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The Partitioned Global Address Space (PGAS) programming
models combine shared and distributed memory features, provid-
ing the basis for high performance and high productivity parallel
programming environments. UPC++ [39] is a very recent PGAS
implementation that takes a library-based approach and avoids the
complexities associated with compiler transformations. However,
this implementation does not support dynamic task parallelism and
only relies on other threading models (e.g., OpenMP or pthreads)
for exploiting parallelism within a PGAS place.

In this paper, we introduce a compiler-free PGAS library called
HabaneroUPC++, which supports a tighter integration of intra-
place and inter-place parallelism than standard hybrid program-
ming approaches. The library makes heavy use of C++11 lambda
functions in its APIs. C++11 lambdas avoid the need for compiler
support while still retaining the syntactic convenience of language-
based approaches. The HabaneroUPC++ library implementation is
based on a tight integration of the UPC++ library and the Habanero-
C++ library, with new extensions to support the integration. The
UPC++ library is used to provide PGAS communication and func-
tion shipping support using GASNet, and the Habanero-C++ li-
brary is used to provide support for intra-place work-stealing inte-
grated with function shipping. We demonstrate the programmabil-
ity and performance of our implementation using two benchmarks,
scaled up to 6K cores. The insights developed in this paper promise
to further enhance the usability and popularity of PGAS program-
ming models.
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1. INTRODUCTION
The Partitioned Global Address Space (PGAS) programming

model [2] strikes a balance between shared and distributed mem-
ory models [26]. It provides ease of programming due to its global
address memory model and performance due to locality aware-
ness. Languages belonging to this category include Co-Array For-
tran [23], Titanium [37], UPC [10], X10 [6] and Chapel [5]. They
rely on compiler transformations to convert the user code to the na-
tive code. Some of these languages, such as Titanium, X10 and
Chapel, use code transformations to provide dynamic tasking capa-
bilities using a work-stealing scheduler [22, 12, 18, 19, 27, 4] for
load balancing of the dynamic tasks. Min et al. introduced API
based dynamic tasking library for UPC [21]. However, it lacks the
expressiveness of the X10’s async-finish style dynamic tasking.
Co-Array Fortran does not allow dynamic tasking but permits the
user to use OpenMP libraries for achieving loop-level parallelism.

The library approach to PGAS programming makes it easier
to interoperate with other programming models such as MPI [7],
CUDA [24] or even other PGAS languages. It also avoids the
significant development and maintenance costs associated with a
language-based approach. In addition, the compiler-free approach
facilitates adding new features and combining multiple packages.
UPC++ [39] is a very recent PGAS approach, implemented as
a C++ library. However, UPC++ does not allow intra-place 1

dynamic tasking. It introduces inter-place asynchronous copy
and asynchronous function shipping, with the limitation that these
asynchronous activities don’t automatically migrate (e.g., no work-
stealing) and finish doesn’t track transitively spawned descen-
dant activities by default as in X10’s async-finish. For intra-
place loop parallelism in UPC++, the user relies on other thread-
ing models (e.g., OpenMP or pthreads).

Work-stealing schedulers have emerged as the approach of
choice for dynamic load balancing. Within the underlying language
runtime they use a fixed size worker pool to schedule the work ex-
posed by the programmer, exploiting idle processors and unburden-
ing those that are overloaded. Habanero-Java [4] and Habanero-
C [28] implement X10 style async-finish tasks for shared mem-
ory. A variant of Habanero-C called HCMPI [7] provides SPMD
programming model using intra-node async-finish parallelism
and MPI for inter-node parallelism. However, HCMPI relies on

1We use place to represent each independent execution unit in
UPC++ and threads to represent work-stealing workers.



finish {
async [(place)] [IN (var1 , var2 , ...)]

[OUT (var1 , var2 , ...)]
[INOUT (var1 , var2 , ...)]
[AWAIT (ddf1 , ddf2 , ...)]
[phased] Statement;

forasync [in (var1 , var2 , ...)]
[point (ind1 , ind2 , ...)]
[size (siz1 , siz2 , ...)]
[seq (seq1 , seq2 , ...)] Body;

}

Figure 1: Dynamic tasking constructs in Habanero-C.

compiler transformations and by using MPI it does not get the ben-
efits of the PGAS programming model.

The main contributions of this paper are: a) Habanero-C++ li-
brary, a compiler-free approach for using Habanero work-stealing
using C++11 lambda functions; b) HabaneroUPC++, a new PGAS
library combining the benefits of Habanero-C++ and UPC++, and
allowing the programmer to conveniently and concisely expose
dynamic task parallelism in a highly scalable PGAS implementa-
tion; and c) evaluation of HabaneroUPC++ using two benchmarks,
scaled up to 6K cores.

The rest of the paper is structured as follows. Section 2 pro-
vides the relevant background. Section 3 summarizes the Habaner-
oUPC++ programming model. Section 4 explains the details of our
runtime. Section 5 evaluates HabaneroUPC++ performance on the
Edison supercomputer at NERSC. Section 6 discusses the related
work and, section 7 concludes the paper.

2. BACKGROUND

2.1 Habanero-C
Habanero-C language provides a finish-async task-parallel

programming model [4] for exploiting intra-node parallelism. Here
we briefly describe some of its features related to this paper, more
details can be found in [28]. Habanero-C is based on Habanero-
Java, which itself was derived from an earlier version of X10. Fig-
ure 1 shows the different dynamic tasking constructs available in
Habanero-C.

