
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Implementation and

Performance of a Particle In

Cell Code Written in Java

S. Markidis†, G. Lapenta†, W.B. VanderHeyden†,
Z. Budimlić‡

†Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
‡Center for High Performance Software Research, Rice University, Houston, TX 77005, USA

key words: PIC Method, OO programming, High Performance Computing, Java

SUMMARY

Plasma simulation is an important example of a high performance computing application
where computer science issues are of great relevance. In a plasma, each particle, electron
or ion, interacts with the external fields and with other particles in ways that can be
readily and effectively emulated using object oriented programming. However, the great
cost of plasma simulations has traditionally discouraged object oriented implementations
due to their perceived inferior performance compared with classic procedural FORTRAN
or C. In the present paper, we revisit this issue. We have developed a Java particle in cell
code for plasma simulation, called Parsek. The paper considers different choices for the
object orientation and tests in practice their performance. We find that coarse grained
object orientation is faster and practically immune from any degradation compared with
a standard procedural implementation (with static classes). The loss in performance
for a fine grained object orientation is a factor of about 50%, which can be almost
completely eliminated using advanced Java compilation techniques. The Java code Parsek
provides also an interesting realistic application of high performance computing to
compare the performance of Java with FORTRAN. We have conducted a series of
tests considering various Java implementations and various FORTRAN implementations.
We have also considered different computer architectures and different JVMs and
FORTRAN compilers. The conclusion is that with Parsek, object oriented Java can
reach CPU speed performances more or less comparable with procedural FORTRAN.
This conclusion is remarkable and it is in agreement with the most recent benchmarks
but is at variance with widely held misconceptions about the alleged slowness of Java.

1. INTRODUCTION

Simulation of the behavior of plasmas is an ideal candidate for object-oriented techniques.
A plasma is, by definition, a collection of objects (the plasma particles, electrons and ions)
with several properties and with well defined functional interactions with other plasma objects.

Received
Copyright c© 2000 John Wiley & Sons, Ltd. Revised



2 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

Computationally, it is quite natural to think of plasmas in terms of objects with data that each
object must carry and methods that each object should possess. Moreover, the computational
schemes that have been used to simulate plasmas have also the structure of objects. For example
superparticles and grid nodes of the classic Particle-in-Cell (PIC) simulation [1, 2] can be
directly regarded as objects. Finally, simulation of plasmas must include different approaches,
branches of physics, and levels of expertise. The plasma species themselves, for instance, can be
treated either in a kinetic or fluid dynamic approach. The electromagnetic fields, however, use
neither of these approaches but require the solution of full or approximate Maxwell equations.
Chemical interactions among the charged plasma species require different expertise - complex
chemistry - as in plasma processing devices for semiconductor production [3]. Sometimes
molecular dynamics or solid mechanics models are required. Creating a simulation as a series
of objects allows for seamless integration of the appropriate expertise.

Previous successful attempts to create an object oriented plasma simulation [4, 5] have
had limited application either because the language used (FORTRAN 90 [4]) did not support
objects well or because the language (C++ [5, 6]) imposed a high implicit cost in implementing
changes to the simulation. Here we use Java to create a flexible computationally rapid
implementation of PIC for plasma simulations. Java’s object-oriented programming allows
the abstraction of common physical concepts and the development of reusable class libraries.
Java byte code is portable across multiple platforms, and Java’s multithreading allows parallel
computation critical for high performance plasma simulations. Furthermore Java allows for an
effective project management. Previous studies [7] have shown that Java programming results
in fewer bugs and faster code development.

Previous experience with Java has shown that a complete object oriented design generally
results in slow execution. Typically, the penalty is a factor of ten or more [8]. If the objects are
large, including arrays of data (”coarse grained object oriented”), the execution time penalty
may be smaller. For plasma simulations, species level objects instead of particle level objects
may increase computation speed.

We have initiated a long term project to develop a complete software package for plasma
simulation fully written in object oriented Java. We called the project: Parsek. In the present
study, we compare the execution speed and the solution correctness of different versions of
Parsek all written in Java but with different implementations: FORTRAN-style (procedural
Java with static classes), coarse grained style and fine grained style. FORTRAN style and
coarse grained style execute at approximately the same speed. The fine grain style is only
approximately 1.5 times slower when compiled with traditional compilers, and competitive
with coarse grained style and FORTRAN style when compiled with an advanced optimizing
compiler [9].

