Preparing an Online Java Parallel Computing Course

Vivek Sarkar
Rice University
Houston, TX, USA
vsarkar@rice.edu

Max Grossman
Rice University
Houston, TX, USA
jmg3@rice.edu

Abstract—While multi-core platforms are now ubiquitous in
all areas of information technology, from enterprise software
engineering to mobile app development, parallel computing
education is still lagging behind the demand for skilled parallel
programmers. At many universities today, parallel and concur-
rent computing is still not part of the core curriculum because
of resistance to major curriculum changes. Many other univer-
sities lack the necessary educators or infrastructure to teach a
comprehensive parallel computing course. Furthermore, even
addressing these issues would do nothing towards supporting
software professionals who have already entered the work force
and have no plans to return to school.

To address this broad need for a standalone, publically avail-
able, comprehensive, and easily accessible course on parallel
computing, we have developed an online offering packaged
as a Coursera Specialization on Parallel, Concurrent, and
Distributing Computing in Java.

In this paper, we describe the preparations for this online
course and the unique challenges we encountered in terms of
both curriculum development and technical infrastructure. We
describe how lessons learned from an on-campus parallelism
course at Rice University helped to shape the Coursera spe-
cialization, and summarize our experience with implementing
this specialization on the Coursera platform at scale.

Keywords-component; formatting; style; styling;

1. MOTIVATION

Over the last two decades, the number of cores available
in commodity hardware has grown significantly. Software
engineers across the industry have had to learn to use these
multi-core platforms, often while on the job. While there
has been a significant push in recent years to improve the
state of parallel computing education at the undergraduate
level [1][2], these efforts at isolated undergraduate institu-
tions do nothing to support students at 1) other educational
institutions without the resources to create their own parallel
programming course, or 2) professionals already working in
industry who want to broaden their skills.

Recently, Massive Open Online Courses have evolved as
an affordable and accessible way to gain a first-class edu-
cation. They have been particularly popular and effective in
teaching programming skils. Some course enrollments have
exceeded one million students [3], with the courses offered
today on MOOC platforms like Coursera [4], edX [5], and
Udacity [6] covering a wide spectrum of Computer Science
topics.

Shams Imam
Two Sigma
Houston, TX, USA

Zoran Budimlié¢
Rice University
Houston, TX, USA

We see MOOC:s as the best option for quickly addressing
the current lack of parallel computing pedagogy. A MOOC
on parallel computing allows professionals to retroactively
gain an education in parallel computing, while offering a
framework and a template on which on-campus parallel
computing courses can be based. Despite this observation,
there has been little existing work in teaching parallel
programming to a general, online audience and no prior
publications describing techniques in implementing a par-
allel computing MOOC. Most existing offerings are highly
specialized in their scope.

The first known instance of a parallel computing MOOC
was offered in 2012 on Coursera and titled “Heterogeneous
Parallel Programming” [7], taught by Professor Wen-Mei
Hwu of the University of Illinois Urbana-Champaign. This
course focused on teaching the essential parallel program-
ming concepts for natively programming multi-core CPUs
and GPUs using OpenCL or CUDA. As such, it was targeted
at a specialized and low-level audience looking to improve
their practical skills on multi-core hardware platforms. Un-
fortunately, this course is no longer offered.

In the Spring of 2013, Udacity introduced a similar course
specifically on CUDA programming [8]. Like Professor
Hwu’s course on Coursera [7], this course focused specifi-
cally on teaching how to program with CUDA without much
discussion of the fundamentals of parallelism. The lessons
learned would for the most part not be reusable across
parallel programming models or hardware platforms. Again,
this course is low-level and focused on the skills needed
to become a CUDA programmer, rather than a parallel
programmer. This course is still available today.

In the Spring of 2015, Coursera and the University
of Illinois Urbana-Champaign created a specialization on
“Clouds, Distributed Systems, and Networking” [9]. This
specialization differentiates itself from the previous courses
in that it focused on teaching both the abstract concepts
and practical aspects of cloud computing. While its focus
on cloud computing is arguably less special-purpose than
the emphasis on CUDA/OpenCL that the previous online
offerings exhibited, it still focuses on a relatively niche topic
rather than on parallel programming as a whole.

