;

hence it obtains reduced contention and better performance.

Figure 1 sketches the algorithm used in Labyrinth. In the begin-

ning of the transaction, a local matrix is created by copying from

the global matrix. The read from the global matrix is a direct mem-

ory read without using TM interface. When a route is written back

to the shared memory, the program only writes it back if all cells

on the route have not been changed in the meantime. Checking

whether cells have been changed is done by the programmer.

This transaction is well formed to run concurrently with other

transactions even though it reads from the global matrix non-

transactionally. The transaction is atomic, consistent, and isolated

within the application’s context because the programmer carefully

manages the consistency issues. But the composability problem

arises when several of these transactions are merged into a larger

one. For example, if the user wants to route two source-destination

pairs in a single transaction, he cannot use a nested transaction. The

problem is that in a delayed update TM model, the updates of the

first transaction are delayed until the top level transaction commits,

making the read of the array in the second transaction get a stale

value, leading to incorrect results.

Let us look at a simple linked list example to illustrate the

composability problem more clearly. Lists are frequently used in

transactional applications. For example, both Genome and Intruder

benchmarks from the STAMP suite [1] use a linked list and it is



atomic insert(List* list_ptr, int key) {

Node* prev = TM_READ(list_ptr->head);

Node* curr = TM_READ(prev->next);

while(TM_READ(curr->key) < key) {

prev = curr;

curr = TM_READ(curr->next);

}

if (TM_READ(curr->key) != key) {

Node* newN = TM_MALLOC(sizeof(Node));

newN->next = curr;

newN->key = key;

TM_WRITE(prev->next, newN);

}

}

Figure 2. Insert - Pure TM version

reasonable to expect that a programmer might want to optimize list

transactions in ways similar to that explained above. Unfortunately,

list transactions are very often called within nested transactions.

User optimizations would very likely break the composability of

the transactions, making the code with nested transactions incor-

rect. This is exactly where the composability support described in

this paper can help the programmer.

Imagine a set data structure based on a sorted linked list that

supports three operations: insert, remove, and lookup, where the

insert transaction iterates through the list to find an insertion point

then adds the node. A very straightforward approach, illustrated by

the pseudocode in figure 2, would be to use pure transactions and

open every shared object transactionally.

While this is a straightforward way of creating such transac-

tions, this approach does not scale with multiple threads. Nodes

read prior to the insertion point will incur many conflicts with other

transactions, yet most of these conflicts can be shown to be be-

nign. Knowing this, one way to improve performance is to use a

technique similar to the lazy concurrent list-based set algorithm of

Heller et al. [8]. In the optimized version shown in figure 3, the

code searching for the location to insert the node reads the interme-

diate nodes directly (without going through the TM system calls).

The correctness of this approach is ensured by validating that the

two nodes neighboring the insertion point did not change during

the insertion by using an additional field, marked, in each node that

indicates whether a node has been removed or not. The optimized

algorithm relies on the TM system to make sure the neighboring

two nodes are consistently opened. Correctness is ensured via ad-

ditional consistency checks after the neighboring nodes have been

opened transactionally.

As we will illustrate later in Section 5, the differences in overall

application performance between accessing data directly and ac-

cessing via the TM interface can be very significant, suggesting

that the optimized version is the way to go. Unfortunately, the in-

sert transaction with direct memory access is not composable, as

illustrated by the following examples of nested transactions:

atomic { insert(x); insert(y);}.

atomic { if (lookup(value) == FALSE) insert(value);} .

In a pure TM implementation, both examples will work as ex-

pected. However, neither nested transaction works correctly when

the optimized versions of insert and lookup are used. There are two

reasons that make the optimized version uncomposable.

3.3 Lurking Composability Problems
The first problem arises in delayed-update STM systems [9, 12]. In

a delayed-update STM system, transactional writes are first made

to a cached copy rather than to the shared variable. The cached

copy is only visible to other threads after the transaction commits.