We have also compared the Java versions of Parsek with different implementations written
in FORTRAN 90. A widely held belief in the high performance computing community is that
Java can be an order of magnitude slower than FORTRAN [10]. Recent rigorous benchmarks
conducted at the National Institute for Standard and Technology (NIST) and based on a
suite of widely used numerical algorithms has proved otherwise: Java and FORTRAN are
now basically equally efficient, achieving approximately the same speed measured in floating
operations per second (FLOPS) [11]. Our study indeed confirms such conclusion: different

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 3

implementations of Parsek written in Java and in FORTRAN can vary their execution time
somewhat, but on average, FORTRAN and Java run at comparable speed.

The dramatically improved execution times of our Java program in comparison to previous
comparisons of Java and FORTRAN [8, 10] appear to be caused by the improved compilation
environment (Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0-b92) Java
HotSpot(TM) Client VM (build 1.4.0-b92, mixed mode)).

2. SCIENTIFIC CHALLENGES

The simulation of systems where plasmas are present requires the description not only of
the scale of interest but also of the smaller scales that affect the physics of the systems
under consideration. For instance, simulation of coronal mass ejection from the Sun requires
the description of large scale processes using a magnetohydrodynamic (MHD) model [12].
However, the MHD models require to include models of dissipation processes that develop
at microscopic scales. The calculation of dissipations requires more accurate microscopic
kinetic models, beyond the fluid approach. At small scales dissipations are present not only as
interparticle collisions but also through electromagnetic interactions of ions and electrons at the
microscopic scales. A self-consistent description of astrophysical systems must be performed at
the kinetic level using the Boltzmann equation for ions and electrons, the Maxwell equations
for the electromagnetic fields and the Newton (or Einstein) equation for the gravitational
field. However the cost of such direct approach would be prohibitive if attempted using the
most common explicit methods currently in use. The standard approach is to represent the
systems with reduced models such as the Hybrid, resistive MHD, Hall MHD or two fluid model,
where some or all species are approximated in the fluid limit [13]. In all reduced models, ad hoc
assumptions of the kinetic behaviour are made, most commonly in the form of prescriptions for
the higher order moments of the distribution (e.g., the pressure tensor) and for the dissipation
processes (e.g., anomalous resistivity) [13].

We follow a bolder approach [14, 15]: we adhere to the exact kinetic model with all the correct
microscopic physics. To be able to bring such approach all the way to the large scales of interest
we use two powerful techniques that can make the numerical simulation manageable within
the existing computing resources: object orientation and implicit formulation. The implicit
formulation is described elsewhere [16] and its description is beyond the scope of the present
paper. Here we use a simpler explicit PIC algorithm and focus only on the issue of object
orientation of a plasma simulation code which is described next. Below, we report a simple
version of the Particle In Cell method. The scheme considered here is a full fledged plasma
simulation method currently being widely used in the plasma physics community [1, 2]. Our
goal here in not simply to use an artificially simple benchmark to test Java performances but
to test Java in a realistic application.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



4 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

Figure 1. An Explicit Electrostatic PIC Algorithm.

2.1. Skeleton Particle in Cell Algorithm

Our simplified algorithm consists of three parts: the interpolation scheme, the Poisson solver
and the particle mover, as shown in Fig. 1. A complete description of the PIC algorithm can
be found in textbooks [1, 2]

Interpolation particle-grid

The density on the grid is calculated from the particles through the interpolation scheme
defined by

ρi =
∑

p

qp

∆x
W (xi − xp) (1)

where i and p label grid nodes and particles, respectively. ∆x is the space step while qp is the
particle charge. The classic Cloud-In-Cell (CIC) method [1, 2] is used for the interpolation
functions:

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 5

W (xi − xp) = b1(
xi − xp

∆x
) (2)

where the b1 is the first order b-spline function [2].

Field Solver

The Poisson equation for the electric potential Φ is:

d2Φ

dx2
= −

ρ

ε0
(3)

where ε0 is the dielectric constant. Equation (3) is solved using a finite difference scheme. Then
the electric field E on the grid can be calculated by using the central difference discretization
and solving the resulting linear system with Gaussian elimination.