Most recently, in May of 2016, Coursera and the Ecole
Polytechnique Fédérale de Lausanne launched a course

on “Parallel programming” [10] using Scala. This course
focuses on shared-memory task parallelism, data parallelism,
and concurrent data structures in Scala. Functional program-
ming is used to simplify writing correct parallel programs,
but student solutions are not graded on the implementation
performance. However, this is the first example of a parallel
programming course taught from the fundamentals up and
using a portable, general-purpose platform.

From the earliest parallel computing MOOC in 2012 to
the most recent in 2016, there is a clear demand for both
low-level and specialized courses and more fundamental
and generalized courses. There is a growing demand for a
comprehensive online education in parallel computing, but
it is still important to students that the lessons learned be
relevant to real world software engineering. Each of these
existing courses has its own limitations regarding of how
general-purpose are the models used to teach the courses
(e.g. CUDA, Scala), how special-purpose are the hardware
platforms that the courses focus on (e.g. cloud, GPUs), and
to which the course teaches both useful fundamentals and
specialized practical skills. Additionally, to the best of our
knowledge, there are no publications describing the creation
process for these courses.

In this paper, we present the design and implementa-
tion of a parallel computing curriculum, implemented as a
Coursera Specialization. We emphasize broad applicability
by teaching fundamentals of parallelism using common tools
(i.e., the Java programming language and standard libraries),
while motivating course lessons with problems relevant in
real world software engineering. As such, we aim to provide
professional software engineers with the tools that will make
them immediately comfortable in a multi-core environment
while teaching fundamentals that will be useful regardless
of which programming model or language they use. This
specialization is titled “Parallel, Concurrent, and Distributed
Programming in Java”, and shortened to PCDP for the
remainder of this paper.

This paper is structured as follows. Section II summarizes
the authors’ past experience teaching on-campus parallel
programming courses, and how that background contributed
to the design of PCDP. Section IIl describes in detail
the curriculum and structure of the PCDP specialization.
Section IV describes the technical infrastructure that had to
be constructed to support PCDP at scale. Finally, Section V
concludes the paper.

II. BACKGROUND

In previous publications [1][11], we have described our
approach to integrating parallel programming into an on-
campus undergraduate curriculum at Rice University. In
particular, the on-campus offering, called COMP 322 [12],
includes:

1) An initial focus on building a foundation of fundamen-

tal and general concepts in parallelism (e.g. parallel

algorithms, data races, deadlocks, livelocks, critical
path length, etc.)

2) Reinforcing those fundamental concepts with practical
experience using both standard parallel Java program-
ming constructs and a custom parallel programming
library [13] to express parallel programs. This includes
reasoning about the abstract and real performance of
these parallel programs.

3) Using a partially flipped classroom by assigning online
content to review prior to class, and spending half of
in-class time in a class lecture format, with the other
half spent solving in-class problems.

4) Using an auto-grading system to improve the automa-
tion and transparency of student evaluation.

COMP 322 has been offered nine times since Fall of 2009,
and experiences gained teaching it contributed directly to the
structure and design of the PCDP specialization.

In particular, COMP 322 is split into three modules: Par-
allelism, Concurrency, and Distribution. Parallelism covers
the creation and coordination of parallelism, as well as
common parallel algorithms and techniques for reasoning
about parallel performance. Concurrency focuses on critical
sections and concurrent data structures, i.e. how to share
data among many parallel computations. Finally, distribution
illustrates programming parallel machines when distribution
of data or locality matters, e.g. on heterogeneous or dis-
tributed systems. Later, we will describe how the PCDP
specialization’s structure mirrors these modules.

COMP 322 uses Java to teach parallel programming for a
number of reasons. First, the majority of students are likely
to use Java in their future careers. Teaching practicum in
Java improves the relevance of those lessons. Second, the
majority of students will have already seen Java in past
courses and be familiar with its syntax and conventions.
Third, Java offers portability and reduces the challenges
faced when supporting portable execution of a single code
base across many different student laptops. Fourth, the Java
Virtual Machine is designed to be a highly concurrent sys-
tem (e.g. it has the MONITORENTER and MONITOREXIT
bytecode instructions), making it a natural fit for parallel
programming pedagogy.