In a nested transaction, transactional writes in the first insert are

not committed until the entire nested transaction commits. So the

atomic insert_optimized(List* ptr, int key) {

Node* prev = ptr->head;

Node* curr = prev->next;

while(curr->key < key) {

prev = curr;

curr = curr->next;

}

bool p_m = (bool_t)TM_READ(prev->marked);

bool c_m = (bool_t)TM_READ(curr->marked);

Node* next = TM_READ(prev->next);

if (!p_m && !c_m && next == curr) {

if (TM_READ(curr->key) != key) {

Node* newN = (Node*)TM_MALLOC(sizeof(Node));

new_N->next = curr;

newN->marked = FALSE;

newN->key = key;

TM_WRITE(prev->next, newN);

}

} else

TM_RESTART();

}

Figure 3. Insert - Uncomposable version

B

A

local_a = global_a

local_a++

TM_WRITE(global_a, local_a)

A

local_a = global_a

local_a++

TM_WRITE(global_a, local_a)

global_a: 0

local_a: 0 global_a: 0

local_a: 1 global_a: 0

local_a: 1 global_a: 0

local_a: 0 global_a: 0

local_a: 1 global_a: 0

local_a: 1 global_a: 0

global_a is 
not 1 

because B 
has not 

committed

global_a: 1

local_a is 
a stale 
value

wrong!

Transaction Memory state

Figure 4. Hidden update illustration

direct reads in the second insert read stale values of the transac-

tional writes in the first insert. Consequently the computation of

the nested transaction is no longer consistent. By comparison, in

a pure TM version, all reads from the shared memory are transac-

tional. Transactional reads respect the read-after-write dependences

across transactions and therefore do not incur this problem. We call

this problem the hidden update problem, and it is tied to the im-

plementation choice to use delayed updates within the STM. The

hidden update problem does not occur in STM systems that use

eager updates that immediately update transactional writes.

The hidden update problem can be seen more clearly in the

following, even simpler example in figure 4. Transaction A reads

the shared global a variable and saves it to a local copy local a
through a direct memory read. It then increments local a and writes

the new value to global a using a transactional write. Note that the

read of global a is nontransactional and therefore does not suffer

the associated performance overhead. Let us also assume that the

application’s semantics allow transaction A to be implemented this

way without interfering with other transactions in the application.

The hidden update problem arises when we nest two calls to

transaction A in a nested transaction B. Suppose global a is ini-

tialized to 0. The expected value of global a is 2 after executing



transaction B. But the second A’s read of global a reads the stale

value 0; the final result of transaction B will be 1.

The second problem is a consistency issue. Direct reads do not

force bookkeeping of any information in the transactional system.

Therefore later transactions are not able to validate the consistency

of previous optimized nested transactions. For example, consider

the example above of a transaction that is composed of one lookup

and one insert transaction. This transaction inserts node x only

when lookup(x) indicates x is not already in the list. Note that direct

reads in lookup(x) are not recorded in the transaction, hence cannot

be validated later in insert(x). insert(x) is dependent on the validity

of the condition of lookup(x), so if another concurrent transaction

inserts x into the list after lookup(x) but before insert(x), the re-

sulting list will have a duplicate element. The nested transaction

is not able to discover this inconsistency. A pure TM implementa-

tion does not have this problem since all necessary information is

recorded for all transactional reads and later nested transactions are

able to validate the consistency of previous transactions.

To summarize, optimizations that bypass TM system calls and

access shared memory directly break transactional composability

because read-after-write and write-after-read dependences might

not be respected properly when such transactions are nested.

Even though the read-after-write problem only occurs in the

STM systems with delayed writes, we address composability for

such systems as well: delayed writes are frequently used in existing

STM systems because they have the advantages of smaller conflict

windows and greater potential concurrency.

4. Fast Read Interface Extension
To meet both the need of optimizing the performance of STM

applications using application-specific knowledge and of provid-

ing composability for optimized transactions so they can be more

widely reused, we propose to extend the transactional memory pro-

gramming interface with two additional operations. We introduce

these two operations and their semantics next. We designed these

extensions to maximize the extent to which programmers can ben-

efit from optimizations embedded in the optimized transaction.

TxFastRead encapsulates a fast read operation from shared

memory. TxFastRead provides comparable performance com-

pared to a raw read of a shared memory location. TxFastRead
alone does not completely guarantee the consistency of fast reads;

rather, it must work together with our TxF lush extension oper-

ation. TxFastRead should be used at every place where a di-

rect shared read would have been used in an optimized transaction.