Interpolation grid-particle

Given the electric field on the grid, the electric field on each particle can be calculated using
the same CIC interpolation scheme:

Ep =
∑

i

EiW (xi − xp) (4)

Particle mover

Particles are moved solving the Newton equations of motion for the particle position xp and
velocity vp :

dvp

dt
=

qp

mp

E(xp) (5)

dxp

dt
= vp (6)

where mp is the particle mass. Equations (5, 6) are discretized with the leap frog finite difference
scheme [1, 2].

3. OBJECT ORIENTED IMPLEMENTATION

The biggest problem for any advanced plasma simulation code is to organize the complexity.
Because plasma physics simulations are becoming more complex and because more physicists
become involved in the writing of software, we need more sophisticated and easier development
techniques. With an object-oriented framework, the computational physicist tries to organize
the physical problem into objects which control the complexity of the simulation.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



6 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

Figure 2. Parsek Framework.

In designing Parsek, we have tried to follow two guiding principles. First, we have tried to
use a full object-oriented programming from a physical point of view. Object orientation gives
an elegant software design and results in a code that is easy to read and can be more effectively
used by physicists who are less proficient in computer science issues.

Second, we have written the code to be as generic as possible so that the computer
programmer can plug plasma physics into the proper program locations and develop a new
code to study different plasma phenomena. So the programmer can extend the functionality
of the code by adding models and algorithms of various level of complexity.

The algorithm discussed and tested in the present work is a skeleton version of a complete
plasma simulation code. We use a PIC scheme that includes all the most important steps
present in a complete code. The algorithm summarized in Sect. 2.1 follows the trajectories of
a number of particles in force fields which are calculated self-consistently from charge, current
and pressure densities created by the particles. Each time step in a PIC code consists of two
major steps: the particle mover to update the particle positions and calculate the new charge
and current densities, and the field solver to update the surrounding fields. Since particles
can be located anywhere within the simulation domain but the surrounding fields are defined
only on discrete grid points, the particle mover uses two interpolation steps to link the particle

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 7

positions and the fields: a step to interpolate fields from the grid points to the particle positions
and a step to interpolate the charge of each particle to grid points. The Parsek architecture
is summarized in Fig. 2. The complete code listing is too long to be reported here, as is to be
expected for a realistic simulation code that can study realistic physics problems. Parsek is
composed of six separate classes:

• Particle Object

The Particle class describes an individual plasma particle, like an electron or ion,
including its position and velocity. Basically Particle is organized as:

public class Particle {

private double Position;

private double Velocity;

private double ElectricFieldOnParticle;

...

}

• Field Object

The Field class represents the electromagnetic field and its sources for a given point of
the mesh. The Field object includes the charge density and the electric field for each grid
node. It is written as follows:

public class Field {

private double ChargeDensity;

private double ElectricField;

...

}

• Mesh Object

The Mesh class contains several methods that describe mesh elements and boundary
nodes. Furthermore, it provides methods to calculate discrete differential operators and
to interpolate a discrete vector field onto a specified location in the mesh.

• Physics Object

The Physics class handles the particle mover phase, where the new particle position and
velocity are determined by Newton’s law, and the field solve phase, where the fields are
updated solving Maxwell’s equations.

• Driver Object

The Driver class describes the methods that handle the whole simulation. After
initializing the arrays of particle and field objects with

Particle[] myParticle = new Particle[NumberOfParticles];

Field[] myField = new Field[NumOfGridPoints];

the initial conditions for the particle velocities and positions are set. Once constructed,
the simulation is advanced in discrete units of time. Fields are calculated from the
sources, including the appropriate boundary conditions. At this point, the explicit

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



8 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

method requires to solve a linear system to determine the new electric field. Next, the
forces on particles are calculated by interpolating the fields to the particle positions. The
forces are used to update the particle velocity, and subsequently the particle position.
These procedures are repeated for each incremental time step.

• Timer Object

Finally, the Timer class calculates the time performance of the code.