COMP 322 primarily uses online quizzes and multi-
week programming assignments to evaluate student com-
prehension. We have found quizzes to be a lightweight
method for testing knowledge on very specific subjects,
and identifying poor comprehension early on. Programming
assignments are naturally crucial to giving students a chance
to apply their theoretical knowledge in the real world. In
general, programming assignments are graded on both the
correctness and performance. Early assignments focus on
abstract performance metrics (e.g total work, critical path
length, ideal parallelism etc.) while later assignments focus
on real world performance. Additionally, students are given
midterm and final exams.

These characteristics of COMP 322 have developed over
nearly a decade of parallel programming pedagogy. Natu-
rally, these lessons helped to shape the PCDP specialization,
as described in the next section.

III. CURRICULUM DEVELOPMENT

The PCDP Coursera specialization consists of three sep-
arate courses: Parallelism, Concurrency, and Distribution.
These courses mirror the structure of the on-campus course,
COMP 322.

Each course consists of four weeks of content focused
on different topics. Each week includes five lectures done
in front of a light board, a demonstration video illustrating
a practical use of the concepts from lectures, a quiz on
the concepts taught, and a mini-project that gives students
hands-on experience with the concepts from that week.

There are two goals in the design of the PCDP special-
ization which were often at odds with each other. On one
hand, this content must be consumable by a programmer
who is completely new to parallel programming, and so
explanations should be simple and clear. At the same time,
the specialization must leave that programmer with enough
background and practice that their skills are immediately
relevant. Striking a balance between providing enough detail
to be useful, but not getting too deep into details as to lose
students, was a crucial constraint on the content and structure
of this specialization.

A. Parallelism

The Parallelism course is split into weeks on task par-
allelism, functional parallelism, loop parallelism, and data
flow programming. As such, it provides a comprehensive
overview of the most common parallel programming patterns
in use today.

The Parallelism course starts by describing how to create
parallelism using tasks, and how to abstractly reason about
the perfomance of parallel programs using concepts like total
work, critical path length, and Amdahl’s Law.

With that foundation, this course then introduces the
connection between functional and parallel programming
using Java Streams. At the same time, the concurrency
errors that are commmonly avoided when using functional
programming (i.e. data races) are covered.

The course then introduces loop parallelism as a common
parallel pattern similar to some functional parallelism pat-
terns, and concludes with using constructs like phasers [14]
to implement dataflow and pipeline parallelism.

Mini-projects in the parallelism course focus on illustra-
tions of the real-world performance improvement possible
with multi-threaded execution. While abstract performance
metrics are taught, they are not used in the evaluation of
student submissions. Instead, student submissions are eval-
uated on the real world speedup they are able to achieve. In
particular, mini-projects used include reciprocal array sum,

dense matrix-matrix multiplication, and one-dimensional it-
erative averaging (a 1D stencil code) to illustrate concepts
taught in lectures.

B. Concurrency

The Concurrency course is split into weeks on thread-
s/locks, critical sections, actors, and concurrent data struc-
tures. This course focuses on providing programmers with
the tools necessary to efficiently manage concurrent accesses
to shared data.

The Concurrency course starts by introducing two fun-
damental constructs: threads and locks. It discusses how
they can be used safely together, but also explains how
concurrency errors (e.g. deadlocks) are easily created with
unstructured locking. The course then builds on that by
discussing critical sections, and explaining the safety ben-
efits (e.g. deadlock freedom) that result from using more
structured forms of isolation.

Actors are then introduced as a different way of managing
concurrent access to shared data without the need for explicit
isolation on data structures. Finally, the Concurrency course
concludes with an overview of low-level concurrent data
structures (e.g. concurrent hash map, concurrent queue) as
well as introducing linearizability as a property of these
thread-safe data structures.

Mini-projects in the concurrency course include:

1) A performance comparison of Java locks,
synchronized, and Java read-write locks when
implementing a concurrent, read-heavy, sorted list.

2) Global isolation vs. object-based isolation for highly
parallel applications, illustrated using a banking sim-
ulator.

3) Finding prime numbers using the Sieve of Eratos-
thenes algorithm, implemented using actors.

4) Implementing a parallel Boruvka’s algorithm for find-
ing the minimum spanning tree of a graph.

C. Distribution

The Distribution course is split into weeks on MapReduce,
client-server programming, message passing programming,
and effective combinations of distributed and multi-threaded
parallelism. This course focuses on ways in which program-
mers can program distributed systems, including modern
frameworks such as Hadoop MapReduce and Apache Spark.

Because writing applications for distributed systems is
naturally a more specialized skill than general parallel
programming, the distribution course also offers the most
specialized topics of the three courses. Discussion starts with
writing distributed programs using Hadoop MapReduce and
Apache Spark, as these are argubly the most widely used
distributed programming models for analyzing large datasets
in industry.

Client-server programming is introduced as another im-
portant distributed programming pattern that more relevant

to the web technology industry. After introducing client-
server programming, the course discusses how to combine
multiple parallel processes (e.g. multiple web server in-
stances) with multi-threaded parallelism within each process.

Finally, message passing programming models are in-
troduced as the variant of distributed programming that is
most common in distributed, high-performance computing.
The message passing portion of this course starts from
the abstract concept of Single-Program Multiple-Data par-
allelism and progresses to specific MPI APIs. Analogies
are also drawn to MapReduce programming in that some
computational patterns are expressible in both (i.e. a Hadoop
Reducer vs. MPI_Reduce).

Mini-projects in the Distribution course generally have
a higher level of complexity than in previous courses,
and include implementing the Page Rank algorithm using
Apache Spark, writing a simple file server, extending that file
server to be multi-threaded, and writing a parallel matrix-
matrix multiplication using MPI.

D. Curriculum Review

All content developed for the PCDP specialization went
through several rounds of review. First, all videos, quizzes,
and mini-projects were reviewed by at least two undergrad-
uate students that had taken Rice’s on-campus parallelism
course. These reviewers were helpful in checking for gram-
matical errors, clarity, and correctness.

Then, courses are sent to Coursera for a “beta” test where
external Coursera learners take the course and offer feedback
to the course staff. This feedback is addressed before the
course goes live.

IV. TECHNICAL INFRASTRUCTURE

In addition to challenges developing a curriculum appro-
priate for a MOOC (described in Section III), there are
also unique technical challenges in supporting a large-scale
parallel computing course, particularly one that evaluates
students on the real-world performance of the solutions to
their assignments. We highlight three of those challenges
in this section: mini-project development, a custom paral-
lel programming library, and automatic grading of student
submissions.

A. Mini-Project Development

In the PCDP specialization, all mini-projects are provided
as Maven [15] projects. This simplifies their deployment,
compilation, dependency management, and IDE integration
on student laptops.

Mini-project topics are generally chosen to be understand-
able, relatable, and topical to the parallelism concepts stu-
dents are being taught. These mini-projects are not intended
to be multi-day efforts, but rather brief hands-on experiences
with the concepts students are learning. For example, the
MPI mini-project parallelizes a dense matrix-matrix multiply

across MPI ranks. While the topic matter is straightforward
and understandable, this project still requires understanding
of topics such as data distribution, send/receive APIs, barri-
ers, and asynchronous communication.

Mini-projects are described in a one to two page project
description page in the Coursera course. The description of
each project includes at least the following four sections:

1) Project Goals & Outcomes: A high-level overview of
the concepts students will use to implement the mini-
project, the expected outcome, as well as pointers to
related material in the lectures or demo videos.

2) Project Setup: Instructions on downloading and setting
up the provided mini-project source code.

3) Project Instructions: More detailed instructions on
completing the mini-project, often paired with helpful
TODOs in the provided mini-project source code.

4) Project Evaluation: Instructions on how to test student
code locally and in the Coursera autograder (details in
Section IV-C), as well as a rubric that their submission
will be evaluated on.

Mini-project development especially emphasises thorough
and useful documentation of provided source code to aid
student understanding and to focus their efforts on express-
ing parallelism, not on reading boiler plate code. Significant
time was also spent ensuring that the provided tests were
consistent and reliable across different platforms.

Optimally, mini-projects should be executable across all
student platforms. In general, the choice of the Java Virtual
Machine as an execution environment guarantees this. In
only one case (the mini-project on MPI) are there third-party,
native dependencies which may prevent some students from
running the mini-project locally. However, students always
have the ability to test their code on a shared auto-grading
infrastructure (described in Section IV-C). While this may be
a cumbersome development experience, we do not foresee
it being a regular practice.

To help address student environment or platform issues
early on, a “Mini-Project 0” is offered at the start of the
course that asks them to compile and run a simple parallel
program on their laptop. This enables early identification of
any infrastructure issues for students.

B. Parallel Programming Library

While much of the PCDP specialization focuses on tradi-
tional parallel programming frameworks, the APIs of those
frameworks can be verbose and cumbersome for newcomers
to parallel programming. As a result, a lightweight parallel
programming library for Java was developed and open
sourced [16] as part of this work, based on past experience
developing the pedagogical HJlib parallel programming li-
brary [13][1]. For the remainder of this paper, we refer to
this lightweight library as PCDPIib.

PCDPIlib is a Java parallel programming library that
exposes lambda-based APIs. Using a library rather than a

// Waits for all nested tasks to complete
PCDP. finish (() — {
S1;

// Spawns an asynchronous task
async (() —> {

s

// Spawns a nested asynchronous task
async (() —> {

)
I3F

>

// Spawn a sibling asynchronous task to S2 abov

async (() = {

1)

9

Figure 1. A simple example of the PCDP task-parallel APIs.

custom language has significant long-term maintainability
and stability benefits. User logic is expressed in the body of
Java lambdas, and the PCDPIlib APIs are used to pass this
logic to the runtime for scheduling and synchronization.

For example, Figure 1 offers a simple illustration of using
PCDP’s APIs to create asynchronous tasks (async) and
perform bulk task synchronization (finish).

PCDPIib’s implementation was deliberately kept simple
while still supporting the parallel programming constructs
needed for the PCDP specialization. In particular, PCDPlib
supports the combination of the following parallel program-
ming constructs in a single program and on a single runtime:

1) Asynchronous task parallelism

2) Bulk task synchronization

3) Multi-dimensional parallel

unchunked)

4) Futures

5) Isolated critical sections

6) Actor parallelism

A listing of all PCDPIlib APIs can be found at the PCDPIlib
Javadocs [17].

A strong emphasis was placed on keeping PCDPlib’s
implementation simple for its pedagogic value. In particular,
we believe that it is important for a student who is curious
about the implementation of a parallel API to be able to
read and understand the source code that implements that
API. This was also part of the motivation for open sourcing
the library. By keeping the implementation of PCDPIlib
approachable and open, we hope that students may use it as
a supplementary material for learning about parallel systems.

Of course, not every mini-project in the PCDP specializa-
tion depends on PCDPIib. In general, as the specialization
progresses to more advanced topics, fewer mini-projects

loops (chunked and

make use of PCDPIib and instead rely on more traditional
frameworks. For example, no mini-projects in the Distribu-
tion course of the specialization depend on PCDPIib.

C. Automatic Grading

Given that the “M” in MOOC stands for “Massive”,
manual grading of student submissions in the PCDP spe-
cialization is not feasible. In previous work [1], the authors
have explored auto-grading techniques for Rice University’s
on-campus parallelism course. However, Coursera provides
autograding infrastructure for courses hosted on its platform,
including what are called “custom graders” [18]. A “custom
grader” allows instructors to upload custom Docker [19]
ifhages which are passed a student submission as input,
and which produce a grade for that submission as a JSON-
formatted feedback object. This offers instructors wide flex-
ibility in grading the assignments. Different Docker objects
can be uploaded to Coursera for different assignments and
used to add customized grading for each assignment. From
a security point of view, the benefit of using custom Docker
objects is that instructors can use root privileges to pre-install
the necessary software on their images without having root
privileges on the running instance while grading a student
submission.

The Coursera custom grading system allows instructors to
request variable amounts of CPU cores and memory for each
grading instance. For the PCDP specialization, we always
request the maximums for both: 4 CPU cores and 4GB of
memory.

For this course, we developed a generic, JUnit-based
testing infrastructure on top of the Coursera custom grader
system. For each assignment, the instructor must provide a
rubric which specifies the points for each JUnit test. Our
custom testing infrastructure is then responsible for creating
a complete project around the student submission, compiling
it, running all JUnit tests at varying core counts, and gen-
erating a grade based on the provided rubric and observed
correctness/performance of each test. This infrastructure is
shared across all mini-projects in the specialization; only the
rubric file needs to be changed from one mini-project to an-
other. This greatly simplifies deployment of custom graders,
and improves the robustness of the testing infrastructure.

