
Scheduling Tasks to Maximize Usage of

Aggregate Variables In Place

Samah Abu-Mahmeed1, Cheryl McCosh1, Zoran Budimlić1, Ken Kennedy1,
Kaushik Ravindran2, Kevin Hogan2, Paul Austin2, Steve Rogers2, and Jacob

Kornerup2

1 Computer Science Department, Rice University, Houston, TX 77005
{samah, chom, zoran}@cs.rice.edu

2 National Instruments, 11500 North MoPac Expressway, Austin, TX 78759
{kaushik.ravindran, kevin.hogan, paul.austin, steve.rogers,

jacob.kornerup}@ni.com

Abstract. Single-assignment languages with copy semantics have a very
simple and approachable programming model. A näıve implementation of
the copy semantics that copies the result of every computation to a new
location, can result in poor performance. Whereas, an implementation
that keeps the results in the same location, when possible, can achieve
much higher performance.
In this paper, we present a greedy algorithm for in-place computation of
aggregate (array and structure) variables. Our algorithm greedily picks
the most profitable opportunities for in-place computation, then updates
the scheduling and in-place constraints in the program graph. The algo-
rithm runs in O(T logT + EW V + V 2) time, where T is the number of
in-placeness opportunities, EW is the number of edges and V the number
of computational nodes in a program graph.
We evaluate the performance of the code generated by the LabVIEWTM

compiler using our algorithm against the code that performs no in-place
computation at all, resulting in significant application performance im-
provements. We also compare the performance of the code generated
by our algorithm against the commercial LabVIEW compiler that uses
an ad-hoc in-placeness strategy. The results show that our algorithm
matches the performance of the current LabVIEW strategy in most cases,
while in some cases outperforming it significantly.

1 Introduction

At their core, functional, data-flow programming and other single-assignment
languages are free from side-effects, making it easier to write, parallelize, ver-
ify and optimize programs written in such languages. At the conceptual level,
the side-effect free behavior implies that the involved variables are copied at
each stage. Translated directly into an implementation this can result in pro-
grams that consume large amounts of time and space. Compiler transformations
that recognize unnecessary copies and avoid them can significantly improve the

performance of programs in such languages. We call such copy avoidance trans-
formations an in-placeness strategy, since data that is not copied is kept in-place.
Unfortunately, the general problem of finding the minimum number of copies in
a program involving aggregate data structures is NP-Complete [1].

In this paper (an extended version is given in [2]), we present an O(T logT +
EW V +V 2) greedy in-placeness algorithm that significantly reduces the amount
of copying of aggregate data structures for single assignment languages. Here,
T is the number of in-placeness opportunities, EW is the aggregate number of
edges and V is the number of computational nodes in a program graph. This al-
gorithm is general and can be applied to wide range of functional, data-flow and
other single assignment languages. We have chosen to implement a prototype of
the algorithm as an optimization phase in a compiler for LabVIEWTM, a graph-
ical data flow programming language from National Instruments Corporation
(NI) [3], but it can be just as easily implemented in any other modern compiler
infrastructure for other single assignment and functional languages. LabVIEW
is a compiled, statically typed programming language widely used by scientists
and engineers around the world. An integral part of its compilation process is its
in-placeness strategy. Our experiments show that using the in-placeness strategy
currently shipping with the LabVIEW compiler results in much faster and less
memory intensive programs when compared to performing no computations in-
place. The in-placeness algorithm presented in this paper results in a more robust
performance, on par with the current LabVIEW strategy in most cases, while in
some cases showing significant (orders of magnitude) performance improvement
compared to the shipping LabVIEW compiler.

Our in-placeness algorithm saves both space and time in an executing pro-
gram. It saves space by performing computations in-place. By performing in-
place operations on aggregate data structures that only change a (small) part of
the data structure, it saves the time needed for copying unchanged data.

The rest of the paper is organized as follows. Section 2 presents the Lab-
VIEW data flow language and the in-placeness strategy used in its compiler.
Section 3 states the in-placeness problem as a constrained optimization problem
on a program graph. Section 4 describes our algorithm and analyzes its complex-
ity. Section 5 presents the experimental results comparing our algorithm to the
current LabVIEW strategy and program execution without any in-placeness op-
timizations. Section 6 describes the related work in register allocation and copy
elimination in functional languages. Section 7 concludes the paper and suggests
directions for future work.

2 The LabVIEW language

LabVIEW is a graphical data flow programming language from National Instru-
ments Corporation (NI), widely used in industry for implementation of control
and measurement systems and embedded applications [3]. In this section we will
briefly describe the semantics of LabVIEW, give an example of an in-placeness
optimization, and the NI heuristic for determining in-placeness.