4. ALTERNATIVE IMPLEMENTATIONS OF PARSEK

The object oriented implementation of Parsek described above uses a fine grained approach.
The objects are chosen to correspond to the smallest units in the physical system under
consideration: the particles and the mesh points. Alternative approaches are possible.

Previous studies have led the high performance computing community to reach two widely
held beliefs [8, 10].

First, programs written in Java are believed to be an order of magnitude, or more, slower
than corresponding programs written in C or FORTRAN [10]. To ascertain this point we have
developed various FORTRAN and Java versions to compare their relative speed.

Second, fine grained object orientation, either in C++ or in Java, is believed to be much
slower than coarse grained object orientation [8]. Fine grained object orientation can be loosely
defined as the choice to define objects at the smallest scale of interest in the problem being
considered. For plasma simulation this corresponds to the choice outlined in the previous
section where the objects were chosen as single particles and single mesh points. The crucial
feature of fine object orientation is that the objects are small and large arrays of them are
required. The additional cost of handling arrays of objects is believed to result in a great penalty
in terms of computing efficiency. Coarse grained object orientation, instead, defines broader
objects that include larger units of the system under consideration. For plasma simulations
this corresponds to choosing objects composed by the whole grid or by whole populations of
particles (such as all ions or all electrons). The crucial feature of coarse object orientation is
that all relevant arrays are wrapped inside the objects and no arrays of objects are required.
Previous studies [8] have reported penalties of one order of magnitude when fine grained
object orientation is compared with coarse grained object orientation and only the traditional
compiler techniques are used. To test this issue we have developed different versions of Parsek
all written in Java but using different object orientation styles.

The two beliefs described above are often based on evidence obtained some years ago when
the Java virtual machines and compilers were still in their infancy. Furthermore, often such
conclusions were reached using simple methods not applied to any scientific problem. More
recently, extensive benchmarks of Java using a suite of standard mathematical problems has
shown that contrary to the commonly held beliefs, Java is almost on par with FORTRAN [11].

Here we intend to conduct all tests with the most modern compilers on the most modern
computer architectures. And we will conduct all tests for a real problem of plasma simulation

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 9

where the final answer is a significative plasma physics result. While most of the previous
performance studies were conducted on benchmark problems, we will base our study on a
realistic plasma physics simulation tool.

Below, we put the two beliefs described above to test using several alternative versions of
Parsek both in Java and in FORTRAN 90. All versions are equivalent from the algorithmic
point of view but are radically different in the choice of software architecture and programming
language. Below we describe the various versions.

4.1. Coarse Grained Object Oriented Parsek

Two approaches to object orientation are possible: a ”coarse grained object-oriented” (referred
to as LOO) and a ”pure object-oriented” (referred to as OO) programming style. We have
described the OO design in the section above. With a LOO technique the arrays that describe
particles and fields are wrapped in two objects that represent the whole particle population and
electrostatic field states. The coarse grained object-oriented Parsek is composed by 5 separate
classes:

• Particles Object

The Particles class in the LOO framework acts as container to store the characteristic
data for N individual particulate elements. Each individual particle has several
attributes, such as position and velocity. In the code, examples are:

private double[] Position = new double[NumberOfParticles];

private double[] Velocity = new double[NumberOfParticles];

In a LOO code arrays are wrapped in a single object, and no array of objects is used.
In the fully OO PIC code, instead, objects were single particles and arrays of objects
were used. Moreover the Particles object contains methods to move and accelerate the
particles, and to check if the particles are leaving the boundaries. Unlike the case of the
OO PIC code, in a LOO PIC code there is a direct interaction between the Particles and
Mesh objects.

• Fields Object

A Fields object represents a discretization of a continuous field quantity over an
underlying mesh. Internally, Fields data is stored essentially as an array, containing
charge density, potential, and electric field values on the grid. In Java, it is written as
follows:

private double[] ElectricField = new double[NumOfGridPoints];

private double[] Potential = new double[NumOfGridPoints];

private double[] ChargeDensity = new double[NumOfGridPoints];

The Field Solver is a method of this class.
• Mesh Object

It contains the informations about the grid and methods to calculate the interpolation
functions.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



10 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

• Driver Object

It coordinates the other objects and controls the progress of the computational cycle.
• Timer Object

The Timer object calculates the timing performance of the code.