TxFastRead does not employ the same heavyweight bookkeep-

ing as does a regular transactional read, but adapts to execution

context instead. It incurs no performance penalty in non-nested

contexts, yet provides composability when nested. Full details of

this operation may be found later in this section.

TxFlush is the counterpart operation for TxFastRead. First,

it ensures that read-after-write dependencies are respected. Sec-

ond, it provides the necessary operations to guarantee consistency.

TxF lush should be placed at places where these properties might

be broken; typically, this is immediately before and after an opti-

mized sub-transaction.

4.1 Composability Mechanisms
We experimented with two mechanisms for ensuring composabil-

ity, lookup scheme and partial commit scheme. With both, fast

path TxFastRead returns the shared value with no additional

bookkeeping or validation. On the slow path, TxFastRead does

perform some bookkeeping and validation. We carefully designed

these two schemes so that the optimizations applied by the pro-

grammer can be preserved as much as possible. Within the opti-

mized transaction, even when it is in a nested transaction, the TM

TxFastRead(addr) {
if not nested

return *addr;
else if addr is in write set

return value in write set;
else if validate succeeds

record in fast read set;
return *addr;

else
abort;

}

Figure 5. Fast Read in Lookup Scheme

TxFlush() {
merge fast read set to read set;
clear fast read set;

}

Figure 6. Flush in Lookup Scheme

system validation does not validate the fast reads. These fast reads

are only validated when they are merged into the transactional read

set. Therefore we expect fewer conflicts in the optimized transac-

tions even when used as nested transactions.

Lookup Scheme: This approach solves read-after-write depen-

dences by recording the transaction reads in a fast read set. Transac-

tional writes are committed only when the entire nested transaction

commits. TxF lush does not commit any writes. TxFastRead
either looks up the address from within the write list or reads di-

rectly from shared memory. In the context of a nested transaction,

TxFastRead first searches the write list. If the address is not

found in the write set, then the transactional read set needs to be

validated (note that the fast read set is not validated here). In a non-

nested context, the read is performed directly from shared memory.

Figure 5 shows pseudocode for TxFastRead in this scheme.

In lookup scheme, TxF lush merges the fast read set to the

read set. Following nested transactions validate the consistency of

the enclosing transaction by validating only the read set. Figure 6

shows pseudocode for TxF lush.

Partial Commit Scheme: Our partial commit scheme (PCM)

solves the read-after-write dependencies by eagerly updating shared

memory when a nested transaction commits. It solves the inconsis-

tent read problem by recording fast reads.

If the transaction is not nested the shared value is returned

directly. Otherwise, fast-read operations first check if the location

to be read is locked, and if that is the case the transaction either

aborts or waits for a while; otherwise, the fast read returns the

shared data after performing validation. In the PCM scheme, the

read does not search the write set, which can be useful when the

write set is large. Note that the fast read is nontransactional; it

provides no mechanism to guarantee consistency with other reads.

The flush operation performs a partial commit that commits all

pending writes to shared memory and locks them. It also merges

the fast read set to the transactional read set. The nested transactions

also needs to save necessary information to clean up the committed

writes if the entire transaction fails. Figure 7 shows pseudocode for

TxFastRead in this scheme.

In PCM, TxF lush not only merges fast read set into the read

set, but it also commits the write set to shared memory. The trans-

action holds locks for the committed writes, so accesses from other

threads will detect a conflict and abort. Figure 8 shows the pseudo

code for TxF lush operation in the partial commit scheme.

Both schemes have their advantages and drawbacks. On the fast

path (when the transaction is not nested), both schemes perform



TxFastRead(addr) {
if not nested

return *addr;
else if addr is not locked and validation succeeds

record in fast read set;
return *addr;

else
clean up partial commits;
abort;

}

Figure 7. Fast Read in PCM Scheme

TxFlush() {
merge fast read set with read set;
clear fast read set;
commit current transactional writes;

}

Figure 8. Flush in PCM Scheme

similarly, since they directly read the shared memory. The differ-
ence is in their slow path. The lookup needs to search the write set
for every fast read so it suffers an associated performance penalty.
The PCM scheme does not search the write set and therefore can
be faster here especially when the write set is large. The lookup
scheme locks transactional writes only when the enclosing trans-
action commits, so it holds the locks for a shorter period of time,
reducing contention over the locks. The PCM scheme commits the
transactional writes when each nested transaction commits, so it
holds the locks of early transactions for a longer time, which can
lead to a higher contention on the locks.