The async is used to create a child task asynchronously to ex-
ecute Statement. finish is used to join all async tasks, in-
cluding the transitively spawned ones. Habanero-C uses compiler
transformations to translate these dynamic tasking constructs from
user code to runtime calls. The local variables declared outside
of the async scope can be acessed inside of the async by using
IN/OUT/INOUT clauses. IN declares a variable as read-only, OUT
specifies write-only and INOUT specifies both read and write ac-
cess. The place can be used to specify a node within a hierar-
chical place tree [35] (intra-node only). The AWAIT clause can be
used for data-driven task (DDT) synchronization [33]. async with
AWAIT clause gets executed only when all the ddf (data-driven fu-
tures or DDFs) have been satisfied (written using a put operation).
The phased clause registers an async with phasers [29] specified
in the list with the corresponding modes. If empty phaser list is
specified then it registers the async on all the phasers of the parent
task. The phased async is executed only when the signal modes
are satisfied on the listed phasers.
forasync construct is similar to a program loop which exhibits

parallel_for parallelism. The point clause specifies the loop
indices in each dimension. Total number of iteration in each dimen-
sion is specified using the size clause. The clause seq specifies the

tile size. The runtime can be instructed to schedule forasync in
two ways, chunked scheduling and recursive scheduling. In chun-
ked mode the loop iterations are chunked into blocks of length
specified by seq clause whereas in recursive mode the iterations
are recursively partitioned until size matches seq value.

2.2 OCR
Studies suggest future high performance computing systems

would scale to exascale. These exascale systems would contain
attributes that would be 1000 times the value of similar attribute
of a petascale system from the year 2010 [1]. These systems
will be massively multicore per chip. Their performance will be
driven by parallelism, constrained by energy and data movement.
Open Community Runtime (OCR) [25] is an open-source, multi-
institutional project aimed at creating a common set of runtime
APIs for task-parallel programming models suited for the exascale
systems. These APIs can be either targeted by a compiler for a
high-level programming language, or called directly by a hero pro-
grammer writing an application directly in OCR.

OCR also supplies a reference implementation that uses the ideas
from the Habanero-C (Section 2.1) work-stealing runtime to imple-
ment non-blocking load-balancing of tasks across different proces-
sors. As of this writing, there are OCR implementations on x86
shared-memory multiprocessors and on clusters of x86 machines.

The main concepts in OCR are:

1. Tasks. Event-driven tasks (EDTs) are the units of computa-
tion in OCR. All EDTs have to declare a set of dependencies
to which external events can be connected. An EDT does not
begin execution until all its dependencies have been satisfied.
EDTs are intended to be functional, non-blocking pieces of
code. Internally, they can exploit some other form of paral-
lelism (such as data parallelism) but they should communi-
cate with other EDTs only by using Data Blocks and Events
defined below. All EDTs have a globally unique ID (GUID)
that identifies them across the system.

2. Data. Data Blocks (DBs) are the mechanism for storing and
communicating data between EDTs. DBs are identified by
a GUID as well. Since DBs can be relocated and replicated
by the runtime for performance, energy or resilience reasons,
it is essential that all user data is expressed in terms of DB
GUIDS and offsets within DBs instead of pointers as in tra-
ditional shared-memory systems.

3. Events. Events are the mechanism for creating data and con-
trol dependencies in OCR. When an EDT’s dependence is
connected to an event, the runtime is informed that that par-
ticular EDT depends on that particular event, and the EDT
will not execute until that event is satisfied. An EDT per-
forming a put on an event can satisfy that event. A put on
an event can be empty (used for triggering the execution of
EDTs waiting on that event, i.e. implementing control de-
pendence) or it can take DB GUID as a parameter (used to
pass data to the EDTs waiting on that event, i.e. implement-
ing data dependence). Each event has a GUID as well.

The programmer (or compiler) creates an OCR program by con-
structing a dynamic graph of EDTs, DBs and events. There are
currently several higher-level parallel programming models that
map onto OCR, including CnC [14], HClib [3], HTA [11] and
RStream [20]. This paper demonstrates the integration of OCR
(through the use of the HCLib Habanero implementation built on
top of OCR) with the UPC PGAS programming model.



// struct packing all vars
typedef struct {

var1;
var2;
....

} async_args_t;

// Wrapper function to execute user function
void async_func(void* async_args) {

// Cast pointers
async_args_t *args

= (async_args_t *) async_args;
// Pass all local vars to user function
Statement(args ->var1 , args ->var2 , ....);

}

main() {
// Pack all ddf in a list
ddf_list = create_ddf_list(ddf1 , ddf2 , ....);
// Pack all phaser in a list
phaser_list = create_phaser_list (....);
// Pack all local vars in a struct
async_args_t async_args = {var1 , var2 , ....};
// Start finish scope
start_finish ();
// Schedule the async task
schedule_async(Statement , &async_args , place ,

ddf_list , phaser_list );
// End finish scope
end_finish ();

}

Figure 2: Using HClib’s approach to implement Habanero-C’s
async task in Figure 1.

2.3 HClib
OCR is implemented as a runtime that can be targeted by higher-

level programming systems. HClib is a C-language based library,
which is implemented on top of OCR to provide the dynamic task-
ing features of Habanero-C language (Section 2.1). However, this
approach comes at the cost of losing Habanero-C language’s syn-
tactic constructs and its compiler support for continuations. Fig-
ure 2 shows the pseudo code to implement the Habanero-C async

from Figure 1 using HClib. The Statement needs to be wrapped
inside a function, which the OCR runtime can execute. All the
local variables from outer scope, which are to be accessed inside
Statement, have to be wrapped in a struct and passed as a
“void*” pointer to OCR. Similarly, all the DDFs and phasers are
also packed in a list.

The HClib library is built on top of OCR. It is composed of three
layers: HClib; HClib on OCR; and OCR. The first layer defines
HClib data-structures and user APIs. It is agnostic to the under-
lying runtime it executes on. The second layer acts as a bridge
between HClib and OCR. This layer knows about the OCR run-
time and translates HClib actions into OCR ones. The third layer
is the OCR runtime, which is the supporting execution platform.
Most of the interaction between HClib and OCR happens in the
second layer. In this layer, the API call for any of the Habanero’s
asynchronous task types is transformed into a generic EDT rep-
resentation. HClib relies on OCR to configure and bootstrap the
underlying execution runtime.

2.4 UPC++
UPC++ is a PGAS C++ extension, which can be used as a

standalone programming system for developing PGAS C++ ap-
plications or as a runtime component to support other high-level
programming languages and libraries. UPC++ adopts the PGAS
memory model and the SPMD execution model from UPC. Each

Table 1: Basic PGAS primitives in UPC++
Programming Idiom UPC++

Number of places ranks()

My ID myrank()

Shared variable shared_var<Type> v

Shared array shared_array<Type> a(count)
Global pointer global_ptr<Type> p

Memory allocation allocate<Type>(place, count)

Data transfer async_copy<Type>(src, dst, count)

RPC async(place)(Function, args...)

Synchronization async_wait()/async_try()/barrier()

UPC++ place has its private address space and a partition of the
global address space, in which data is directly accessible by all
UPC++ places even on distributed-memory systems. Here we give
a brief overview of UPC++ features used in HabaneroUPC++ about
global data sharing, one-sided communication, and remote func-
tion invocation (a.k.a. function shipping). Table 1 lists the essential
UPC++ programming constructs.

In the UPC++ PGAS memory model, shared objects can be de-
clared statically at compile time or allocated dynamically at run
time. UPC++ shared data types are implemented as generic tem-
plates parameterized over the object type, which can be either built-
in types or user-defined types (e.g., class. shared_var<T> type
of data are physically located in the same global partition as in
UPC, and shared_array<T> type of data are block-cyclically dis-
tributed across all global partitions. UPC++ shared_array can
be initialized with dynamic size and blocking factor at runtime
(e.g. sa.init(N, BF)). The default blocking factor of UPC++
shared arrays is 1 (cyclic distribution) and it can be changed with
shared_array member function set_blk_sz. The subscript op-
erator [] is overloaded to provide the same accessing rules as non-
shared arrays. In addition, shared_array can be declared (collec-
tively) inside a function scope. Due to its SPMD nature, UPC++
shared variable names can be referenced from different processes,
which provides a convenient way for communication and synchro-
nization. Regardless of their physical location, shared objects are
accessible by any UPC++ place.

Dynamic global memory allocation is done through generic
global pointer type (global_ptr<T>) which points to a shared
object of type T. A global pointer encapsulates both the process
place and the local address of the shared object referenced by the
pointer. Pointer arithmetic with global pointers in UPC++ works
the same way as arithmetic on regular C++ pointers. Global ad-
dress space memory can be allocated and freed at any place by
allocate and deallocate templated functions.

Communication in UPC++ applications may appear in two
forms: 1) explicit data transfer using one-sided copy functions;
2) implicit data communication when shared objects appear in an
expression. For example, if a shared object is on the left-hand-
side of an assignment statement then it’s equivalent to a put op-
eration. Likewise, it is a get operation if the shared object is on
the right-hand-side. In UPC++, the type conversion operator to
the local object type (operator T()) is overloaded for accessing
remote shared objects. The user can initiate bulk data movement
operations using the copy function or its non-blocking counterpart
async_copy function, for which the src and dst buffers are as-
sumed to be contiguous. async_copy enables overlapping com-
munication with computation or other communication. The com-
pletion status of async_copy can be queried by async_try or



finish ( [capture_list ]() {
async ( [capture_list ]() {

S1;
}); // end async
asyncAwait(ddf1 , ..., [capture_list ]() {

S2;
}); // end asyncAwait
asyncPhased(ph1 , mode1 ,..., [capture_list ]() {

S3;
}); // end asyncPhased
forasync(dim , style , ind1 , ..., siz1 , ...,

seq1 , ..., [capture_list ]() {
S4;

}); // end forasync
}); // end finish

Figure 3: Dynamic tasking using C++11 lambda functions.

waited by async_wait. Finally, user may register an async_copy

operation with an event that can be synchronized later. UPC++
also provides MPI-style collective operations implemented on top
of the GASNet collectives API.

An important new feature in UPC++ but not in UPC is re-
mote function invocation. The user may start an asynchronous
remote function with the async construct and specify dependen-
cies among distributed tasks using the event mechanism similar to
Phalanx [13]. Each async function call may be registered with
an event that will be signaled after the remote function is com-
pleted, and used as a precondition to launch later async operations.
UPC++ remote function invocation is implemented on top of GAS-
Net active messages.

3. HabaneroUPC++ PROGRAMMING
MODEL

In this section we first describe the Habanero-C++ dynamic task-
ing library. Being a C++ library, Habanero-C++ easily integrates
with UPC++ and offers a highly scalable PGAS implementation,
which we refer to as HabaneroUPC++. We also discuss the fea-
tures of this new programming model.

3.1 Habanero-C++ Dynamic Tasking Library
Habanero-C++ uses C++11 lambda functions to express

Habanero-C dynamic tasking constructs (Section 2.1). As we take
a compiler-free approach, the program syntax slightly differs from
Habanero-C. Figure 3 shows the Habanero-C++’s equivalent of the
Habanero-C’s dynamic tasking constructs shown in Figure 1. The
syntax “[capture_list]()” marks the beginning of a C++11
lambda function. The capture-list contains the list of variables,
which we want to use inside statements S1, S2, S3 and S4. These
variables can either be captured by reference or by value. Passing a
single “&” as the capture-list captures all the local variables by ref-
erence while passing a “=” captures all the local variables by value.
Asynchronous tasks do not return values. However, parameter-
result variables can be passed as references in the capture-list. The
capture-list of lambda functions provides a mechanism to pass vari-
ables to an async that is semantically equivalent to the usage of
the IN/OUT/INOUT clauses of Habanero-C. Relying on C++11 fea-
tures, Habanero-C++ currently provides support for async’s AWAIT
and PHASED clauses. The implementation can be further extended
to support accumulators [30] and places [35]. Similarly, Habanero-
C++ provides support for the forasync construct (Figure 3). The
dim argument to the forasync call specifies the loop dimension.
The style argument specifies whether to use the chunked or recur-
sive scheduling. For each dimension, the user provides its lower-

asyncCopy(global_ptr <T> src , global_ptr <T> dst ,
size_t count , DDF* ddf=NULL);

(a) Asynchronous copy with optional DDF

asyncAt(place , [capture_list ]() {
S1;

});

(b) Asynchronous remote lambda invo-
cation

Figure 4: Remote asynchronous calls.

bound (ind1), size (size1) and tile size (seq1). If the tile sizes
arguments are left as zero, the runtime assigns a default size, which
is the total number of iterations (size) divided by the total number
of work-stealing threads.

3.2 HabaneroUPC++ Programming Features
In UPC++ the execution units (place) are single threaded un-

less combined with OpenMP to achieve the loop level parallelism.
This style of parallelism is restrictive and does not enjoy the ben-
efits of work-stealing schedulers. Other kinds of parallelism can
be effectively load-balanced using work-stealing and include di-
vide and conquer, irregular graph computations and loop paral-
lelism. HabaneroUPC++ integrates the benefit of Habanero-C++’s
work-stealing library in UPC++. Similar to UPC++, the Habaner-
oUPC++ program also starts in a SPMD fashion, where each place
gets a copy of the main function. Taking UPC++ as baseline, we
will now discuss our newly added features.

3.2.1 Asynchronous Remote Copy
As discussed in Section 2.4, UPC++ provides a non-blocking

copy function. To be able to integrate with Habanero-C++, we pro-
vide a variant of this as shown in Figure 4(a). The optional DDF
allows launching an asyncAwait, which gets scheduled only when
the asyncCopy is complete.

3.2.2 Asynchronous Remote Function Invocation
UPC++ provides its own version of async for remote function

invocations. However, these remote async does not capture the
closure of the async spawn. Moreover, threads within a UPC++
place cannot call them concurrently. HabaneroUPC++ provides a
variant of UPC++’s async. This is called asyncAt and its syntax is
shown in Figure 4(b). This asyncAt can be nested, they are thread-
safe, and can also calls Habanero-C++’s async inside the lambda
function.

3.2.3 Joining Asynchronous Tasks
To be able to join all the asynchronous tasks (async,

asyncAwait, asyncPhased, forasync, asyncAt and
asyncCopy), HabaneroUPC++ provides a special version of
finish called as finish_spmd, shown in Figure 5. finish_spmd

waits for all the dynamically spawned asynchronous tasks in
its scope, which includes remote asynchronous tasks as well.
HabaneroUPC++ also allows arbitrary nesting of finish inside
finish_spmd. However, this finish only allows the launch of
Habanero-C++ asynchronous tasks and no remote asynchronous
tasks.

3.2.4 Collective Communications
For collective communications, HabaneroUPC++ relies on

UPC++ collectives and does not modify their default implemen-
tation. However, HabaneroUPC++ restricts the usage of collec-



finish_spmd ([ capture_list ]() {
async (...); // local
asyncAwait (...); // local
asyncPhased (...); // local
forasync (...); // local
asyncCopy (...); // remote
asyncAt (...); // remote

});

Figure 5: Joining of asynchronous tasks using special finish.

void async_wrapper(void* args) {
// Cast the lambda object
std::function <void()> *lambda =

(std::function <void()> *)args;
// Execute the lambda
(* lambda )();
delete lambda;

}

void schedule_async(bool inter_place ,
std::function <void()> lambda) {

// Heap allocate a lambda object
// as currently its on stack
std::function <void()> * lambda_copy =

new std::function <void()> (lambda );
// bookkeeping : OCR increments async count
// which decrements once this task has executed
runtime(inter_place , async_wrapper , lambda_copy );

}

void async(std::function <void()> lambda)
{

// Pass the lambda to work -stealing runtime
// as an intra -place asynchronous task
schedule_async(false , lambda );

}

Figure 6: Implementation of async

tives inside finish_spmd. UPC++ collectives are discussed in
Section 2.4.

4. IMPLEMENTATION
The previous section explains the HabaneroUPC++ program-

ming model. In this section we describe the implementation of the
HabaneroUPC++ runtime.

4.1 Translating C++11 Lambdas to Runtime
Calls

HabaneroUPC++ takes a compiler-free approach. Hence, the
API exposed to the user relies on a set of HabaneroUPC++ run-
time calls that can handle C++11 user-defined lambdas. In a nut-
shell, the C++ compiler converts a lambda function into a class

with an overloaded “()” operator, which acts as a function. The
variables captured (e.g., capture_list in Figure 3) in the lambda
definition become member variables of this class. This class also
has access to all the global variables in the program scope. The
variables can be captured either by value or by reference. In case
an object is captured by value, then the copy constructor is called
when the lambda closure is created. The code to create lambda clo-
sure is automatically generated by the C++ compiler. By default
all variables captured by value are immutable, unless the mutable
keyword is explicitly used. Passing a lambda as a function param-
eter is similar to passing a class object. A detailed explanation of
the C++ implementation of lambdas is available in [16].

We now describe how the user lambda function gets commu-
nicated to the runtime. The runtime treats lambda functions dif-

// Executes at destination
template <typename T>
void asyncAt_wrapper(global_ptr <T> remote_lambda) {

// Allocate memory in myPlace ’s partition
// in global address space
upcxx::global_ptr <T> my_lambda =

upcxx::allocate <T>( myPlace );
// Copy the lambda in memory allocated above
upcxx::copy(remote_lambda , my_lambda );
// Execute the lambda
(*(T*) my_lambda )();
// Free memory allocated for lambdas
deallocate(my_lambda );
deallocate(remote_lambda );
atomic(incoming_tasks ++); // bookkeeping

}

template <typename T>
void asyncAt(int toPlace , T lambda) {

if(toPlace == myPlace) {
// Run as a local async
async(lambda );

}
else {

atomic(outgoing_tasks ++); // bookkeeping
// Allocate memory in myPlace ’s partition
// in global address space
upcxx::global_ptr <T> remote_lambda =

upcxx::allocate <T>( myPlace );
// Copy the lambda in memory allocated above
memcpy(remote_lambda , &lambda , sizeof(T));
// Create a lambda to execute UPC ++ calls
auto lambda = [=]() {

// Use UPC ++ active message to invoke
// asyncAt_wrapper at toPlace
upcxx::async(toPlace )( asyncAt_wrapper <T>,

remote_lambda );
};
// Schedule an inter -place async task
schedule_async(true , lambda );

}
}

Figure 7: Implementation of asyncAt

// Executes at source once asyncCopy is complete
void perform_ddfWrite(void* ddf) {

if(ddf != NULL) DDF_PUT(ddf);
atomic(incoming_tasks ++); // bookkeeping

}

template <typename T>
void asyncCopy(global_ptr <T> src ,

global_ptr <T> dst ,
size_t count , DDF_t* ddf=NULL) {

atomic(outgoing_tasks ++); // bookkeeping
// Create a lambda to execute UPC ++ calls
auto lambda = [=]() {

// Use UPC ++ asynchronous copy function
// to perform remote copy and tie it with
// a UPC ++ event object
upcxx::event e;
upcxx:: async_copy(src , dst , count , &e);
// Attach a callback function which waits
// on event e. Once async_copy is done , this
// callback executes at current place and
// launches function perform_ddfWrite with
// ddf as parameter
upcxx:: async_after(myPlace , &e)( perform_ddfWrite ,

(void*)ddf);
};
// Schedule an inter -place async task
schedule_async(true , lambda );

}

Figure 8: Implementation of asyncCopy



ferently depending on whether they represent asynchronous tasks
to be executed locally (async, asyncAwait, asyncPhased and
forasync) or remotely (asyncAt and asyncCopy). Figure 6
shows the implementation of the async construct. Because an
async is potentially executed after its creation context is done ex-
ecuting, the runtime cannot rely on any variables that may have
been stack allocated. For that reason, the runtime creates a heap-
allocated copy of the user-defined lambda. Once the lambda is
passed to the work-stealing runtime, the worker threads can exe-
cute it by calling the async_wrapper function and use the over-
loaded “()” operator to convert the lambda into a function call.
The lambdas for asyncAwait, asyncPhased and forasync are
treated in similar fashion, but they can also take a variable num-
ber of arguments. For instance, asyncAwait can get multiple
DDFs; asyncPhased can have multiple phasers and signal modes;
and forasync can be of any dimension. To that effect, the run-
time provides several copies of asyncAwait, asyncPhased and
forasync, each accepting a different number of their respective
arguments.

The implementation of asyncAt is as shown in Figure 7. If
the source and destination places are same, the lambda is sched-
uled as a local async. The other case is treated differently. A
std::function class template (Figure 6) is a general purpose
polymorphic function wrapper whose instances can store, copy and
invoke lambdas. In the case of asyncAt both the lambda clo-
sure object and the std::function pointer are required for re-
mote execution. The C++ compiler creates a separate class for
each lambda function and so each lambda closure objects differs
from each other. Thus, the asyncAt is templated to make the type
of lambda available at runtime. There are three steps leading to
the execution of a lambda remotely. First, the current place allo-
cates memory in its partition of the global address space and copies
the lambda object to it. Second, a UPC++’s async (asynchronous
active message) taking the lambda as a parameter is invoked on
the remote place. To ensure this UPC++ call is executed only by
the communication worker (Section 4.2), the UPC++’s async is
wrapped inside a lamda function and passed to the runtime. Third,
the remote place processes the active message by executing the
asyncAt_wrapper function which copies the lambda into the cur-
rent place partition in the global address space and executes the
lambda. On completion the reserved memory at both sender and
destination place is deallocated. There is also some bookkeep-
ing code to maintain the outgoing remote task count and incoming
remote tasks count. They are explained in Section 4.3.

The implementation of asyncCopy is as shown in Figure 8. Sim-
ilarly to asyncAt, asyncCopy is also scheduled to execute only at
the communication worker and hence the UPC++ calls are wrapped
inside a lambda function. Here the UPC++’s async_copy (asyn-
chronous copy function) for remote copy is used. A callback func-
tion is also registered on this asynchronous copy, which gets in-
voked on the source place once the entire source data is copied
to the destination buffer. Apart from the bookkeeping code, the
callback is used to do a DDF_PUT if a DDF was supplied to the
asyncCopy. It ensures that asyncAwait depending on those DDFs
are notified when asyncCopy completes.

4.2 Integrating OCR with UPC++
We are using OCR (Section 2.2) as the Habanero-C++ work-

stealing runtime and UPC++ (Section 2.4) for global address space
abstraction for memory management and data communications.
HabaneroUPC++ asynchronous task relies on HClib (Section 2.3)
to translate to an EDT (Event-Driven Task) representation, which
can be passed to OCR for scheduling. In this section we discuss
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Figure 9: HabaneroUPC++ components.

the modifications made to integrate OCR with UPC++. Figure 9
depicts different components of HabaneroUPC++ and shows how
HabaneroUPC++ application’s executable is created.

We take the approach of Chatterjee et al. [7] and create a ded-
icated communication worker per HabaneroUPC++ place. Their
experiments demonstrate that the benefits of a dedicated commu-
nication worker can outweigh the loss of parallelism from the in-
ability to use it for computation. If OCR is configured to run on
“n” cores then there will be one communication worker and “n-1”
computation workers.

4.2.1 Communication worker
Other than the usual work-stealing double-ended queue (deque),

the communication worker also maintains a semi-concurrent deque.
These are respectively named in_deque and out_deque. The
in_deque allows for concurrent push and steal operations. The
out_deque only allows concurrent push operations and non-
concurrent pop operations. Having two separate deques allows
easy identification of local and remote tasks when communication
worker pops tasks for remote transfers and pushes tasks for local
executions.

The communication worker is responsible for invoking the main
function of the HabaneroUPC++ application. Whenever local asyn-
chronous tasks (async, asyncAwait and asyncPhased) are cre-
ated, they are pushed to its in_deque. Remote asynchronous tasks
(asyncCopy and asyncAt) are pushed to its out_deque. When the
end of a finish_spmd block or the main function is reached, the
communication worker pops tasks from its out_deque and executes
them. If a task is received from a remote place it is pushed in
its in_deque. The details of how the communication worker uses
UPC++ to send and receive a remote task are discussed in Sec-
tion 4.3.

4.2.2 Computation worker
When computation workers start, they have no tasks to execute

and try to steal from other computation workers as well as the
in_deque of the communication worker. Since the communication
worker executes the main function, initially tasks are only available
in its in_deque. Computation workers steal them from the in_deque
and execute. These tasks can either be local or remote task. When-
ever they encounter any local asynchronous tasks, they push it to
their own deque. In case of remote asynchronous tasks, they al-
ways push to the out_deque of the communication worker and let
the communication worker execute it. Hence, a push to out_deque
is always potentially concurrent.

As an alternative to our current design, we can also allow a com-
putation worker to start the main function rather than the commu-



nication worker. It can relieve the pressure on the in_deque of com-
munication worker due to steals from multiple computation work-
ers. However, due to help-first work-stealing scheduling policy of
OCR, again all the tasks will be first queued at the deque of the
computation worker starting the application. Allowing the commu-
nication worker to start the application also helps us in simplifying
the single worker case, where the communication worker plays a
dual role. Once it is unable to pop tasks from its out_deque, it will
behave like a computation worker, stealing tasks from its in_deque
and executing them.

4.3 Implementation of finish_spmd
The finish_spmd construct waits for all the dynamically

spawned asynchronous tasks in its scope, which includes both lo-
cal and remote tasks. The pseudo code for the runtime implemen-
tation of finish_spmd is shown on Figure 10. HabaneroUPC++
follows SPMD approach and hence the communication worker at
each place is responsible to start the finish scope upon entering
finish_spmd. It executes the lambda function and pushes all
asynchronous tasks into the appropriate deques (Section 4.2.1). It
then occasionally checks the quiescence of the finish scope, mean-
ing all tasks have either completed locally or remotely at all place.
The quiescence detection loop is composed of three parts; outgo-
ing remote task processing, incoming remote task processing and a
task count operation. The algorithm relies on two counters, one for
outgoing remote tasks and another for incoming remote tasks. On
a loop iteration, first the worker pops tasks from its out_deque and
executes them. These tasks essentially contain UPC++ calls (Fig-
ures 7 and 8). The outgoing remote task counter was incremented
before this task was pushed to the out_deque of communication
worker (Figures 7 and 8). Second, the worker flushes the UPC++’s
task queue. This removes all pending outgoing remote tasks from
UPC++’s internal task queue and also receives incoming remote
tasks (one at a time). When an incoming task is received, it is
wrapped inside a local async and pushed to the in_deque for com-
putation workers to steal and execute (Section 4.2.2). If this task
contains another remote task (asyncAt or asyncCopy), the com-
putation worker will push it to the out_deque of the communication
worker. When an incoming remote task is executed, the incoming
task counter is incremented by the computation worker (Figures 7
and 8). Third and last, the communication worker computes a local
count by subtracting the sum of total of outgoing remote tasks and
pending local tasks from the total incoming remote tasks. A global
count of pending tasks for all place is obtained by performing a
sum reduction using a UPC++ allreduce collective operation. If
the global count equals zero, the communication worker exits the
loop. Our approach to finish_spmd implementation is quite simi-
lar to the approach of Yang et al. [36]. The two key differences are:
a) we are using blocking allreduce instead of their non-blocking
allreduce; and b) before going into the while loop, the worker
in their implementation would execute all the nested asynchronous
tasks. However, the communication worker in HabaneroUPC++
follows help-first policy and returns just after pushing the outer-
most task into the deque.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
Before presenting the performance evaluation of Habaner-

oUPC++, we first describe our experimental setup.

5.1.1 Benchmarks

We have used two benchmarks from UPC++ distribution and
ported them to HabaneroUPC++. These benchmarks are briefly
described below. Their detailed description is available in [39].

SampleSort It sorts a large distributed array of 64-bit integer
keys. We are using weak scaling and the total keys per
UPC++ place are 48×1024×1024. The keys are generated
using rand() function.

LULESH This is a shock hydrodynamics proxy application. This
benchmark restricts the number of UPC++ place to a per-
fect cube of an integer. This benchmark is also using weak
scaling. In our experiments the inputs to this benchmark are:
the length of cube mesh along sides as 38 and total iteration
count as 100.

5.1.2 Hardware Platform
We used Edison supercomputer at NERSC for our experimental

evaluations. This is a Cray XC-30 system with Intel Ivy Bridge
CPUs and an Aries interconnect with DragonFly topology. Each
node has two sockets and each socket has 12 cores.

5.1.3 Software Platform

HabaneroUPC++ We have our runtime implementation and the
benchmarks publicly available at:
http://habanero-rice.github.io/habanero-upc/

OCR Git version xstack-intel_2013-09-06-2-gd687b14.

HClib Git version v0.3-6-g62496d1.

UPC++ Git version ver_0.1-51-g5f438c2.

GCC Version 4.9.0.

5.1.4 Measurements
Once the nodes are allocated on the Edison, we run each experi-

ment ten times. We report the execution time as the mean of these
ten invocations along with a 95% confidence interval based on a
Student t-test.

5.2 Results

5.2.1 Work-Stealing Performance
Recall, HabaneroUPC++ uses Habanero-C++ work-stealing to

achieve load-balance within a place and UPC++ to communi-
cate across places. To measure the performance (weak scaling)
of this programming model, we port our two benchmarks to Ha-
baneroUPC++ and run them by varying total number of places and
work-stealing workers. In this experiment (Figure 11) we launch
one HabaneroUPC++ place per socket and vary the total number
of work-stealing workers as 1, 4, 8 and 12 at each place. Y-axis rep-
resents the performance and X-axis shows total number of places.
Both the axes are in log-scale.

The UPC++ version of SampleSort uses qsort function from
C++’s cstdlib.h header file for local sort of keys. There are to-
tal of three such occurrences of qsort functions. For porting to
HabaneroUPC++ we take the default version of SampleSort and
replace all the three qsort with a parallel divide and conquer im-
plementation. This modified qsort uses async to parallelize each
of the sub-problems and finish to join all these async. A thresh-
old of 5120 is used to control the task granularity. This benchmarks
also uses one asyncCopy to distribute and copy the array across the
places. There is no asyncAt in the benchmark. finish_spmd is

http://habanero-rice.github.io/habanero-upc/


void finish_spmd(std::function <void()>
lambda) {

// Start finish scope
allocate_finish_object ();
// Execute the lambda containing
// asynchronous tasks.
lambda ();
// Loop until no more pending tasks
// at global scope (both local and
// remote)
while(true) {

// Pop and execute tasks from out_deque
while(true) {

void* task = pop_out_deque ();
if(task == NULL) break;
else {

// Execute lambda function in the task.
// This lambda contains UPC ++ calls ,
// details in Figure 7 and 8.
async_wrapper(lambda ); // see Figure 6

} // end else
} // end while

// Send and receive remote tasks in
// UPC ++ queue
void* incoming_remoteTask = advance_upcxx ();
if(incoming_remoteTask != NULL) {

// Wrap it as local async which will
// push this task to in_deque
async ([=]() {

// Call UPC ++ library to execute this task.
execute_upcxx(incoming_remoteTask );

}); // end async
} // end if
tasks_count = incoming_tasks - (outgoing_tasks

+ total_local_pending_tasks );
// Find total global pending tasks
allreduce (& tasks_count ,

&global_tasks_count , SUM);
if(global_tasks_count ==0) break;

} // end while
// end finish scope
free_finish_object ();

} // end finish_spmd

Figure 10: Runtime implementation of finish_spmd
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Figure 11: Weak scaling performance using HabaneroUPC++
and varying number of work-stealing worker threads per
place.
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used to join the asyncCopy task. The result of this experiment is
shown in Figure 11(a). The performance of the benchmarks is rep-
resented on y-axis as total terabytes sorted per second (TB/sec). As
we can see, increasing the total number of work-stealing worker
threads increases the performance. We noticed an improvement of
3.4× by increasing the worker threads count from 1 to 12 with 512
places.

The UPC++ version of LULESH has several for-loops. We
modify the default LULESH to use forasync instead of for-
loops. The forasync tasks are joined with the help of finish. De-
fault LULESH also uses UPC++ version of asynchronous copy and
its own wait function. We modify LULESH to use our asyncCopy
and finish_spmd to join them. There are total 3 such modifi-
cations. This benchmark too does not use asyncAt. The result
of this experiment is shown in Figure 11(b). The performance of
LULESH (FOM – zones per second) is represented on y-axis. We
noticed consistent improvement of 2× by increasing the number of
work-stealing worker threads count from 1 to 12 at all places.

5.2.2 HabaneroUPC++ Performance versus
UPC++

The performance comparison of the HabaneroUPC++ version of
benchmarks with the UPC++ version is shown in Figure 12. Y-axis
shows the performance and X-axis shows the total number of cores
used across each implementation. Both the axes are in log-scale.

For SampleSort benchmark, in the HabaneroUPC++ version we
compare the performance of P places, each running with 12 work-
stealing workers (total 12×P execution units) against the UPC++
version running with 12×P places. To ensure same computation
size (weak scaling) across both versions, HabaneroUPC++ uses
total keys per place as 12×N whereas UPC++ uses 1×N (N =
4×1024×1024). The result of this experiment is shown in Fig-
ure 12(a). Similar experimental setup is not viable for LULESH. In
the HabaneroUPC++ version of LULESH we compare the perfor-
mance of P places, each running with 1 work-stealing worker (total
1×P execution units) against the UPC++ version running with P

places. The result of this experiment is shown in Figure 12(b).
The HabaneroUPC++ version of SampleSort performs nearly

identical to UPC++. However, UPC++ version of LULESH con-
sistently performs 20% better than HabaneroUPC++ version. This
slight gap in performance is due to the overheads of work-stealing
and heap allocation of C++11 lambda objects. Prior studies have
shown that work-stealing overheads can be minimized by tweaking
the compilers [34, 17]. As future work, we would like to develop
similar techniques for Habanero-C++ work-stealing runtime. We
would also like to include irregular benchmarks for performance
study. Irregular applications pose significant challenges to achiev-
ing scalable performance on large-scale multicore clusters. These
applications require dynamic load balancing to maintain efficiency.
Prior studies have demonstrated that work-stealing implementa-
tions can provide very effective load-balancing for these kinds of
applications [9, 8]. We predict that HabaneroUPC++ can definitely
provide better performance for these irregular applications.

6. RELATED WORK
C++11 brings rich support for threading. It provides a func-

tion template std::async. This async takes callable object (or
function) as an argument and returns a std::future object. This
async can execute asynchronously. The user can use a get() func-
tion over the std::future object to wait for the async to com-
plete and fetch the result of function execution. Habanero-C++
async differs greatly from C++11 async. Other than providing 3
different varieties of async, Habanero-C++ also allows arbitrary

nesting of async. The user can join all the async using a single
finish. Another great feature provided by C++11 is lambda func-
tions. We are unaware of any C++ based dynamic tasking library
which uses lambda functions as we do. Habanero-Java library [15]
is a very recent, pure Java 8 library implementation of Habanero
constructs. User interfaces to Habanero constructs are very similar
across both Habanero-Java and Habanero-C++. However, the run-
time implementations are very different. Being a C++ implementa-
tion, Habanero-C++ has the advantage that it can be combined with
any C++ based high performance libraries.

Work-stealing is a very popular technique for load-balancing of
dynamically spawned tasks and is used extensively. Chatterjee et
al. designed HCMPI runtime, which is an integration of Habanero-
C (Section 2.1) with MPI [7]. HCMPI unifies asynchronous task
parallelism at intra-node level with MPI’s message passing model
at the inter-node level. However, by using MPI it’s not able to har-
ness the benefits of PGAS programming model. It’s able to tie only
the remote message transfer with the Habanero-C’s finish-async
constructs. By using a PGAS approach, HabaneroUPC++ offers
better productivity and also provides asynchronous remote function
shipping along with asynchronous remote copy. HCMPI requires
complex compiler transformations unlike HabaneroUPC++. The
approach of using a dedicated communication worker is similar
in both HabaneroUPC++ and HCMPI, but HCMPI communication
worker does not uses two deques as in HabaneroUPC++.

X10 and Chapel are very recent PGAS implementations. X10 in-
troduced finish-async style programming model and uses work-
stealing scheduling for load-balancing [32, 31, 38]. Both X10 and
Chapel rely on compiler transformations to map user code to native
code. Being a new programming language they are currently not
as popular as C++. HabaneroUPC++ takes the C++ approach and
adds finish-async style asynchronous tasking to SPMD PGAS
programming model. By using C++11 lambda functions, Habaner-
oUPC++ avoids complex compiler transformations while retain-
ing the elegance of language constructs. Unlike X10, Habaner-
oUPC++ currently does not support distributed work-stealing. The
finish_spmd function in HabaneroUPC++ library is very similar
to FINISH_SPMD pragma in X10 [31], although its implementation
differs.

Min et al. introduced API based task library for using dynamic
tasking in UPC [21]. The idea of favoring work-stealing inside
PGAS programming model is similar across both Min et al. and
HabaneroUPC++. However, there are several differences in the im-
plementations. Some of them are: a) API based task library lacks
the productivity of finish-async programming model; b) finish-
async allows arbitrary nesting of both finish and async and pro-
vides more control to the programmer; and c) HabaneroUPC++ not
just allow dynamic tasking but also allows creating dependencies
among asynchronous tasks (asyncAwait and asyncPhased).

7. CONCLUSION
In this paper we presented HabaneroUPC++, a C++11 lambda

functions-based compiler-free PGAS library. This library inte-
grates Habanero’s intra-place dynamic tasking constructs with
UPC++’s inter-place asynchronous remote copy and asyn-
chronous function shipping features. We also present a finish

implementation for joining both local and remote asynchronous
tasks. By using C++11 lambda functions we retain the syntactic
convenience of language-based approaches while avoiding their as-
sociated complexities. Our intra-place work-stealing runtime uses
a combination of communication and computation worker threads
to enable the integration of the two programming models. We have
presented a design based on a single communication worker run-



ning at each place that is responsible for managing the traffic of all
the inter-place asynchronous tasks. This design allows the com-
putation workers to execute both the local tasks as well as the tasks
received from remote places. We have evaluated HabaneroUPC++
on Edison supercomputer at NERSC by using two benchmarks. We
have scaled the benchmarks up to 6K cores and vary the total num-
ber of work-stealing worker threads at each place to demonstrate
the performance and productivity of HabaneroUPC++.

There are several exciting future directions for this work. Some
of them are a) distributed work-stealing implementation; b) extend-
ing the performance evaluation to a wider variety of benchmarks;
c) a study of the limitations and overhead of using C++11 lambda
functions and techniques to overcome them; and d) implementation
of a non-SPMD (X10 style) HabaneroUPC++ and comparison with
the SPMD approach.
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