4.2. FORTRAN Style Parsek

Although Java is a full fledged object oriented language, old fashioned procedural programming
remains possible using static classes [18]. We have developed an additional Java version of
Parsek that uses a ”FORTRAN style” (FS) procedural program. All methods are static,
arrays are passed directly as arguments and the data is accessed directly. The FORTRAN
style code is procedural in only one class. It includes the usual Particle mover, Field Solver,
and Interpolation stages.

4.3. FORTRAN 90 Parsek

To compare Java and FORTRAN 90 performances we wrote two additional versions of Parsek
in FORTRAN 90. We have chosen to use modern FORTRAN90 features, including types,
modules and array notation. Two versions have been written in FORTRAN 90: one with
coarse grained types and one with fine grained types.

4.3.1. Fine grained types

The fine grained data is stored as an array of elements of a defined type. The Particle type
describes an individual plasma particle, like an electron or ion, including its position and
velocity. Particle is organized as:

TYPE Particle

DOUBLE PRECISION :: Position

DOUBLE PRECISION :: Velocity

DOUBLE PRECISION :: ElectricFieldOnParticle

END TYPE Particle

The Field type represents the electromagnetic field and its sources for a given point of the
mesh. The Field type includes the charge density, the current density, the electric field for each
grid node. Field is written as follows:

TYPE Field

DOUBLE PRECISION :: ChargeDensity

DOUBLE PRECISION :: Potential

DOUBLE PRECISION :: ElectricField

END TYPE Field

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 11

4.3.2. Coarse grained types

The coarse grained data is stored as a defined type that includes arrays to accomodate particle
and field data. The Particles type describes an entire species of particles (composed of
NumberParticles individual particles), like all electrons or all ions, including their position,
velocity, mass, charge and the electric field acting on them. Particles is organized as:

TYPE Particles

DOUBLE PRECISION,dimension(0 : NumberParticles-1) :: Position

DOUBLE PRECISION,dimension(0 : NumberParticles-1) :: Velocity

DOUBLE PRECISION,dimension(0 : NumberParticles-1) :: Charge

DOUBLE PRECISION,dimension(0 : NumberParticles-1) :: Mass

DOUBLE PRECISION,dimension(0 : NumberParticles-1) :: ElectricFieldOnParticle

END TYPE Particles

The Fields type represents the electric field and its sources for the whole mesh (composed
of NumOfGridPoints points). The Fields type includes the charge density, the current density,
the electric field for each grid node. It is written as follows:

TYPE Fields

DOUBLE PRECISION, dimension(0 : NumOfGridPoints-1) :: ChargeDensity

DOUBLE PRECISION, dimension(0 : NumOfGridPoints-1) :: Potential

DOUBLE PRECISION, dimension(0 : NumOfGridPoints-1) :: ElectricField

END TYPE Fields

5. PARSEK AS BENCHMARK

The goal of our work is two-fold. First, we intend to develop a pure object-oriented simulation
code to study space and astrophysical plasmas. Second, we want to develop a benchmark that
closely reflects the ”real world” scientific computation. In the present paper, we consider only
a simplified version of the complete implicit PIC algorithm that we will ultimately use [16].
The simplified algorithm is reported in Sect. 2.1 and includes all the relevant steps used in the
great majority of existing PIC codes and provides a realistic benchmark for Java.

Using Parsek as a benchmark we conclude that a fine grained object-oriented design is
penalizing in performance but only by a reasonable margin. Furthermore, we reach the
somewhat surprising conclusion that Java has already become competitive with FORTRAN 90
for state of the art scientific computing. Below we describe in detail the results of our testing
campaign.