The main goal of our techniques is to provide the programmer
with a choice to optimize transaction performance while still pre-
serving composability. Our extensions do not create an alternative
to STM, but rather provide optimization hooks for the programmers
that have the will and expertise to bypass the STM interface. Those
who do not use our interface suffer neither performance penalties
nor any change in STM semantics.

4.2 Composability vs. Reuse
We would like to point out here that the techniques we have de-
scribed in this paper do not guarantee full reuse of the transactions,
only composability. Composability is only a part of the reuse, even
though a very important one. While this can be seen as a limitation
of our approach, we want to point out that hand-optimized trans-
action code that bypasses the TM interface also cannot be reused
in general, within a nested transaction or otherwise. Therefore our
original claim that we provide composability for optimized code
that bypasses the pure TM interface still stands.

To illustrate the reuse issue, let us consider the sorted linked
list described earlier. It supports three transactions: lookup, insert,
and remove. Suppose the programmer wants to add a new incre-
ment transaction that increments a value of a node by 1 (swapping
it with the next node if necessary). Even if this new transaction is
implemented using the pure TM interface without any optimiza-
tions, it will still break the existing hand-optimized code: adding
a transaction that changes a node’s value breaks the original as-
sumption that only insert, remove, and lookup can be performed on
the list, which made the optimization possible. This is true even if
the programmer has used our extended TM interface to implement
the optimizations. The programmer would have to revisit the as-
sumptions made about the whole application and re-implement the
optimized transactions with the new increment transaction in mind.

However, we also note that our TM interface extension does
allow for the increment transaction to be implemented by simply

making it a composition of a remove and an insert transaction. No
changes to the existing code would be necessary.

Our extension still enables a significant amount of reuse, with a
restriction that the new code does not contain transactional writes.
If the added transactions only perform transactional reads and/or
call the existing transactions, everything will perform as expected.
Otherwise, a programmer will have to revisit the assumptions about
the whole application and re-implement the optimized transactions.

5. Experimental Results
We conducted our experiments on six benchmarks: Labyrinth,
Genome, Intruder, Vote, Set, and Nested Set. The experiments are
performed on a 16-core SMP machine with four quad-core Intel
Xeon CPU E7330 running at 2.40GHz. Three of the benchmarks
in our experiments - Labyrinth, Genome, and Intruder - are from
the STAMP [1] benchmark suite. The other three were developed
previously by the authors [18].

We have (where applicable) four versions of each benchmark —
pure TM, uncomposable, lookup scheme, partial commit scheme.
We refer to the version that strictly follow TM requirements as
the pure TM version. In the pure TM version, every read from
or write to the shared memory passes through the TM interface.
The pure TM version enjoys all the benefits from the TM system
and requires the least effort to develop. We refer to the version us-
ing direct shared memory reads as the uncomposable version. The
programmer is responsible for ensuring correctness through imple-
menting isolation and consistency by hand. This version requires
much more programmer effort. The versions that use our proposed
fast read interface include the lookup scheme and partial commit
scheme. In both schemes, the direct accesses in the uncomposable
version were replaced with the calls to the fast read interface. Sim-
ilar to the uncomposable version, the programmer needs to guar-
antee the correctness. But transactions using our fast read interface
can still be composed into larger transactions.

We implemented our extension on top of TL II [3]. All of the
experiments are performed using the lazy acquire mode in TL II.