2.1 Overview

A source program written in LabVIEW is referred to as a virtual instrument
(VI). A VI consists of a front panel (graphical user interface) and a block diagram
(a graphical data flow diagram) where icons and structures are used instead of
textual instructions and wires are used instead of variables. Figure 1 shows a
simple VI that computes the greatest common divisor (GCD) of the integer
values provided to the controls (X and Y) on the front panel (on the right) or
from a call to this VI from another VI, as part of a call chain.

Fig. 1. A LabVIEW program for computing the greatest common divisor.

When the VI is executed it copies the values into the two shift registers (la-
beled SRx-begin and SRy-begin) on the while loop (the box structure). On each
iteration of the while loop the value of SRx-begin and SRy-begin are copied
into the Min/Max node. It returns the maximum (minimum) value on the top
(bottom) wire. The minimum value is copied back into shift register SRy-end,
on the right hand side of the loop, and the difference between the minimum and
maximum value is copied into shift register SRx-end. If the minimum and maxi-
mum values are different then the loop will execute another iteration; otherwise
the value of SRy-end is copied to the front panel (or to the calling environment,
if used as sub-VI) as the GCD of the provided values. Note that the program
itself does not specify the order of the subtraction and the comparison nodes; in
principle they can be executed in any order, including simultaneously.

The LabVIEW compiler uses a technique called ”clumping”, where a selected
set of data-flow dependent nodes are combined into a single schedulable unit (a
clump). This allows the run-time system to schedule VIs at the clump level,
instead of at the individual node level. The nodes inside a clump are sorted
topologically according to their data flow dependencies, resulting in a total (se-
quential) execution order within a clump. When defining the topological sort of
a clump, the compiler applies a weight to each node that is proportional to the
amount of data that the node may copy, so that non-copying nodes get scheduled
ahead of copying nodes when they have no data flow dependency.

While the example VI above was explained in terms of copying values, it
turns out that this VI can reuse the memory locations reserved for SRx-begin

and SRy-begin for all intermediate integer results on the wires inside the while
loop. This is achieved by statically scheduling the comparison node before the
subtraction node, since the comparison node cannot make its outputs in-place
to its inputs due to a type (size) mismatch. By reusing the memory locations
reserved for SRx-begin and SRy-begin the VI will use less memory and also
execute faster since it executes fewer copy instructions. These savings are more
dramatic when dealing with complex data structures such as arrays, where the
computational node may only change the values of a subset of the array.

2.2 The NI In-placeness Heuristic

The in-place strategy currently used by LabVIEW is based on local and static
decisions; binary operators, like the subtraction node in the GCD example, will
make its output in-place to its top input if their types match. In the GCD
example, this happened to be the best choice, but in general this approach is not
optimal. The LabVIEW compiler is also hand-tuned for cases where this heuristic
does not perform well. This ad-hoc implementation is difficult to maintain and
requires expert knowledge to program applications and take full advantage of in-
placeness opportunities available from the compiler. A more systematic approach
to in-place computation is the main contribution of this paper.

3 Problem Description

First, we will formally encode in-placeness selection in LabVIEW as a con-
strained optimization problem on a program graph. We begin with a repre-
sentation of the program as a directed acyclic graph (DAG). The input graph
represents a set of data-flow dependent nodes that are part of a single schedu-
lable unit (clump). The objective is to compute a schedule of the nodes of the
clump in a single thread that maximizes the benefit from in-place computation.

3.1 Program Graph

We represent a LabVIEW program as a collection of two kinds of vertices. Let
V be the set of computational nodes in the program and W be the collection
of wires or memory locations. Each wire is the output of a single computational
node but may be an input to an unbounded number of computational nodes.
Thus we will assume that there are two sets of edges: EV and EW . EV ⊆ V ×W
is the set of edges that connect a computational node to the wires that are
produced as outputs from it. EW ⊆ W × V is the set of edges that connect a
wire to the computational nodes that use it as input. Note that the number of
edges out of computational nodes is the same as the number of wires in total,
since each wire is the output of a single computational node (i.e. ||W || = ||EV ||).
As a notational convention, we will use the set names of the vertices and edges
to represent both the set itself and the number of elements in the set, whenever
the context is clear. Thus O(EW V) means the same as O(||EW || ||V ||).

Figure 2 shows the program graph for the LabVIEW program from Figure 1
for computing the GCD of two integers. The set V of computational nodes

consists of the MAX/MIN , SUB, and EQ vertices (denoted by square vertices
in Figure 2). The remaining vertices (denoted by circles) comprise the set W of
wires or memory locations. Note that the wires MIN(SRx, SRy) and SRy−end
correspond to the same memory location in the LabVIEW program in Figure 1,
hence they are aggregated into one vertex in Figure 2. The edges preserve the
data dependencies between the computational nodes in the LabVIEW program.

Fig. 2. Program graph for the LabVIEW program from Figure 1.