5.1. Testing Environment

Table I presents the platforms used for measuring the performance. The Java environment
is reported in Table I for each platform. The machines were relatively unloaded during each
simulation, and several runs were made at each test condition with the average time recorded.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



12 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

Table I. Platform used to test Parsek
Model Sun Blade 2000 Dell Precision 520 Dell Latitude C840 Dell Latitude C840

Processor UltraSPARC-III+ Xeon Pentium 4 Pentium 4
Processor Speed 1.2 GHz 1.9 GHz 1.6 GHz 2.0 GHz

Memory 512MB 4GB 512MB 1GB
Operating system SunOS 5.8 RedHat Linux 8 Windows 2000 Windows XP
SUN Java build 1.4.1-02-b06 1.4.1-b21 1.4.2-b28 1.4.1-b21

5.2. Test Problem

We study one-dimensional plasma dynamics in an uniform grid. In these simulations two
equal Maxwellian streams of electrons flow through each other, and the fields are solved
in the electrostatic limit. A motionless background of ions provides charge neutrality. This
plasma physics problem is known as the ”two stream instability” and it has been studied
thoroughly [1, 2]. The system extends between x = 0 and x = 2π, with periodic boundary
conditions. The ions are motionless, while the electrons follow trajectories imposed by the
interactions with the other charged particles. We have performed simulations with different
number of particles in a grid of 64 nodes.

Figure 3 shows the time evolution of the total energy of the physical system, as sum of
kinetic and potential energies. Figure 4 presents the phase space plot after 1000 time steps.
Every point of this plot identifies a particle: the projection on the x-axis is its position, while
the other coordinate is its velocity. Figures 3, and 4 show the results obtained with the three
different Java implementations (OO, LOO and FS) and prove that the three different Parsek
implementations reach the same results and that they perform equivalent operations. Note
that we used the same seed to generate the same pseudorandom series.

5.3. Java Performance

Table II and Figures 5 and 6 compare the execution time for the different implementations of
Parsek. All tests are performed on the SUN platform. In Table II the second, third and fourth
columns show the performance of Parsek, developed in Java with different object orientation
techniques. Each row presents the time performance in milliseconds, for simulations with
a different number of particles showed in the first column. Figure 5 illustrates graphically
these results. Figure 6 describes the dependency of the timing performance on the number of
particles. Clearly, the timing shows the relative slowness of the fine grained object-oriented
programming solution. While FS and LOO show a difference in performance of only a few
percent, the OO Parsek is on average 1.5 times slower than the others. However, it must
be stressed that, in our PIC code, the fine grained object-orientation is not as penalizing as
reported in previous studies [8]. Budimlić and Kennedy [9] wrote an object-oriented set of
LINPACK classes that they called OwlPack (Objects Within Linear algebra PACKage) [9]

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 13

Figure 3. History of Total Energy for the three implementations. The codes show the same evolution.

and tested the different programming techniques. Based on OwlPack, the conclusion was that
a OO program can be up to twenty times slower than the FORTRAN-style one.

Recently ”The Center For High Performance Software” of the Rice University has developed
JaMake [9], a Java compilation environment that uses advanced program analysis and
transformation techniques. JaMake is able to improve the performance of a fine grained object
oriented program to bring it almost to the same speed as a procedural or coarse grained object
oriented program. Although the JaMake package is still under development, we have succeded
in testing the performance of the OO version of Parsek when compiled using JaMake. The last
column of Table II shows the timing performance of the OO version of Parsek compiled with
JaMake. The results clearly show the elimination of the additional costs of fine grained object
orientation.

5.4. Java VS FORTRAN 90

Table III and Figure 7 compare the three Java implementations of Parsek with the two
implementations in FORTRAN 90. Different platforms and operating systems are considered.
All tests are conducted using 50,000 particles. In Table III the six last columns show the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



14 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

Figure 4. Phase Space plot after 1000 time steps (ωpet = 1) for the three implementations. The results
of the codes are identical since we used the same seed to generate random numbers and the programs

perform the same operations.

Table II. Execution times, showing the almost 1.5 times speedup of FS and
LOO over the pure OO. Tests on the SUN platform shown in Table I.

num.particles OO(ms) LOO(ms) FS(ms) OO-JaMake (ms)
1000 210 128 118 167
2000 413 233 233 281
5000 1032 551 605 603
10000 1999 1063 1224 1206
20000 4012 2143 2419 2517
50000 10273 5799 6164 6258

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 15

Figure 5. Execution times for FS, LOO, OO Parsek codes in Java. The performance data is reported
in Table II.

performance of Parsek, developed in FORTRAN 90 and in Java with different programming
techniques. The last column considers the fine grained OO version in Java compiled with
JaMake. Each row presents the time performance in milliseconds, for simulations running under
different operating system showed in the first column. The version of Java used is listed in Table
I for each platform. For the two FORTRAN implementations, we use the Lahey FORTRAN
95 compiler (version 5.7 for the Windows platform and version 6.1 for the Linux platform)
with maximum optimization on the Linux and Windows platforms. The Sun FORTRAN 90
version 6.2 with the compiler option -O3 is used for the SUN platform. Figure 7 illustrates
graphically these results.