Labyrinth is a maze routing application described in Section 3,
operating on a 512*512*7 3D matrix. The runtime parameters used
in our experiments for Labyrinth were “-i inputs/random-x512-
y512-z7-n512.txt”. Genome is a gene sequencing program. It takes
a number of DNA segments and matches them to reconstruct the
original genome. In phase one of the benchmark, all segments are
put into a hash set (implemented as a set of unique buckets, each
of which is implemented as a linked list) to remove segment du-
plicates. We created different versions of Genome by modifying
the list data structure. The runtime parameters used in our experi-
ments for Genome were “-g16384 -s64 -n16777216”. Intruder is
a signature-based network intrusion detection application. It scans
network packets for matches against a known set of intrusion sig-
natures. The main data structure in the capture phase is a simple
non-transactional FIFO queue. Its reassembly phase uses a dictio-
nary (implemented by a self-balancing tree) that contains lists of
packets that belong to the same session. We modified the list data
structure used in the dictionary to create different versions of In-
truder. The runtime parameters used in our experiments for Intruder
were “-a10 -l512 -n262144 -s1”. Vote simulates a voting process
that supports three transactions — vote, count and modify. The
underlying data structure is a binary search tree. The vote(ssn,
candidate) transaction casts a vote for a candidate on behalf of
the voter, and is composed of verify(ssn) transaction (verifies if
a voter has voted) and the cast vote(ssn, candidate) transac-
tion (casts the actual vote if this voter has not voted yet). Since vote
is a nested transaction, there is no correct uncomposable version.
There are 65,536 possible unique voters. The mix of operations of
count, vote and modify is 10%, 80%, and 10%. Set implements



a set using a sorted linked list. It supports three operations and
each is implemented as a transaction - insert, remove and lookup.
Insert(key) inserts a key to the set. Remove(key) removes a key
from the set. Lookup(key) searches for the key in the set. There
are 512 unique keys in the set. The operation mix of insert, remove
and lookup is 10%, 10% and 80%. Nested Set is a nested version of
Set. It has three nested transactions, nested insert, nested remove,
and nested lookup. Each of the nested transaction has two of the
corresponding single transactions within it. The number of unique
keys and operation mix is the same as in the Set above.

6. Discussion
Figures 9 and 10 show the performance results that we have col-
lected for the six benchmarks that we have tested. Labyrinth and
Set on Figure 9 illustrate the overhead that our extensions introduce
over the direct shared memory access approach (that is also un-
composable). Genome, Vote, Nested Set and Intruder on Figure 10,
which all contain nested transactions, illustrate the performance im-
provement that our extensions provide over a pure TM implementa-
tion. Direct memory access for applications on Figure 10 would re-
sult in incorrect behaviour, therefore there are no “uncomposable”
versions of those benchmarks.

In Labyrinth, Set, Vote, and Genome we observe that using
our fast read interface, the performance improves by a significant
margin over pure TM implementations. We also observe some
minor performance overhead over the direct read version.

Labyrinth shows the largest performance gain, clearly illustrat-
ing that certain types of applications can achieve enormous perfor-
mance benefits through application-specific optimizations. Because
many of the transactional reads in the pure TM version cause an
immense number of conflicts and effectively livelock, the pure TM
version of the Labyrinth version runs so slowly that we were unable
to finish the experiments for cases with more than 4 threads. The
two thread case takes over a day to complete (compared to about
50 seconds for the hand-optimized uncomposable version and the
composable version using our TM interface extension). Thus, we
have omitted the pure TM results for Labyrinth in Figure 9.A.

In Genome, the list operations are either a stand alone transac-
tion or a part of a nested transaction that can be easily shown to be
independent of other list operations. As shown in Figure 10.A, we
observe a performance improvement of 26% in the 4 thread case
using our lookup scheme. Across all thread counts, we observe
a performance improvement ranging from 18% to 26%. The par-
tial commit scheme encounters performance issues for more than
4 threads and the results are clipped in Figure 10.A, because the
locked writes keep forcing other transactions to abort. The reason
is that in the partial commit scheme transactional writes update the
shared memory every time a TxF lush is called. These writes will
hold their locks from the point the TxF lush is called until the en-
tire nested transaction commits. This increases the contention time
compared with the lookup scheme and pure TM version that only
hold the lock in the final commit phase.

For Vote, we observe a performance improvement of up to 150%
over the the pure TM version. There is no uncomposable version of
Vote. The results of lookup and PCM schemes are nearly identical.

For the list-based Set benchmark, Figures 9.B and 10.C show
the results for single and nested transactions. We observe up to
80% performance improvement over the pure TM version with our
lookup scheme, and a 47% overhead over the uncomposable ver-
sion for the single thread case. The overhead is mainly from the ad-
ditional work of maintaining the fast read set and merging it to the
transactional read set. The performance overhead decreases as the
amount of parallelism increases, indicating better scalability. For
nested transactions, the performance improvement is up to 30%.
Though the two nested transactions clearly have no dependencies,

the benchmark is implemented by assuming they might and insert-
ing TxF lush between them. Better performance could be achieved
if the programmer were to take advantage of this knowledge and re-
move the TxF lush call.