One of the largest challenges in developing this shared
testing infrastructure was supporting the full variety of mini-
projects. For example, the custom testing infrastructure had
to be flexible enough to support execution of multi-threaded
Java, multi-threaded PCDPIlib, MPI, Apache Spark, and
multi-process/multi-threaded web server programs. This had
to be accomplished from within Coursera’s containerized
environment.

V. CONCLUSIONS

As a result of recent hardware trends, parallel computing
has been identified as an area of computing education in

need of significant improvements [2]. While existing efforts
to improve parallel computing education have focused on
undergraduate curriculum, those efforts are generally un-
scalable to the majority of programmers and leave many
students unsupported (e.g. undergraduate students at under-
staffed institutions, professionals in industry).

This paper summarizes the existing work in this area
in Section I, and differentiates our approach, the Coursera
PCDP Specialization in both its generality and comprehen-
siveness. We describe the development of both the course
curriculum and technical infrastructure for this course in
Sections III and IV. The PCDP Specialiation is built to be
scalable and accessible, offering both 1) a strong grounding
in the general fundamentals of parallel computing, and 2)
practical experience programming parallel systems.

ACKNOWLEDGMENT

We would like to thank Coursera, the Rice Center for Dig-
ital Learning and Scholarship, the teaching staff for COMP
322, and Rice University for their support in developing the
PCDP Specialization.

REFERENCES

[1] Grossman, Max and Aziz, Maha and Chi, Heng and Tibrewal,
Anant and Imam, Shams and Sarkar, Vivek, “Pedagogy and
Tools for Teaching Parallel Computing at the Sophomore
Undergraduate Level,” Journal of Parallel and Distributed
Computing, 2017.

[2] S. K. Prasad, A. Gupta, A. L. Rosenberg, A. Sussman, and
C. C. Weems, Topics in Parallel and Distributed Computing:
Introducing Concurrency in Undergraduate Courses. Mor-
gan Kaufmann, 2015.

[3] J. Markoff, “The most popular online course teaches you
to learn,” https://bits.blogs.nytimes.com/2015/12/29/the-most-
popular-online-course-teaches-you-to-learn/?_r=0, 2015.

[4] Coursera, “Coursera,” https://www.coursera.org/.

[5] edX, “edX,” https://www.edx.org/.

[6] Udacity, “Udacity,” https://www.udacity.com/.

[7] Wen-mei W. Hwu, “Heterogeneous Parallel Programming,”

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Aziz, Maha and Chi, Heng and Tibrewal, Anant and Gross-
man, Max and Sarkar, Vivek, “Auto-Grading for Parallel
Programs,” in Proceedings of the Workshop on Education for
High-Performance Computing. ACM, 2015, p. 3.

“COMP 322: Fundamentals of Parallel
Programming,” 2014. [Online]. Available:
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

S. Imam and V. Sarkar, “Habanero-java library: a java 8
framework for multicore programming,” in Proceedings of the
2014 International Conference on Principles and Practices
of Programming on the Java platform: Virtual machines,
Languages, and Tools. ACM, 2014, pp. 75-86.

J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer,
“Phasers: a Unified Deadlock-Free Construct for Collective
and Point-to-Point Synchronization,” in Proceedings of the
22nd annual international conference on Supercomputing.

ACM, 2008, pp. 277-288.

The Apache Software Foundation,
https://maven.apache.org/.

“Apache Maven,”

Imam, Shams and Grossman, Max, “PCDPIlib Source Code,”
https://github.com/habanero-rice/PCDP.

_ “PCDPlib Javadocs,” https://habanero-
rice.github.io/PCDP/.
Coursera, “Coursera Custom Graders,”

https://github.com/coursera/programming-assignments-
demo/tree/master/custom-graders.

Docker, “Docker,” https://www.docker.com/.

http://academictorrents.com/details/8903d0871c652b96c7b29db738cea76902d65888.

[8] Luebke, David and Owens, John and Roberts, Mike
and Lee, Cheng-Han, “Intro to Parallel Programming,”
https://www.udacity.com/course/intro-to-parallel-
programming—cs344.

[9] Farivar, Reza and Singla, Ankit and Gupta, Indranil
and Godfrey, P. Brighten and Campbell, Roy H.,
“Clouds, Distributed Systems, and Networking,”

https://www.coursera.org/specializations/cloud-computing.

[10] Kuncak, Viktor and Prokopec, Aleksandar, “Parallel Program-

ming,” https://www.coursera.org/learn/parprog1.