Clearly, on the SUN platform, FORTRAN and Java performances are comparable, with
some Java implementations even outrunning both FORTRAN implementations. Conversely,
on the INTEL platforms, the coarse grained FORTRAN version remains about a factor of two
faster than the fastest Java, but the fine grained FORTRAN version is actually slower than
some Java implementations. The direct comparison between Java and FORTRAN requires
further comments.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



16 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

2000

4000

6000

8000

10000

12000

Number of Particles

T
im

e
 (

m
s
)

OO
LOO
FS
OO JaMake

Figure 6. Execution times: increasing the number of particles, the execution time increases linearly.
The performance data is reported in Table II.

Table III. Execution times for a simulation with 50,000 particles under
different operating system shown in Table I

O.S. F90 fine(ms) F90 coarse (ms) JavaFS(ms) JavaLOO(ms) JavaOO(ms) JavaOO-JaMake(ms)
Windows2000 3765 1680 3255 3956 5800 3625

Linux 2742 1130 2874 3420 3960 4250
SUN 7430 6485 6164 5799 10273 5386

First, on the Windows 2000 platform we tested also the Compaq FORTRAN compiler that
resulted in considerably slower execution. On the Linux platform we also tested the ABSOFT
compiler version 7, which was also slower but by a smaller margin.

Second, the two FORTRAN implementations perform significantly differently on the two
INTEL platforms. Coarse grained typing results in a improved handling of the cache since
operations conducted on an array of quantities (such as the particle positions) are closer in
memory and are loaded in the cache all together in a block.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 17

Figure 7. Execution times for FS, LOO, OO Java implementations and the two Fortran90
implementations. The performance data is reported in Table III.

Third, we have repeated the tests above with a different number of particles, reaching
virtually identical conclusions.

6. CONCLUSIONS

We have examined three different choices for the object-orientation of a particle in cell code and
we have studied their performances in Java. The coarse grained object-oriented version and the
procedural (FORTRAN style) version perform at approximately the same speed while the fine
grained object oriented version is only 1.5 times slower using a traditional compiler, and on
par with coarse grained implementation when using JaMake. Moreover, we completed a series
of tests comparing the Java versions with two FORTRAN 90 procedural implementations. The
FORTRAN versions vary in their performance according to the specific compiler and to the
choice between coarse and fine typing. But on average, FORTRAN and Java implementations
run at more or less comparable speed.

The conclusions reached here are a remarkable confirmation of the applicability of Java to
scientific computing. Previous studies had reported much less favorable results where fine

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



18 S. MARKIDIS, G. LAPENTA, W.B. VANDERHEYDEN, Z. BUDIMLIĆ

Table IV. Comparison in speed between SUN J2SDK1.4.1, SUN JDK1.0.2
and IBM WSDK version 5 on the Windows XP platform described in Table

I
Java Version OO(ms) LOO(ms) FS(ms)

SUN J2SDK 1.4.1 5357 2668 2674
SUN JDK 1.0.2 87512 49572 55409
IBM WSDK v.5 6909 2954 2624

grained object orietation was observed to be about a factor of ten slower and Java was
observed to underperform FORTRAN by a wide margin [8]. We believe the improved speed
of Java when compared with FORTRAN to be due to three reasons. First the Java codes
we developed do not employ significantly the Garbage collector, since the objects are created
at the beginning of the run and never destroyed. Second, the recently developed advanced
compiler techniques employed in the JaMake [9] compiler can remove the overhead associated
with using fine grained objects in scientific computation, as evidenced with results we have
reported in this paper. Third, as observed in previous studies [11], JVMs are being improved
at a fast pace by the major software companies. To prove this last point, we performed tests
using the OO version of Parsek and using different JVMs. Table IV compares the timing
performances, obtained with a Sun JDK 1.0.2 and a Sun J2SDK 1.4.1, running a simulation of
50,000 particles. Clearly, the new JVM is an order of magnitude faster than the old one. This
factor of ten is indeed what is required to explain the improvement of Java vs FORTRAN that
our tests have shown when compared with older studies [9, 10]. For completeness, Table IV
also considers another Java environment from another producer (IBM), obtaining only slightly
different results.