3.2 In-placeness Opportunities

The algorithm begins by constructing a set of in-placeness opportunities T , where

T ⊆ {(w1, v, w2) ∈ W × V × W | (w1, v) ∈ EW , (v, w2) ∈ EV }.

In other words, each in-placeness opportunity is a triple t = (w1, v, w2) where
wire w1 is the input to computational node v that could be overwritten in place
by the contents of output wire w2.

Since this overwriting is by definition destructive, choosing this triple for in-
placing requires that all other consumers of w1 be scheduled before it. Thus if
there is a path in the original graph from v to another computational node v′

that also consumes wire w1, the triple t cannot be in-placed.
For each triple t ∈ T that represents an in-placeness opportunity, there will

be a benefit representing the value of in-placing t. The benefit measures the
advantage gained by avoiding a memory copy and performing the computation
in-place. We denote this as B(t). For example, if a computational node v updates
one element of an input array A1 to produce the array A2 then the benefit B(t)
of in-placing the triple t = (A1, v, A2) is size(A1)− 1.

3.3 Optimization Objective and Constraints

The objective is to select in-placeness opportunities from the set T to maximize
the total benefit, while adhering to the following constraints: (a) any wire w ∈ W
is an input to (similarly, output of) at most one selected in-placeness opportunity,
and (b) if (w1, v, w2) ∈ T is selected for in-placeness, then all other consumers
of w1 must be scheduled before v.

The inputs to the optimization problem are a LabVIEW program G =
(V, W, EV , EW), a set of in-placeness opportunities T , and a benefit function

B. Let function x : T → {0, 1} denote whether t ∈ T is selected for in-placeness.
Also, let function S : V → Z denote the position of v ∈ V in a schedule of the
program graph G. A valid solution to the optimization problem is characterized
by functions x and S that satisfy the following four constraints:

(a) ∀t = (w1, v, w2), t
′ = (w′

1, v
′, w′

2) ∈ T, t 6= t′, w1 = w′
1,

x(t) = 1 ⇒ x(t′) = 0 (unique input in-placeness)

(b) ∀t = (w1, v, w2), t
′ = (w′

1, v
′, w′

2) ∈ T, t 6= t′, w2 = w′
2,

x(t) = 1 ⇒ x(t′) = 0 (unique output in-placeness)

(c) ∀(v1, w1) ∈ EV , ∀(w2, v2) ∈ EW ,

w1 = w2 ⇒ S(v2) > S(v1) (program dependencies)

(d) ∀t = (w1, v, w2) ∈ T, ∀(w1, v
′) ∈ EW , v′ 6= v,

x(t) = 1 ⇒ S(v) > S(v′) (ordering due to in-placeness) .

Constraint (a) specifies that if t = (w1, v, w2) ∈ T is selected for in-placeness,
then the opportunities t′ ∈ T which have w1 as input are not selected. Constraint
(b) imposes a similar condition on the output wire of an in-placeness opportunity.
Constraint (c) enforces the dependencies between computational nodes from the
program graph in the resulting schedule. Finally, constraint (d) connects in-
placeness selections to new scheduling constraints, which are not implied by the
dependencies in the original program graph. In particular, if t = (w1, v, w2) ∈ T
is selected for in-placeness, the constraint ensures that the computational node
v is scheduled only after all other computational nodes v′ 6= v which consume w1

have been scheduled. The optimization objective is to compute valid solutions
to x and S, such that the total benefit Σt∈T B(t)x(t) is maximized.

4 Greedy In-Place Algorithm

The main contribution of this paper is an efficient heuristic algorithm for choos-
ing pairs of inputs and outputs to compute in-place. The greedy algorithm selects
the triple with maximum benefit for in-placing, tests whether the in-placing is
legal, and marks it as in-placed. When a particular triple is in-placed, it creates
new scheduling constraints that can make other in-place choices illegal.

We model these effects by creating a scheduling graph GS = (V, E) in which
the vertex set V is the set of computational nodes as before and each (x, y) ∈ E
indicates that computational node x must be scheduled before computational
node y. The initial version of the scheduling graph is a straightforward transla-
tion of the computed program graph. The scheduling graph is a Direct Acyclic
Graph (DAG), since legal LabVIEW program cannot have cycles, and every step
of our algorithm ensures that there are no cycles introduced in it.

In addition, to make the legality testing fast, we will compute a side data
structure Aft, which represents the transitive closure of the scheduling graph at
any point in the program. That is, y ∈ Aft(x) if and only if y must be scheduled
after x in the current scheduling graph.

The steps of the greedy in-placeness algorithm are:

– Compute a priority queue T of in-place opportunities.
– Compute the initial scheduling graph GS and the initial Aft relationship

from the program graph (V, W, EV , EW).
– While T is non-empty, iteratively remove the highest benefit triple t. If it is

legal to in-place, mark the triple as in-placed and update both GS and Aft

to reflect the new scheduling constraints introduced by in-placing the triple.

4.1 Constructing the Opportunities Heap

While the number of in-placeness opportunities may be large (a loose upper
bound is EV EW = WEW), some pruning will reduce it. For example, it is not
likely that computing an array in place with a much smaller array or a scalar
will be useful. We can reorganize a pruned set of opportunities T into a heap in
O(T logT) time. Since the total number of triples that are chosen for in-placing
will be far smaller than the number that are considered, it is very important
that we be able to rapidly test for legality of in-placing a particular triple, and
much of the machinery in this algorithm is designed to facilitate such a fast test.

4.2 Constructing the Initial Graph

The algorithm InitGraph in Figure 4.2 constructs the initial scheduling graph GS

along with the side data structure Aft, which is a transitive closure of the initial
scheduling graph. The upper bound on the time spent in this initialization is
fairly straightforward: L1 is entered O(V) times and the body of L2 is executed
O(EW) times (the header of L2 and the enclosing loop count as a single loop.) So
the entire time spent in loop L1 is O(EW +V). The loop at L3, which implements
a transitive closure, is entered V times, while the loop at L4 is executed once
for each edge in E. Since the loop body contains a set operation taking at most
O(V) time, the time taken by the entire loop is O(EV).

4.3 Selecting In-placeness Opportunities

Once we have the priority queue T of triplets, organized by benefit B, we can
iteratively select an in-placeness opportunity and test it for legality. A triple
t = (w1, v, w2) is legal to in-place if neither of the following conditions hold:

– There exists some x ∈ suc[w1]−{v} such that x ∈ Aft[v]. This would violate
the requirement that v be scheduled after all other sinks of w1.

– w1 ∈ I[v] or w2 ∈ I[v], where a wire is in I[v] if it is either the input or
output of a triple that has already been in-placed.

If in-placing the triple is legal, we introduce new scheduling constraints and
update the side data structures. The pseuco code for this part is given in proce-
dure GreedyInplace in Figure 4.2.

The execution time of this procedure, not counting the time spent in Init-

Graph and UpdateGraph, is O(T logT+EWV). The heap operations take O(T logT).
To avoid traversing the successors of an input wire w1 every time a triple with

procedure InitGraph(V, EV , EW . E,
suc, pred, Aft);

for each v ∈ V do begin

Aft[v] := ⊘;
count[v] := 0; pred[y] := suc[x] := ⊘;

end

for each wire w ∈ W do

for each v ∈ suc[w] do count[v]++;
worklist := ⊘; E := ⊘;
for each v ∈ V do

if count[v] = 0 then worklist ∪ ={v};
L1: while worklist 6= ⊘ do begin

remove element x from front of worklist;
for each output wire w from x do begin

L2: for each y ∈ suc[w] do begin

if (x, y) 6∈ E then begin

E := E ∪ {(x, y)};
pred[y] ∪ ={x}; suc[x] ∪ = {y};

end

count[y] − −;
if count[y] = 0 then worklist ∪ = {y};

end

end

end

// Next compute the initial Aft
// relationship, backing up through GS

for each v ∈ V do s c[v] := 0;
for each (x, y) ∈ E do s c[x]++;
for each v ∈ V do

if s c [v] = 0 then worklist ∪ = {v};
L3: while worklist 6= ⊘ do begin

remove element y from front of worklist;
L4: for each x ∈ pred[y] do begin

Aft[x] ∪ =Aft[y];s c[x] := s c[y] − 1;
if s c[x] = 0 then worklist ∪ ={x};

end

end

end InitGraph

procedure GreedyInplace(V, EV , EW . E,

suc, pred, Aft);
for each v ∈ V do I(v) := ⊘;
wire used := ⊘;
while T 6= ⊘ do begin

remove highest-benefit element t = (w1, v, w2)
from the top of the heap, and reheap

// Test for legality
legal := true;
if w1 ∈ I[v] or w2 ∈ I[v] then legal := false;
if w1 ∈ wire used then legal := false;
if legal then begin

other inputs := suc[w1] − {v};
while legal and other inputs 6= ⊘ do begin

remove an element x from other inputs;
if x ∈ Aft[v] then legal := false;

end

end

if legal then begin

mark t = (w1, v, w2) as in-placed;
I[v] := I[v] ∪ {w1} ∪ {w2};
wire used = wire used ∪{w1};
UpdateGraph(v, w1, V, E, suc, pred, Aft);

end

end

procedure UpdateGraph(v, w1, V, E, suc, pred, Aft);
// v: vertex where in-placing happens, w1: input, GS = (V, E): graph being updated
// Actual updates occur to E, suc, pred, The side data structure Aft is also updated,
// newAft[x] = the set of vertices added to the Aft set of x by this in-placing
// The set processed is used to ensure that a vertex goes on worklist at most once

worklist := ⊘; processed := ⊘
L1: for each y ∈ suc[w1] − {v} do begin

S1: if (y, v) 6∈ E then begin

E ∪ = (y, v); suc[y] ∪ = {v}; pred[v] ∪ = {x}; newAft[y] := Aft[v] − Aft[y]; Aft[y] ∪ = Aft[v];
S2: if newAft[y] 6= ⊘ then {worklist ∪ = {y}; processed ∪ = {y}; }

end

end

// Update the Aft sets by backing up through the graph
L2: while worklist 6= ⊘ do begin

remove an element y from the front of worklist;
L3: for each x ∈ pred[y] − processed do begin

L4: for each z ∈ newAft[y] do begin

S3: if z 6∈ Aft[x] then {Aft[x] ∪ = {z}; newAft[x] ∪ = {z}; }
S4: if newAft[x] 6= ⊘ then {worklist ∪ = {x}; processed ∪ = {x}; }

end

end

end

end UpdateGraph;
Fig. 3. Algorithms

that wire as an input is processed, we use the side data structure wire used, con-
taining all input wires that have already been in-placed (once a wire has been
in-placed at some vertex, it cannot be in-placed at any other vertex, since that
would create a scheduling cycle). Since we interrogate wire used first, we traverse
the successors of a wire at most once for every vertex to which it is an input that
might be in-placed. Overall the total time spent traversing the successors of an
input wire is O(EW V). Observe that if there is no pruning of the set of triples T ,

then T = O(EW V) so the entire process, aside from the graph updating, takes
O(T logT) time. However, assuming that significant pruning is done, it is useful
to separate the two terms to yield O(T logT + EW V).

4.4 Updating the Scheduling Graph

We now turn to the process for updating the scheduling graph after in-placing
t = (w1, v, w2), perhaps the most complex part of the algorithm. The goal is to
produce a time bound of O(EV + V 2) time, where E is the number of edges in
the scheduling graph GS . Since E ≤ EW , this will give us the desired bound for
the running time of the algorithm.

The procedure begins by inserting new edges between all the other compu-
tational nodes to which the input wire w1 is also an input and updating the
predecessor and successor lists. Then, the algorithm must update the Aft data
structure. We add a new vertex to Aft[v] only once for each v. This requires back-
ing up through the predecessors pred of all the vertices with new edges (other
inputs of w1) while maintaining a new data structure called newAft, which gets
reduced whenever there already exists a path to some element in Aft for the
predecessor. The algorithm UpdateGraph in Figure 4.2 describes this process.

Since each wire w1 is input to an in-placed triple only once, the body of
loop L1 is executed only EW times. Furthermore, since the conditional at S1
eliminates duplicate edges, the body of the conditional is executed at most E
times over the entire program.

Even though E is smaller than EW initially, it grows during the execution.
However, we can still establish a bound on the size of E in terms of EW after
the algorithm is done, since at each in-placing step, the input wire w1 can no
longer be in-placed at any of its other inputs. So the total number of in-placings
is bounded by the number of wires W . At each such in-placing we put edges
into E for each vertex to which the wire w1 is an input except the in-placed
vertex, which is at most EW − W edges. The total number of edges in E after
all in-placing steps is no more than 2EW − W = O(EW).

In loop L1, the most expensive operations are the set unions and differences,
each taking O(V) time, so the entire cost of loop L1 is O(EW +EV) = O(EW V).
Note that we limit, in statements S2 and S4, the number of times a vertex goes
on the worklist to those times when it will actually add a vertex to its Aft set,
which is not more than V times.

Now consider loop L2. Since a vertex y can only be added to the worklist at
most V times, the body of L2 is executed an aggregate of V 2 times. However, if
we count the number of times the body of loop L3 is executed, we want to charge
the cost, including the cost of the loop iterator, to the edge (x, y). Given that
each y can be on the worklist only V times, this means that the total number
of times that we can process each edge is V , so the total number of executions
of the body of L3 is EV . Even though the header of loop L4 is executed EV
times, we can charge each execution of the body to a new element of the Aft set
for y, which is only once per vertex. The total number of executions of the body
of L4 is O(V 2). Since the body of the if statement S3 takes constant time, the

aggregate time over the entire algorithm for L4 is O(V 2). The aggregate time for
loop L2 is therefore O(EV + V 2). Since E = O(EW), we have established that
the running time for the entire algorithm is bounded by O(T logT +EW V +V 2).

Note that the algorithm can be safely stopped at any time, since no node is
ever unmarked for in-place computation. Running the algorithm to completion
only affects the quality of the result, not the correctness.

4.5 Loops and Shift Registers

In LabVIEW, shift registers are used to represent the loop-carried dependences;
they are equivalent to induction variables in an imperative language. Each shift
register has a source and a sink and at the end of each iteration of a loop the value
of the sink of the shift register is copied into the source of the same shift register.
In the LabVIEW example in figure 1 there are two shift registers, labelled SRx
and SRy. They are used to carry the state of the GCD computation from one
iteration of the while loop to the next iteration.

The in-placeness algorithm as we have described it in this section so far
only works on straight-line code. Since loops and shift registers (especially shift
registers that transfer aggregate data structures) can have an enormous impact
on performance, we treat loops and shift registers separately.

Our strategy is to make the in-placeness decisions for loops in three steps;
First, all copies on the back edges of a loop are eliminated by in-placing the source
of the shift register with its sink. Second, we apply the greedy in-placeness algo-
rithm presented earlier in this section to the body of the loop. Finally, we replace
the loop by dummy operations that model the input and output tunnels con-
necting the loop to the enclosing VI. Then we run our algorithm on the enclosing
VI, using the dummy operations to decide on the in-placeness of the inputs and
outputs of a loop. For the GCD example in figure 1 the input pairs is Y and
SRy-begin and the output pair is SRy-end and GCD(X,Y). The input/output
pairs of the dummy are added to the opportunities heap of the enclosing VI as
in-placeness opportunities.

In-placing all the shift registers on the back edges of the loop may force
some explicit copies to be inserted inside of the body of the loop. If there is a
direct link from one shift register’s source to a different shift register’s sink, for
example, then an explicit copy will have to be inserted along that edge. This
does not affect the overall goal of the algorithm, as a copy involving that data
structure would have to be performed anyway, either on the back edge or on
some forward edge throughout the body of the loop.

5 Experimental Results

In our experimental study, we evaluated our heuristic for in-placeness optimiza-
tion on two sets of benchmarks. The first set of benchmarks consisted on random
program graphs in the form presented in Section 3. The second set of benchmarks
consisted of 7 real-world LabVIEW applications. The platform we used for run-
ning these experiments was Intel (R), Pentium (R) 4 CPU 2.80 GHz. 2.79 GHz,
504 MB of RAM, running Microsoft window XP.

5.1 Random Graph Benchmarks

Our first set of benchmarks were random program graphs with a varying number
of computational nodes. The largest instance in this set contained 75 computa-
tional nodes (which corresponds to the set V in the program graph from Sec-
tion 3). This is a practical limit for what the optimal constraint-based solvers
can handle in a reasonable amount of time. Figure 4 compares the percent-
age difference from the optimal in-placeness result of our heuristic and the NI
LabVIEW heuristic on the random graph instances. The optimum results were
computed using the Spear constraint solver that internally employs an exact
branch-and-bound method to test satisfiability of problem constraints [4].

Fig. 4. Graph comparing the optimality gap of the LabVIEW heuristic and our heuris-
tic for in-placeness on random program graphs. Lower is better.

Figure 4 indicates that our greedy heuristic is consistently close to the optimal
result across a varying number of vertices in the program graph. On average, our
heuristic is within 2% of the optimum for these instances, while the LabVIEW
heuristic is over 25% below the optimum. The times taken to complete execution
of the current LabVIEW heuristics and our algorithm are both on the order of
milliseconds. In contrast, the exact solver method takes up to 3 minutes on some
problem instances. Thus, our heuristic achieves a much higher quality of results
while matching the efficiency of the NI LabVIEW heuristic for in-placeness.

5.2 LabVIEW Application Benchmarks

Tables 1 and 2 summarize the performance of programs compiled using our
heuristic and the NI LabVIEW heuristic on several benchmarks. In four of the
benchmarks our algorithm made the same in-placeness decisions as the Lab-
VIEW compiler. The slight differences in the running times are due to different

default schedules produced by the two algorithms. In the other programs, the
code generated by our algorithm significantly outperforms the code generated
by the current LabVIEW compiler.

Sample VI No In-placeness NI In-placeness Greedy In-placeness

1 Standard Div 110 ms 32 ms 32 ms

2 Original Unpack > 8 hours 745 ms 733 ms

3 Simple Unpack > 8 hours 695 ms 605 ms

4 Split Unpack > 8 hours 353 ms 358 ms

5 Sine Generator 2, 064, 041 ms 94 ms 62 ms

6.a Updating Cluster > 8 hours 132, 796 ms 10 ms

6.b Tuned Updating Cluster > 8 hours 10 ms 10 ms

7.a Mandelbrot 10, 478, 956 ms 44, 425 ms 6, 888 ms

7.b Rewired Mandelbrot 11, 937, 131 ms 42, 958 ms 6, 970 ms

Table 1. Running times for a set of LabVIEW benchmarks.

Sample VI NI In-placeness Greedy In-placeness Greedy In-placeness
Vs. Vs. Vs.

No In-placeness No In-placeness NI In-placeness

1 Standard Div 3 3 1.0

2 Original Unpack > 40, 000 > 40, 000 1.016

3 Simple Unpack > 40, 000 > 50, 000 1.149

4 Split Unpack > 80, 000 > 80, 000 0.99

5 Sine Generator 21, 958 33, 291 1.516

6.a Updating Cluster > 200 > 300, 000 13, 280
6.b Tuned Updating Cluster > 300, 000 > 300, 000 1.0

7.a Mandelbrot 236 1, 521 6.45
7.b Rewired Mandelbrot 278 1, 713 6.16

Table 2. Speedup factors for the set of LabVIEW benchmarks from Table 1.

The results presented in Tables 1 and 2 illustrate the importance of having
a systematic in-place computation strategy in a LabVIEW implementation. For
all the above programs, the difference in running times between no in-place
computation and some in-place computation is enormous. Updating Cluster, for
example, takes 10 milliseconds to compute using our in-place algorithm but it
takes more than 8 hours (we terminate our experiments after 8 hours for practical
reasons) with no in-place computation.

In summary, we have shown on a large collection of random graphs that
our algorithm consistently finds a better solution, and on a collection of real-
world LabVIEW programs it at least matches, and in several cases significantly
outperforms the current LabVIEW compiler.

6 Related Work

Hudak and Bloss address the problem of updating aggregates in-place to avoid
unnecessary copies in functional languages [5]. If the last use of an aggregate is
a write, they perform the write in place. Our algorithm checks the legality of
allowing a use to be done in-place before adding constraints, and uses a cost

model to to in-place the uses that will be most beneficial to performance. Their
algorithm relies on run-time reference counting to find the inplaceness opportu-
nities, while we make all the decisions statically. In [6], Goyal and Paige gave a
solution that combines dynamic reference counting and lazy copying. Their algo-
rithm uses static analysis to enhance and improve the use of reference counting.
They implement the optimization for the programming language SETL.

For fixed evaluation order, Bloss developed an algorithm that statically com-
putes evaluation paths in non-strict functional programs [7], while Kirkham and
Li developed a copy avoidance algorithm to improve the performance of the pro-
gramming language UFO [8] and Gudjónsson and Winsborough developed an
algorithm that introduces update-in-place operations to the logic programming
language Prolog to allow it to update recursive data structures as in an imper-
ative programming language [9]. These heuristics, as in the first step of Hudak
and Bloss [5], update an aggregate in place if the last use is a write operation.

Sarkar and Cann built an optimized SISAL compiler that includes an update-
in-place analysis phase that tackles the aggregate incremental update problem
by extending the approach by Hudak and Bloss to additionally consider general
iteration, function call boundaries, and nested aggregates [10]. However, as with
Hudak and Bloss, they do not evaluate the benefits in choosing which nodes to
modify in-place, and cannot make all the decisions during compilation.

Gopinath and Hennessy proposed “Targeting”, an algorithm to reduce in-
termediate copies in divide and conquer problems [11] by properly selecting a
storage area for expression evaluatiion. They eliminate copies in a given and
fixed computing evaluation sequence. We allow changes to the evaluation se-
quence in order to find more opportunities for in-place updating. Unlike our
heuristic, their algorithm constrains the arrays to have restricted bounds, and is
unable to detect values whose lifetime cannot be computed at compile time.

Debray focuses on reusing dead data structures [1]. As in our algorithm, his
heuristic chooses between interfering data structures based on a cost model, but
does not describe how to derive these costs.

The problem of excessive copying appears in register allocation. The second
stage of the Chaitin’s [12] algorithm consists of coalescing nodes in the graph to
use the same storage (machine register). If there is a copy from Ri to Rj , and Ri

and Rj do not otherwise interfere, then Ri and Rj can share storage. Briggs et al.

add a tradeoff between coalescing and spilling register values to memory [13]. In
another related algorithm, Briggs et al. present an algorithm for inserting copies
to replace φ-functions when translating SSA form to sequential code [14], which
involves a similar problem with cycles of copies. lić et al. present an algorithm
that performs coalescing without building an interference graph, but by using
liveness and dominance information to model interference [15].

While copy avoidance problems are closely related to the one we are ad-
dressing in this paper, none of the results described above focus on a unique
characteristic of the programs with aggregate data structures: it is much more
profitable to perform an in-place computation on a data structure when such a
computation only changes a small part of the data.

7 Conclusions and Future Work

Copy avoidance through in-place computation is extremely important for lan-
guages with copy semantics such as LabVIEW. The performance of LabVIEW
programs with a methodical in-place computation strategy can improve by sev-
eral orders of magnitude over programs with näıve implementations that allocate
a new memory location for the result of every computation. This is especially
true for programs with loops and aggregate (array and structure) data.

In this paper, we present a systematic greedy algorithm for deciding which
computations should be performed in-place for LabVIEW programs. We show
that our algorithm runs in O(T logT + EW V + V 2) time, where T is the number
of in-placeness opportunities, EW is the aggregate number of edges and V is the
number of computational nodes in a program graph.

Our heuristic computes near-optimum (within 2% on average) solutions for
a large collection of randomly generated graphs, compared to the current Lab-
VIEW compiler heuristic which is more than 25% below the optimum. Our
algorithm achieves this while still running in time competitive to the current
LabVIEW compiler (order of milliseconds for random graphs of up to 75 nodes).
It is much faster than optimal constraint-based solver strategies, which are im-
practical even for modestly large programs.

On a collection of LabVIEW programs, our algorithm produces in-placeness
decisions that generate code that is at least competitive, and in several cases
much faster than the code generated by the current LabVIEW compiler. This
efficient and effective in-place computation strategy should prove itself a valuable
addition to any implementation of languages with copy semantics.

In the future, we will investigate an adaptation of our algorithm to an inter-
procedural, modular compiler using the Telescoping Languages approach [16],
which includes a size-inference algorithm that infers sizes of procedure variables
in terms of the sizes of input arguments. This information will be important for
determining benefits for in-placeness when the whole program is not available.
This approach will summarize the in-placeness analysis results for each program
and create different versions of programs based on different in-placeness contexts.
Second, we will experiment with algorithms for splitting of aggregate data struc-
tures and in-place computation for parts of an aggregate data structure. Finally,
we will explore heuristics for estimating the trade-off between more in-place com-
putation and more parallelism available (especially for multicore platforms) that
will attempt to balance the in-place computation, parallelism and scheduling to
achieve faster running times.

8 Acknowledgments

This work was supported in part by National Instruments and by NSF grant
CCF-0444465. We would like to thank Jeff Kodosky, Brent Schwan and Duncan
Hudson for their comments and support during this project. We would also
like to thank Keith Cooper and Tim Harvey for their insights and discussions

concerning relevant register allocation topics, and Vivek Sarkar for his assistance
in understanding copy elimination in SISAL and other data-flow languages.

References

1. Debray, S.K.: On copy avoidance in single assignment languages. In: International
Conference on Logic Programming. (1993) 393–407

2. Abu-Mahmeed, S., McCosh, C., Budimlić, Z., Kennedy, K., Ravindran, K., Hogan,
K., Austin, P., Rogers, S., Kornerup, J.: Scheduling tasks to maximize usage of
aggregate variables in place. Technical report, Rice University, TR09-01 (2009)

3. National Instruments Corporation: LabVIEWTMUser Manual. (August 2007)
4. Babic, D., Hutter, F.: Spear theorem prover. In: SAT 2007 Competition. (Jan

2007)
5. Hudak, P., Bloss, A.: The aggregate update problem in functional programming

systems. In: POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages. (1984)

6. Goyal, D., Paige, R.: A new solution to the hidden copy problem. In: Proceedings
of the 5th International Static Analysis Symposium, volume 1503 of Lecture Notes
in Computer Science, Springer-Verlag (1998) 327–348

7. Bloss, A.: Update analysis and the efficient implementation of functional aggre-
gates. In: FPCA ’89: Proceedings of the Fourth International Conference on Func-
tional Programming Languages and Computer Architecture. (1989)

8. Li, Z., Kirkham, C.: Efficient implementation of aggregates in united functions
and objects. In: ACM-SE 33: Proceedings of the 33rd Annual Southeast Regional
Conference. (1995)

9. Gudjónsson, G., Winsborough, W.H.: Compile-time memory reuse in logic pro-
gramming languages through update in place. ACM Trans. Program. Lang. Syst
(1999)

10. Sarkar, V., Cann, D.: Posc–a partitioning and optimizing sisal compiler. In: ICS
’90: Proceedings of the 4th international conference on Supercomputing, New York,
NY, USA, ACM (1990) 148–164

11. Gopinath, K., Hennessy, J.L.: Copy elimination in functional languages. Technical
report, Computer Systems Laboratory, CSL-TR-88-370. Stanford, CA: Stanford
University. (1989)

12. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6 (1981) 47–57

13. Briggs, P., Cooper, K.D., Torczon, L.: Rematerialization. ACM SIGPLAN ’92
Conference on Programming Language Design and Implementation (17-19 June
1992) 311–321

14. Briggs, P., Cooper, K.D., Harvey, T.J., Taylor Simpson, L.: Practical improvements
to the construction and destruction of static single assignment form. Software
Practice and Experience (July 1998)

15. Budimlic, Z., Cooper, K.D., Harvey, T.J., Kennedy, K., Oberg, T.S., Reeves, S.W.:
Fast copy coalescing and live-range identification. In: PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and implemen-
tation. (2002)

16. Kennedy, K., Broom, B., Chauhan, A., Fowler, R., Garvin, J., Koelbel, C., McCosh,
C., Mellor-Crummey, J.: Telescoping languages: a system for automatic generation
of domain languages. Proceedings of the IEEE 93(2) (Feb 2005) 387–408