The last benchmark, Intruder, shows an on average minimal
performance improvement of a couple percent (Figure 10.B) over
the pure TM version with our lookup scheme, and on average
minimal performance loss of a couple percent over our partial
commit scheme. The list operations in Intruder are only used in
nested transactions and infrequent. Therefore the optimized list
operations performs very similar to their pure TM versions. Note
that an uncomposable version of this benchmark also does not exist.

Following are some of the design choices and issues that arose
while developing the TM interface extension, in no particular order:
Lookup Scheme vs. Partial Commit Scheme: In our experiments,
the lookup scheme outperforms the PCM scheme in most cases.
The larger time window in which we hold locks in the PCM scheme
increases the possibility of a conflict. The PCM scheme does not
require later nested transactions to search the past write set. For
applications with an expensive search process, we expect that the
PCM scheme would achieve better performance.
Non-in-place update STM: We only evaluate an in-place update
TM system in our experiments. For STM systems that do not
use in-place update [12, 9], similar problems will arise when the
programmer wants to read directly the visible copy. We will explore
non-in-place update STM systems in the future.
Fast Read Advantages and Disadvantages: Our fast read extension
addresses the problem that application-specific optimized trans-
actions do not integrate with the STM runtime/library to provide
composability guarantees. Under the hood, the extension provides
the necessary link between the programmer and the consistency
guarantee mechanism integrated in the STM system. Therefore the
places to use the extension are similar to ones where the original
optimizations apply. The major performance incentive of the opti-
mization is to eliminate part of the time-consuming validation work
involved in a pure STM implementation. If an application’s consis-
tency depends on most of its past reads, the work it can save could
become rather limited and might not be worth the effort of devel-
oping an optimized version.
Pure TM version implementation of Labyrinth: We implemented
the pure TM version of Labyrinth by copying the entire matrix to
a local version transactionally, performing routing using the lo-
cal matrix, then writing the found route back to the global ma-
trix. This is very similar to the original algorithm used in the
STAMP Labyrinth benchmark. An alternative approach would per-
form routing in the global matrix directly. However, the algorithm
uses a breadth first search which marks the distance to the source to
find the shortest path from the destination backward to the source,
and then cleans up marks left by the first step. We expect that this
approach would perform badly, due to marking updates in the first
and third steps causing an enormous number of conflicts.
TxFlush Programmer Visibility: For correctness, a TxF lush is
required between every transactional write to a memory location
loc and a subsequent fast read to loc. If TxF lush is exposed to the
programmer, he/she can reason about the dependencies between
nested transactions and only insert TxF lush where strictly nec-
essary. This could increase code complexity and the possibility of
writing erroneous code. Alternatively, one can envision a compiler
that inserts TxF lush before and after every nested transaction that
uses the fast read interface, then analyzes the dependencies between
shared memory accesses and removes the unnecessary TxF lush
calls, further improving the performance of our proposed tech-
niques. In this paper, we have used a straightforward and conserva-
tive approach that inserts TxF lush before and after every nested
transaction that uses the fast read interface.



0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Ex
e 

Ti
m

e 
(s

ec
)

Number of Threads

(A) Labyrinth

uncomposable lookup scheme partial commit scheme

0

2

4

6

8

10

12

14

16

1 2 4 8 16

Ex
e 

Ti
m

e/
1M

 T
xs

 (s
ec

)

Number of Threads

(B) Set

uncomposable lookup scheme partial commit scheme pure TM

Figure 9. Showing execution time for two different benchmarks with different number of threads

0

5

10

15

20

25

30

1 2 4 8 16

(A) Genome

lookup scheme partial commit scheme pure TM

63
2754

300

400

500

600

700

800

900

1 2 4 8 16

(B) Intruder

lookup scheme partial commit scheme tm version

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16

Ti
m

e/
1M

(C) Nested Set

lookup scheme partial commit scheme pure TM

0 

50 

100 

150 

200 

250 

300 

1 2 4 8 16

(D) Vote

lookup scheme partial commit scheme pure TM

Figure 10. Showing execution time for four different benchmarks with different number of threads



7. Conclusions and Future Work
In this paper, we have identified that common programmer prac-
tices in optimizing transactional applications by bypassing TM sys-
tem calls and accessing the shared memory directly, in addition to
breaking consistency and isolation (which have to be handled by
the programmer manually), also break another desirable property
of transactions: composability.

We have proposed two extensions to the TM system interface:
TxFastRead and TxF lush. These extensions enable the pro-
grammer to access the shared memory in a much more controlled
manner, without breaking transaction composability. We have pre-
sented two techniques for implementing these system extensions:
lookup scheme and partial commit scheme. We implemented these
techniques on top of the TL II software transactional memory im-
plementation and demonstrated on a set of benchmarks that we can
obtain performance that is competitive to the non-composable hand
optimized code, while preserving composability.

In summary, compared to the existing practices, our system ex-
tensions require similar programmer effort (the programmer still
needs to manually ensure isolation and consistency), provide simi-
lar performance, and preserve composability.

For future work, we will investigate the composability issues in
non-in-place updates for transactional writes. We will also explore
compiler optimizations to further simplify the extended TM inter-
face available to the programmer for optimizations.

Acknowledgments
We are grateful to the anonymous reviewers for commentary that
has substantially improved the presentation of this paper. We are
particularly indebted to reviewer #3, whose “reverse engineering”
feedback was spot-on and key to improving the accessibility of this
work.

References
[1] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:

Stanford transactional applications for multi-processing. In IISWC
’08: Proceedings of The IEEE International Symposium on Workload
Characterization, September 2008.

[2] C. Cole and M. Herlihy. Snapshots and software transactional
memory. In PODC Workshop on Concurrency and Synchronization
in Java Programs, 2004.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
Proceedings of the 20th International Symposium on Distributed
Computing, DISC 2006. Springer, Sep 2006.

[4] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University
Computer Laboratory, 2003. Also available as Technical Report
UCAM-CL-TR-579.

[5] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic contention
management. In DISC ’05: Proceedings of the nineteenth Interna-
tional Symposium on Distributed Computing, pages 303–323. LNCS,
Springer, Sep 2005.

[6] T. Harris and K. Fraser. Language support for lightweight trans-
actions. In OOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications, pages 388–402, New York, NY, USA,
2003. ACM Press.

[7] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. SIGPLAN Not., 41(6):14–25, 2006.

[8] S. Heller, M. Herlihy, V. Luchangco, M. Moir, , W. N. Scherer III,
and N. Shavit. A lazy concurrent list-based set algorithm, 2005.

[9] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
transactional memory for dynamic-sized data structures. In PODC
’03: Proceedings of the twenty-second annual symposium on

Principles of distributed computing, pages 92–101, New York, NY,
USA, 2003. ACM Press.

[10] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool, 2006.

[11] C. Y. Lee. An algorithm for path connection and its application. In
IRE Trans. Electronic Computer, EC-10, 1961.

[12] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the overhead of nonblocking
software transactional memory. In TRANSACT 06’: Proceedings of
the Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing, 2006.

[13] J. E. B. Moss. Open nested transactions: Semantics and support. In
WMPI Poster, 2005.

[14] J. E. B. Moss and A. L. Hosking. Nested transactional memory:
model and preliminary architecture sketches. In OOPSLA Workshop
on Synchronization and Concurrency in Object-Oriented Languages
(SCOOL), 2005.

[15] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L.
Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting
in software transactional memory. In PPoPP ’07: Proceedings of
the 12th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 68–78, New York, NY, USA, 2007.
ACM.

[16] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. In PPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 187–197, New York, NY, USA, 2006.
ACM Press.

[17] R. Zhang. Performance Optimizations for Software Transactional
Memory. PhD thesis, Rice University, 2010.

[18] R. Zhang, Z. Budimlić, and W. N. Scherer, III. Commit phase in
timestamp-based STM. In SPAA ’08: Proceedings of the twentieth
annual symposium on Parallelism in algorithms and architectures,
pages 326–335, New York, NY, USA, 2008. ACM.