We believe that our tests show that Java even in its current version and without any
special features or any additional tools can be effectively used for high performance scientific
computing. Future developments, such as the JaMake compilation environment [9], will
improve the performance even further, making Java a very compelling candidate for the next
generation of high performance scientific computing applications.

ACKNOWLEDGEMENTS

One of the authors (S.M.) would like to thank Dr. Frederic R. Fairfield, President and CEO of
the Fairfield Enterprises. This work is funded by the National Nuclear Security Agency (NNSA) and
by NASA under the Sun Earth Connection Theory Program (SECTP). Z.B.’s work on this paper is
supported in part by Contract No. 74837-001-0349 from the Regents of University of California (Los
Alamos National Laboratory) to William Marsh Rice University.

REFERENCES

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



IMPLEMENTATION AND PERFORMANCE OF A PIC CODE WRITTEN IN JAVA 19

1. Birdsall C.K., Langdon A.B. Plasma Physics via Computer Simulation. McGraw-Hill, 1985.
2. Hockney R.W., Eastwood J. W.Computer simulation using particles. Adam Hilger, 1988.
3. Lapenta G., Brackbill J.U. Simulation of dust particle dynamics for electrode design in plasma discharge.

Plasma Sources Science & Technology 1997;6:61-69.
4. Norton C.D., Decyk V., Slottow J. Applying FORTRAN 90 and object-oriented techniques to scientific

application. Lecture Notes in Computer Science 1998; 1543:462-463.
5. Verboncoeur J.P., Langdon A.B., Gladd N.T. An Object-oriented electromagnetic PIC code. Computer

Physics Communications 1995; 87:199-211.
6. Reynders J.V.W., Forslund D.W., Hinker P.J., Tholburn M., Kilman D.G., Humphrey W.F., OOPS:

an object oriented particle simulation class library for distributed architectures. . Computer Physics
Communications 1995; 87:212-224.

7. Phipps, G. Comparing Observed Bug and Productivity Rates for Java and C++. Software: Practice and
Experience 1999; 29: 345-358.

8. Budimlić Z., Kennedy K., Piper J. The Cost of Being Object-Oriented: A Preliminary Study. Scientific
Computing 1999; 7(2): 87-95.

9. Budimlić Z., Kennedy K. JaMake: A Java Compiler Environment. Third International Conference on
Large Scale Scientific Computing 2001.

10. Lu Q.M., Cai D.S., Implementation of parallel plasma particle-in-cell codes on PC cluster, Computer Phys.
Comm. 2001; 135: 93-104.

11. Pozo, R., Java for High Performance Computing, Joint ACM Java Grande - ISCOPE 2002 Conference,
Seattle, Washington, November 3-5, 2002

12. Priest E.R., Forbes T. Magnetic Reconnection. Cambridge University Press, 1999.
13. Lipatov A.S. The Hybrid Multiscale Simulation Technology. Springer-Verlag, 2001.
14. Brackbill J.U., I.B. Cohen Multiple time scales. Academic Press, 1985.
15. Lapenta, G., Brackbill, J.U. Implicit Adaptive Grid Plasma Simulation, 5th International

School/Symposium for Space Simulation, Kyoto, Japan, March 13-19, 1997.
16. Ricci P., Lapenta G., Brackbill J.U. A Simplified Implicit Maxwell Solver. J. Comput. Phys. 2002; 183:117-

141.
17. VanderHeyden W.B., Dendy E.D.,Padial-Collins N.T 2001.CartaBlanca- A Pure-Java, Component-based

Systems Simulation Tool for Coupled Non-linear Physics on Unstructrued Grids. JOINT ACM Java
Grande - ISCOPE 2001 Conference, Stanford, California 2001.

18. Davies R., Java For Scientists and Engineers Addison-Wesley: University of Cambridge, 1999.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls


