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Abstract

With the expansion of the Internet, the Grid has become
a very attractive platform for scientific computation. Java,
with a platform-independent execution model and a support
for distributed computation built into the language, is an
inviting choice for implementation of applications intended
for Grid execution. Recent work at Rice University has
shown that a reasonably accurate performance model com-
bined with a load-balancing scheduling strategy can signifi-
cantly improve the performance of a distributed application
on a heterogeneous computing platform, such as the Grid.
However, current performance modeling techniques are not
suitable for Java applications, as the virtual machine exe-
cution model presents several difficulties: (1) a significant
amount of wall time is spent on compilation in the begin-
ning of the execution, (2) the virtual machine continuously
profiles and recompiles the code during the execution, (3)
garbage collection can interfere at any point in time and
reorganize the data with unpredictable effects on memory
hierarchy, (4) the application can spend more time garbage
collecting than computing for certain applications and heap
sizes and (5) small variations in virtual machine implemen-
tation can have a large impact on the application’s behav-
ior.

In this paper, we present a practical profile-based strat-
egy for performance modeling of Java scientific applica-
tions intended for execution on the Grid. We introduce two
novel concepts for the Java execution model: Point of Pre-
dictability (PoP) and Point of Unpredictability (PoU). PoP
accounts for the volatile nature of the effects of the virtual
machine on total execution time for small problem sizes.
PoU accounts for the effects of garbage collection on cer-
tain applications that produce a lot of garbage and have
a memory footprint that approaches the total heap size. We
present an algorithm for determining PoP and PoU for Java
applications, given the hardware platform, virtual machine
and heap size. We also present a code-instrumentation-
based mechanism for building the algorithm complexity

model for a given application. We introduce a technique for
calibrating this model using the PoP that is able to accu-
rately predict the execution time of Java programs for prob-
lem sizes between PoP and PoU. Our preliminary experi-
ments show that using these techniques can achieve load
balancing with more than 90utilization.

1 Introduction

We present a strategy for modeling and predicting the
execution time of scientific Java applications as a function
of the problem size. The objective of this work is to achieve
good load balance of distributed Java applications deployed
on the Grid. We introduce the concepts of point of pre-
dictability and point of unpredictability in Java applications,
and present our methodology for modeling and predicting
the performance of Java programs.

1.1 Motivation

The Grid[7] has rapidly emerged as an important com-
puting platform. Different from conventional distributed
computing, Grid computing focuses on large scale resource
sharing in a highly distributed and heterogeneous environ-
ment. Wisely balancing the workload on different comput-
ing nodes is critical to fully exposing the potential comput-
ing power of Grid.

Mandal, et al. [15] show that an in-advance heuristic
workflow scheduling gives a better workspan than other ex-
isting scheduling strategies, given an accurate performance
model of the application. An accurate performance model
is crucial for the quality of the balancing result when using
plan ahead scheduling strategies.

Java programming language is an attractive candidate for
building applications for Grid because of its inherent plat-
form independence and orientation toward network comput-
ing. Unfortunately, performance modeling of scientific Java
applications has rarely been investigated, although perfor-



mance modeling has been a research area for a long time. To
facilitate the development of Java applications on the Grid,
an accurate performance model for Java applications is im-
portant.

In this paper, we present a practical strategy to model sci-
entific Java applications to improve load balancing of Java
applications on the Grid.

1.2 Key Findings

Java virtual machine’s implementation greatly affects the
performance of a Java application and endows unique char-
acteristics to Java applications compared with native code
execution.

Java programs on small problems exhibit unpredictable
execution time. Execution time for problems in a certain
zone is more regular and predictable.

Some Java applications exhibit erratic behavior when the
application footprint approaches the size of the heap, and
the application is producing garbage at an increased rate.

We introduce two new concepts, point of predictability
and point of unpredictability, and the strategies to determine
them.

1.3 Related Work

Existing techniques used by researchers for performance
modeling include statistical prediction, profiling based pre-
diction, simulation based prediction, static analysis based
prediction, and manual model construction.

Statistical Prediction Statistical prediction makes pre-
dictions based on statistical properties of past observations
of the application [12]. This strategy is able to make pre-
dictions without detailed knowledge of the underlying hard-
ware and the application, and also to improve the accuracy
by accumulating more measurements. However, it lacks the
ability to reveal detailed information about performance, its
accuracy highly depends on how typical the past observa-
tions are, and it is unsuitable for cross-platform prediction.

Profiling Based Prediction Instrumentation and hard-
ware performance counters are two widely used techniques
to get profiling information [16]. Morin and Mellor-
Crummey [16] developed a toolkit for cross platform pre-
diction by profiling basic block execution frequency and an-
alyzing memory hierarchy performance via reuse distance
analysis. Unfortunately, their techniques can not be applied
to Java directly, since JVM has a complicated execution
behavior and its performance depends highly on its input,
making the behavior unpredictable.

Snavely, Carrington and Wolter[23] map the application
profiles to machine signature to construct the performance
model for memory bounded applications. They use a set

of benchmarks to collect the memory usage signature. By
mapping the application’s profiles to machine signatures,
they are able to model memory bounded applications ac-
curately. Unfortunately, this model is confined to memory
bounded applications.

Simulation Based Prediction Simulation is the process
of executing applications on emulated target platforms in-
stead of on real platforms, and it could be trace-driven [1],
or execution-driven [18].Simulation can give very accurate
results, but its performance overhead prohibits it from be-
ing practically applied to performance prediction of large
applications. Another issue with simulation is that it does
not reveal information about how the performance changes
when problem size scales.

Static Analysis Static analysis derives information by an-
alyzing the architecture of the application [8, 26]. This tech-
nique is very useful in detecting rare conditions or proving
program properties that are difficult to achieve by actual ex-
ecution. On the other hand, static analysis is weak at dis-
covering some run time information. Performance predic-
tion based solely on static analysis usually relies on some
assumptions about the program properties that are not avail-
able. Because of this, static analysis is usually used in con-
junction with other techniques.

Manual Model Construction Manual model construc-
tion relies on the programmer or expert to build the per-
formance model manually [24, 10]. Expert knowledge of
model construction, the application and underlying hard-
ware is necessary. Introduction of the human into the
process can result in a very accurate model, even for the
programs that are very hard if not impossible to model au-
tomatically, such as irregular applications. Unfortunately,
human interaction isn’t always desirable or possible, and
can be time consuming.

Besides the toolkit mentioned above developed by Marin
and Mellor-Crummey, we should also note PACE developed
by Kerbyson et al. [14, 13], Pablo developed by Univer-
sity of Illinois Pablo Research Group [20], ParaDyn [17],
Falcon[9], VPPB[2], etc.

Unfortunately, none of these toolkits provide the func-
tionality needed for predicting the performance of Java pro-
grams. They mostly deal with complied code modeling
and prediction, and cannot handle complex interferences
to program execution, such as just-in-time compilation and
garbage collection.

Performance behavior of Java applications isn’t as well
studied. Shuf, Serrano, Gupta and Singh[22] studies the
memory behavior of Java applications based on instru-
mentation. Rajan [19] studies the cache performance of
SPECjvm98 on LaTTe. Hsieh, Conte, Johnson, Gyllenhaal
and Hwu[11] investigate the cache and branch performance



issues in Java applications. Romer, et al. [21] examine
the performance four interpreters on different micro bench-
marks and programs. Eeckhout, Georges and Bosschere[6]
investigate the interaction behavior between Java program
and virtual machines at the micro architecture level. While
providing very useful insights into Java performance, none
of these studies provides a performance modeling method
for predicting performance of Java programs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses some unique properties Java performance
modeling faces as opposed to native code model construc-
tion and shows some preliminary experimental results and
analysis, forming the guidelines for the concepts of point
of predictability and point of unpredictability. Section 3
defines point of predictability and presents a technique to
estimate the problem size for this point. Similarly, section
4 defines point of unpredictability and the technique to de-
termine it. Section 5 describes the construction of the time
complexity model and the performance model. Section 6
provides experimental results that evaluate the efficiency of
our model on resource allocation problem for a collection
of applications.

2 Preliminary Experiments

Performance modeling in general is a complex problem
because almost every aspect of a computer system can af-
fect the performance of an application. Performance of Java
applications is even more complex because of the unique
complexities Java virtual machine brings in.

2.1 Challenges for Java Performance
Modeling

Even for performance modeling of native code, building
a complete performance model is impractical. Factors like
processor architecture, memory hierarchy, storage system,
workload of the target system, operating system, network
conditions and program organization will affect the perfor-
mance model.

Java brings in some unique characteristics to code ex-
ecution. Instead of being compiled into native code, Java
programs are compiled into platform neutral bytecode first.
Bytecode cannot be executed on one computer directly; it is
executed instead by an instance of Java virtual machine on
the target platform.

A typical execution of a Java application on a mixed
mode JVM involves class loading, interpretation, profiling,
hot methods detection, compilation and garbage collection.
All these activities compete for the CPU time and for cache.
Furthermore, there are different implementations of Java
virtual machines available, each with a unique run-time ex-
ecution pattern.

Due to these predicaments, we believe that a traditional
approach to performance modeling and prediction that in-

volves static code analysis [8, 26] and reuse distance analy-
sis [16] is impractical for Java applications. Instead, we
choose to focus on the effectiveness of using instrumen-
tation, profiling, execution time prediction and regression
analysis to construct the model.

This section exhibits some experimental data of the ex-
ecution time of several scientific Java applications on dif-
ferent platforms. We discover some interesting characteris-
tics of Java applications. For example, although JVM has a
complicated execution mechanism, execution time for large
scale problems still exhibits a predictable pattern. On the
other hand, for small problems, the execution time shows
unpredictable behavior because of the complicated activi-
ties happening in JVM.

2.2 Experimental Environment

We collected a small suite of Scientific Java applications
to drive our experimental efforts. This suite involves six ap-
plications: Parsek, Linpack, SmithWaterman, CholBench,
QRBench and SVDCBench. Parsek is a particle simula-
tion program to analyze the particle and energy behavior.
Linpack is a linear algebra Java program, written in a tra-
ditional Fortran coding style. SmithWaterman is a database
search application. CholBench, QRBench and SVDCBench
are parts of the object-oriented linear algebra package called
OwlPack [3].

Platforms used in the experiments are listed in table 1.
We have conducted our experiments on several Java vir-

tual machines, including Sun Java 1.4.2, Blackdown 1.4.2,
and IBM Java 1.3.1.

Platform CPU Operating System Memory

1 Intel Pentium III 800MHz Windows XP SP1 512MB

2 AMD Athlon 800MHz Windows XP SP1 256MB

3 Itanium 2 Linux 8GB

4 Pentium III 450MHz Windows XP SP1 256MB

5 Pentium M 1.86GHz Windows XP SP2 768MB

6 Opteron 1.6GHz Linux 8GB

Table 1. Platforms

2.3 JVM Execution Behavior

Figure 1 shows how execution time changes for different
problem sizes for Parsek and SmithWaterman.

We conducted a series of preliminary experiments mea-
suring total execution times of the applications, while vary-
ing the problem size. The purpose of these experiments was
to gain an insight into the execution behavior of scientific
Java programs, hoping to discover some regularity, despite
the complications of the JVM execution described above.

Graph (a) in figure 1 shows the execution time of Parsek
from particle size 10 to particle size 1,000,000 on five dif-
ferent platforms. A regular pattern is observed on all five
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Figure 1. Execution Time of Parsek and
SmithWaterman on Different Platforms

curves for large size programs. Parsek is a linear algorithm,
and all curves on graph (a) in figure 1 match linear pat-
tern quite well. Graph (b) in figure 1 is the execution time
of Smithwaterman for different problem sizes on different
platform combinations. Smithwaterman is also a linear al-
gorithm, and the the curves match this well.

Graph (a) and (b) in figure 11 are the graphs of the re-
gression error for Parsek and SmithWaterman respectively.
The execution time of each application is fit onto their time
complexity model. These figures depict how far the regres-
sion data is off from the actual execution time. One com-
mon characteristic that can be observed on these figures is
that for large problem sizes the regression error rate is very
small. This is an encouraging result, suggesting that for
large problem sizes, the shape of the execution time curve
can be described very well with a simple regression scheme,
even with the existence of many complexities in JVM pro-
gram execution.Unfortunately, we can also observe some very irregular
behavior when problem sizes are small. The reason for this
is twofold: the processes inside the JVM like compilation
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Figure 2. Regression Error Rate of Parsek
and SmithWaterman

and profiling are most active the beginning of the program
execution, and this phase takes up a significant amount of
total execution time for small problem sizes. In other words,
by the time all the initial analysis and compilation by the
JVM is done, the execution is nearing its completion for
small problems.

Searching further for the insights into what is happen-
ing during the initial phase of the program execution, we
profiled the compilation time and number of methods com-
piled of each application. Table 2 and table 3 contain the
data for Parsek and Linpack respectively. Column 2, 3, 4
and 5 represent the time spent on interpreted code execu-
tion, compiled code execution, garbage collection and com-
pilation, respectively. The unit in both tables is execution
tick, which equals to 20ms.

We can observe on both table 2 and table 3, that time on
compilation and time spent on interpretation is rising with
problem size, then stabilizing around a certain point. This
suggests that the time to find hotspot methods and compile
them tends to take a constant amount of time for a large



Particle number Interpreted Compiled GC ticks Compilation

10 6 N/A 1 80

100 12 0 1 79

1000 23 6 1 91

10000 27 158 2 107

50000 92 1247 12 115

100000 110 2457 32 106

500000 119 12179 150 105

1000000 116 24377 360 99

Table 2. Parsek Profiling Data

Matrix size Interpreted Compiled GC ticks Compilation

100 11 1 N/A 23

200 8 4 N/A 29

300 14 24 1 42

400 12 87 1 45

500 13 191 5 47

600 15 332 5 28

700 9 549 10 35

800 14 820 8 36

900 13 1186 14 34

1000 12 1651 16 29

1100 10 2186 27 32

1200 15 2839 24 31

1300 8 3599 28 29

1400 16 4488 32 35

1500 47 5526 35 66

1600 12 3372 33 30

1700 17 8015 42 35

1800 16 9490 39 33

1900 14 11198 44 40

2000 12 12089 50 47

Table 3. Linpack Profiling Data

problem. This also explains the more regular execution time
behavior for large problems because the effects of the JVM
compilation and profiling on total execution time are pro-
portionally smaller for large problems.

Our interpretation of our preliminary results is that the
modeling and prediction of the execution time for large
problems and for small problems should be handled differ-
ently. For large problems, a simple regression analysis may
be sufficient to achieve fairly accurate performance predic-
tion, providing that the time complexity model is accurate.
For small problem sizes, we have given up hope of accu-
rately modeling and predicting the performance of Java pro-
grams – the execution behavior is simply too erratic. We
believe however, that the applications that we’re primarily
targeting – large-scale scientific applications intended for
execution on the Grid, mostly fall into the category of “large
problems”.

The problem of performance modeling and prediction of
scientific Java programs now becomes somewhat different
and solving it requires solving the following issues:

• How to characterize a given application, with given in-
put size, given the target hardware platform and the
target JVM, as “large” or “small”?

• How to determine a set of calibration data for the re-
gression that gives an accurate model, while spend-
ing as little time as possible executing the calibration
runs?

• How to monitor and predict the garbage collection ac-
tivity for applications that produce garbage at a higher
than a constant rate, and predict the situations when a
given problem size for the given application might be
“too large” for memory?

• How to determine an accurate execution time model
for the application that can be calibrated for particular
hardware and virtual machine, using test runs on small
problems?

• How to predict the actual execution time of an applica-
tion given the application itself, input size, target hard-
ware and target virtual machine?

The answer to the first two questions leads us naturally to
the concept of Point of Predictability, which we will address
in the next section.

The answer to the third question leads us to the concept
of Point of Unpredictability, which we will discuss in sec-
tion 4.

Once we have solved the others, we can solve the last
two problems using more traditional methods of code in-
strumentation and regression modeling, discussed in sec-
tion 5.
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Figure 3 shows the work flow graph of the construction
process for our performance model. The model construc-
tion consists of four parts - time complexity model con-
struction, point of predictability determination, point of un-
predictability determination, and performance model con-
struction.

3 Point of Predictability

If we examine the experimental results in the previous
section closely, we can observe that for a given application
and a given hardware and virtual machine, there is a “turn-
ing point” in the problem size, after which the behavior
of the application becomes more regular. Moreover, there
should exist a problem size such that regression analysis
will give consistently good results with a model calibrated
using the results from test runs that are larger than that point.
Informally, point of predictability should be a point in the
problem size space that presents a “turning point”: regres-
sion analysis gives good results if the model is calibrated
using test runs larger than the PoP, and poor results if the
model is calibrated using smaller test runs. Of course, this
informal definition depends heavily on one’s definition of
“good” and “poor” in terms of regression analysis.

Even further, we are more interested in the effects of the
performance prediction model on load balancing of applica-
tions on the Grid, not necessarily in the absolute accuracy
of the regression model. In other words, if the regression
model is underestimating the performance by 30%, but it’s
doing so an all the platforms and for all the applications, it
should still result in a fairly well load balance schedule.

The realization of this idea is illustrated on graphs (a),
(b), (c) and (d) ins figure 4. These figures show the success
rate of the load balancing algorithm for different applica-
tions when the performance prediction is made using the
regression analysis calibrated with five test runs for prob-
lem sizes starting with the point on x-axis and increased by
20%.

Let’s look at the graph (a) in figure 4 as an example.
This figure shows the average CPU usage for three differ-
ent machines, on which the load balancing algorithm sched-
uled 30 instances of the Parsek application of different prob-
lems sizes ranging from 200,000 to 1 million particles, us-
ing the predicted performance from the regression analysis
calibrated by the test runs on the x-axis. The “Predicted”
curve shows the CPU usage predicted by the load balanc-
ing algorithm. Perfect load balance of 100% CPU usage
cannot be achieved most of the time even if the perfor-
mance prediction is 100% accurate – this problem is highly
related to the set partitioning problem [5]. The “Actual”
curve shows the measured average CPU utilization when
the jobs were scheduled using the regression model. The
“Frequency based” curve shows, for illustration purposes,
the CPU utilization achieved by naı̈ve scheduling algorithm
using only processor frequency as the estimate of the per-
formance.

For example, the point for the “Actual” curve on graph
(a) in figure 4 for 10000 particles means that when we used
the test runs of problem sizes of 10000, 12000, 144000,
17280 and 20736 to calibrate our regression model for per-
formance prediction, the load balancing algorithm produced
a schedule resulting in a CPU usage of only 50%, a very
poorly balanced execution. On the other hand, using 17280,
20736, 24883, 29859 and 35831 problem sizes to calibrate
the model results in a schedule with CPU usage of over
95%, a very well balanced execution.

3.1 Definition

We define CPU utilization as follows: Suppose the
computation platform set isC = {c1, c2, ..., cm}. The
job set that will be delivered onto these platforms is
J = {j1, j2, ..., jn}. For a certain workload decision, the
set of sum of execution time on each platform isS =
{s1, s2, ..., sm}. Let smax = max(S), then the CPU uti-
lization percentageP =

∑m
k=1

sk

smax
. Based on this defini-

tion, the perfect load balance’s percentage is 1. The smaller
the percentage is, the worse the load balance achieved. The
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Figure 4. Load Balance

smallest possible CPU utilization is1n when the platform
set contains n platforms.

We used a straightforward greedy algorithm to perform
load balancing in the experiments above. The algorithm se-
lects the platform with the shortest job queue at every point
and adds a new job to it.

We can observe a common pattern on all the figures in
this experiment. Using small problem sizes to calibrate the
regression model gives very erratic, and usually very poor
results for load balancing. Using large problem sizes for
calibration gives consistent results and well balanced sched-
ules. Somewhere in between there should be a point that re-
sults in consistent and well balanced schedules, but it isn’t
any larger than absolutely necessary. We define that point
to be the Point of Predictability.

3.2 Determining Point of Predictability

One would be tempted to attempt finding the Point Of
Predictability from the data shown on graph (a), (b), (c) and
(d) in figure 4. Unfortunately, to collect this data, one would
have to run many instances of the problem with the actual

problem sizes, making the whole process impractical and
defeating the purpose of performance prediction.

Fortunately, we have observed that the number of meth-
ods compiled by the JVM is highly correlated with PoP.
Once most of the methods of the application have been com-
piled, the running time of the application ceases to be erratic
and starts to follow the time complexity curve.

However, discovering the number of methods currently
compiled within a JVM is not a trivial task, since JVM
specification does not require the virtual machine to pro-
vide that information. The mechanism that does exist (“-
XX:+PrintCompilation” flag) unfortunately does not report
the methods that are inlined. We modified the JVM code
in order to obtain the number of currently compiled and in-
lined methods from the JVM at run time. We have sug-
gested to Sun to add this information to their JVM require-
ments, which would make this information available across
all platforms.

Using the modified JVM, we were able to perform the
experiments shown on graphs (a), (b), (c) and (d) in figure 5.
The search for Point of Predictability now transforms into a
search for the rightmost plateau on the “Number of methods
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Figure 5. Methods Compiled/Inlined

compiled or inlined” curve.

To achieve this goal, we have taken one more factor into
account: the total time spent compiling the code versus the
time spent executing. As is to be expected, this factor is
fairly large for small problem sizes–the JVM spends most of
its time compiling the code. As the problem size increases,
the percentage of time spent compiling the code gradually
decreases. The “Compilation Percentage” curve on graphs
(a), (b), (c) and (d) in figure 5 shows the percentage of the
time JVM spends compiling code during the execution of a
problem of a given size.

By examining the results from our application suite, we
have reached an empirical value of 30%. In other words,
once the time JVM spends compiling code falls below 30%,
we can be fairly certain that the PoP lies on the first plateau
right of that point.

Formally, the algorithm to determine the PoP is shown
on Figure 3.2. s0 is the initial problem size from which
to start the search.p is the incremental factor for increasing
the problem size (linear algorithms require large steps while
superlinear require smaller ones).θ is the treshold for the
maximum time the JVM should spend compiling that we

have empirically determined to be 30%.γ is the standard
deviation allowed to consider a collection of runs a plateau,
empirically set at 75.n is the number of points to use for
plateau detection, empirically set to 5.

4 Point of Unpredictability

We have observed that some applications will enter
a “heap-thrashing” mode when trying to execute prob-
lems sizes with a footprint that approaches the size of the
heap. This is because these particular applications produce
garbage at a more than a constant rate, and once the total
available heap memory approaches zero, the garbage col-
lector cannot keep up with the garbage production the JVM
starts spending most of the time collecting garbage.

This erratic behavior is highly dependant on the size of
the heap, and unfortunately makes the execution time un-
predictable for certain applications, certain problems sizes
and certain heap sizes. Even though the execution time in
those cases cannot be actually predicted, identifying those
cases without actually running the program of that size
would be a useful result. The performance prediction and
scheduling module in a Grid execution environment could
inform the user that this particular application with this par-



inputs: IN (initial problem sizes0)
(problem size incremental percentagep)
(compilation percentage thresholdθ)
(standard deviation thresholdγ)
(size of Ln)

outputs: OUT (point of predictability)
begin

s =s0

while pc>θ
pc = compilation pecentage(s)
s = s ∗ (1 + p)

for i = 0; i < n; i++
L.add(compiled method num(s), s)
s = s ∗ (1 + p)

endfor
while STD(L)>γ

L.removeF irst()
s = s ∗ (1 + p)
L.add(compiled method num(s), s)

return L.first().s
end

Figure 6. Algorithm for Determining PoP

ticular problem and heap size cannot be reliably executed
on the requested platform, its performance cannot be reli-
ably predicted and it could result in an out of memory error.
The user could pursue other means of executing the appli-
cation – increasing the heap size, rescheduling to a different
machine, or searching for a different way to solve the prob-
lem.

To handle this problem we introduce another concept:
Point of Unpredictability.

Figure 7 shows the garbage collection activities of
LUBench for the same problem size under two different
maximum heap sizes. We can observe that even though
the memory footprint is the same, garbage collection in the
case with a 32MB heap happens much more often than in
the case of a 128MB heap. The total running time of the
application also more than doubles when a 32MB heap is
used.

Figure 8 show the total time a virtual machine spends
garbage collecting for different problem sizes and for three
heap sizes, while figure 9 shows what percentage of the total
running time the VM spends collecting garbage.

We can observe that, perhaps surprisingly, the applica-
tion exhibits a very similar pattern when executing small
problems. For example, even though garbage collection
takes up to 60% of the execution time when running
LUBench with a 300 problem size and a 32MB heap, this
figure doesn’t change significantly when the heap size is in-
creased. Quadrupling the heap size doesn’t improve the per-
formance, the applicationstill spends about 60% garbage
collecting.

However, once the application memory footprint ap-

proaches the size of the heap, we can observe a sharp in-
crease in garbage collection activity. When the application
cannot access more heap space, the garbage collector has to
collect much more often to free the required memory space
for execution. Since garbage collection time is included in
the total execution time, this phenomenon will affect the
performance model heavily.
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4.1 Determining Point of Unpredictabil-
ity

As with the Point of Predictability, we determine the
Point of Unpredictability by executing and analyzing the
execution of only a small set of small problems.

First, we need to introduce two terms in order to describe
the problem. One is the Base Footprint, which is the mini-
mum memory required by the application for its execution.
Another term is the Peak Footprint, defined as the maxi-
mum heap memory occupied by the application at any time
during the execution, given the problem size and the heap
size. The Peak Footprint depends heavily on the garbage
collector implementation.

The garbage collector we investigate is the default
garbage collector used in Sun’s hotspot Java virtual ma-
chine. This is a generational garbage collector. A gener-
ational garbage collector utilizes the statistical property of
the lifespan of heap objects [25]. Statistically, most objects
on the heap have a short life span and only a few objects live
long. The generational garbage collector split objects into
different generations and collect the younger objects more
often than older objects. This way, the total time spent on
garbage collection can be effectively reduced. Full garbage
collections happens much less often. A full garbage collec-
tion will scan through all objects on the heap and remove
all unreachable objects.

Base Footprint gets reached after a full garbage collec-
tion. We monitor the program execution and note the mem-
ory size after every full garbage collection. For Peak Foot-
print, we monitor the memory size at all times. After run-
ning a small set of small-size problems, we have enough
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Figure 10. GC Activity Comparison on Differ-
ent JVM Implementations

data to calibrate the regression model for both the Base
Footprint and the Peak Footprint as functions of the prob-
lem size.

The strategy of determining PoU is based on the capa-
bility to predict both Base and Peak Footprint accurately.
The strategy is as follows: Select several problem sizes
and collect the GC profiling data. Determine the Base and
Peak Footprint for each execution. Then perform a re-
gression analysis of both Base and Peak Footprint series
to find the best match for functionsfBase(problemsize)
and fPeak(problemsize). To calculate PoU, solve the
equationfPeak(x) = MaximumHeapSize. To cal-
culate the problem size when the application will run
out of memory (MaxMem), we solve the equation
fBase(x) = MaximumHeapSize. Between the PoU and
the MaxMem, the application will still be able to complete
the execution, but its running time will be unpredictably
longer than expected, due to the extensive effect of the
garbage collection on the running time.

As we stated before, only certain applications will ex-
hibit the “heap thrashing” behavior. In our test suite, the
CholBench, QRBenchn, SVDCBench and LUBench are
such applications. Others, such as Parsek and Linpack, do
not produce garbage at a higher than a constant rate, and
as such will never enter a heap thrashing stage. Their Base
and Peak Footprints will be the same. Such application will
either fit into memory and finish execution with minimal or
no garbage collection involved, or it will run out of memory
quickly.

PoU is dependent on the implementation of Java virtual
machine. For example, figure 10 shows the GC activity for
LUBench of the same problem size 678 on two different
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Figure 11. Regression Error Rate of Parsek
and SmithWaterman

JVM implementations. One is on Sun’s 1.4.2 Hotspot JVM
on Windows. The other one is Blackdown 1.4.2 on Linux.
These two curves exhibit different GC patterns, and have
a different Peak Footprint. However, on each platform the
size of Peak and Base Footprint can be predicted accurately.

Figures??, ??and??show the predicted and actual Base
and Peak Footprint in function of the problem size for Chol-
Bench, QRBench and SVDCBench respectively. The cali-
bration data uses the problem sizes determined by the Point
of Predictability, as defined in the previous section. The pre-
diction of both Base and Peak Footprint is quite accurate.

5 Performance Model Construction

Our strategy of model construction is to find the Point of
Predictability and Point of Unpredictability (if there exists
one) and construct a parameterized model for the problem
sizes that in between these two points.

5.1 Collecting Information

For reasons discussed in section 2, we choose to use
a profiling-based regression method for building the time
complexity model of scientific Java applications.

Straight line code will run straight from the beginning to
the end. This kind of code has the simplest time complexity
model - O(1). Unfortunately, control flow complicates this
issue. Loops and branches will determine the number of
times a basic block is executed. We focus on how to gather
enough information to describe the behavior of the program.

We achieve this by instrumenting the Java source code.
Since code instrumentation can be a prohibitively expensive
procedure, we have instrumented only the loops in the pro-
gram. We insert a counter into each loop to count the times
loop has been taken during the execution. We instrument
the code, and run a small set of very small problem sizes to
collect the loop execution data. We then use the regression
analysis to find the complexity function that best describes
the behavior of the loop.

Loops are identified by the call site chain. In this context-
aware way, we are able to differentiate the same loop called
from different paths, which gives a more precise image of
how the application is executed.

5.2 Instrumentation and Data Processing

We use a straight-forward source code instrumentation
strategy. The instrumentation is performed by pre-pending
an instruction before each method call to push the current
call site location onto a stack. After each method call, an-
other method call is appended to pop the call site location
out of the stack. The stack will contain the information of
the call site trace. For each loop in the application, state-
ments to count it’s taken times and not taken times are in-
serted at proper locations as well.



The instrumentation is implemented based on sun’s javac
compiler and JaMake compiler framework of Rice univer-
sity [4]. The instrumentation works on the abstract syntax
tree built inside of the JaMake compiler.

There is another transformation applied on the program
which we call canonization. The purpose of canonization
is to make the code more suitable for instrumentation. For
example, in the case some method calls are embedded deep
inside some statement, canonization will take these method
calls out to be an individual statement. One example is
provided below for canonization and instrumentation sep-
arately.

Before canonization:

z = foo() + goo();

After canonization:

x = foo();
y = goo();
z = x + y;

The identification key for reach loop is created dynamically
every time when a loop is encountered. The key is the call
site chain string. Statements to update the corresponding
counter are inserted at proper positions. After instrumen-
tation, the application will be executed on a set of selected
problem sizes to collect the data. Below is one example of
the instrumentation.

Before instrumentation:

x = foo();

After instrumentation:

Counter.callSiteStack.push("key");
x = foo();
Counter.callSiteStack.pop();

Following is an example of a loop before and after in-
strumentation.

Before instrumentation:

for (i = 0; i < n; i++) {
x[i] = b[i];
i++;

}

After instrumentation:

Counter.new("key1");
Counter.new("key2");
Counter.increment("key2");
for (i = 0; i<n; i++) {

Counter.increment("key1");
{

x[i] = b[i];
i++;

}
}

The instrumented code is executed on a set of small problem
sizes to collect the counts of how many times the loop has and has
not been taken.

We then apply a regression analysis to find the best fit function
of each loop. For data-independent applications, we expect that
most of their loops will follow a regular behavior.

The following is a set of data from Linpack for matrix sizes
100, 200, 300, 400, and 500.

Key: SomeKey
Value: [10000, 40000, 90000,

160000, 250000]

To determine the best fit function we perform a search from
a pool of predifined complexity functions. For each loop, we at-
tempt to find the best fitting function from the pool, starting with
the lowest order ones and continuing to the higher order functions.
Once a function fits the data with a predefined treshold, we abort
the search – higher order functions will always fit the data bet-
ter than the lower order ones. Our goal is only to determine the
highest order of the polynomial representing the complexity of the
program, not the exact complexity function.

A check against all loops returns the highest order. If the
highest order is n, the basic performance model function will be
a1x

n + a2x
n−1 + ... + anx + an+1.

To build the performance model of the application, we collect
a set of execution times on different problem sizes. These cali-
bration problem sizes are chosen in the range just beyond Point of
Predictability. Then we fit the execution times from the calibration
runs onto the time complexity model to construct our performance
model.

6 Performance Model Evaluation

To test the effectiveness of our strategy, we have conducted an
experiment that schedules 30 instances of the LUBench applica-
tion onto three different machines while attempting to maximize
the load balance.

The tests are done on Andre1, a machine with 2 AMD 1.6GHz
Opteron processors, one desktop with AMD Athlon 800MHz and
another notebook with Intel Pentium M 1.86GHz processor. The
application used for the test is LUBench, which is new for model-
ing here.

The scheduling process uses the methods described in this pa-
per to determine the Point of Predictability, Point of Unpredictabil-
ity, the problem sizes to be used for calibration runs, collects the
execution times for the calibration runs and uses them to construct
a performance model.

It is important to note that LUBench application was not used
in any way for constructing the methodology for performance pre-
diction described in this paper nor for collecting the empirical data
used for determining PoP, PoU or various thresholds described in
previous sections.

Source code instrumentation and complexity model process re-
sulted in aO(n3) time complexity model for LUBench.

Then we use the strategies presented earlier in this paper to find
the Point of Predictability and the Point of Unpredictability. The
PoP is 215 for this problem, illustrated on figure 12.

Let problem size be ps, from the data on figure 13 for Sun
1.4.2 JVM on Windows, the regression result for Base Footprint
and Peak Footprint are

Base = 0.06757 ∗ ps2 + 9.463 ∗ ps− 861

Peak = 0.1387 ∗ ps2 + 23.21 ∗ ps− 1930.
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LUBench

PoU is calculated for the case that the maximum heap size is
128MB. PoU is around 800 for Hotspot 1.4.2 windows version.
PoU is around 600 for Blackdown 1.4.2 implementation. Figure
16 shows the comparison of execution times between the maxi-
mum heap size 128MB and 512MB for Hotspot 1.4.2 for Win-
dows and Blackdown for Linux. The execution times on the 128M
curves start diverging from the corresponding curve on 512M,
which indicates the PoUs got by prediction are accurate. Figure
16 shows that the PoU predicted for both implementations are ac-
curate.

A set of 30 problem sizes are randomly generated in between of
PoP and PoU. The scheduling process then uses our performance
prediction to predict the performance of each of those jobs and
assign a corresponding weight to them. Then it uses the greedy
scheduling algorithm to schedule those jobs on the three platforms
described above. The resulting CPU utilization was 0.942, which
is a very large improvement over the naı̈ve frequency based strat-
egy that only achieved a CPU utilization of 0.691.

Even though these experiments are preliminary, we can con-
clude that the techniques described in this paper are highly promis-
ing for achieving both practical and effective performance model-
ing for scientific Java programs, and can be used by an optimizing
scheduler to achieve very high load balance.

7 Conclusions

Performance modeling of Java applications is a novel research
area. Java execution model introduces serious obstacles to effec-
tive and efficient performance modelling.

This paper presents an approach for performance modeling of
Java applications that is practical and accurate. We introduce two
novel concepts: Point of Predictability and Point of Unpredictabil-
ity, that describe a range in the problem size space where the per-
formance of a Java application can accurately be predicted. We
present the techniques for accurately determining these two points
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Prediction for LUBench on Sun 1.4.2

by running and analysing only a small set of small-size problems.
We use code instrumentation on very small problem sizes to

construct an accurate complexity model for the application. We
use Point of Predictability to create a set of calibrating runs that
provide the data for a construction of an accurate performance
model.

We have evaluated and validated our performance model by
scheduling 30 jobs on three different machines using our perfor-
mance prediction to maximize the load balance. Our strategy re-
sulted in a load balance of 0.942, which is an enormous improve-
ment over a simple frequency-based scheduling strategy.
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[4] Z. Budimlić and K. Kennedy. JaMake: A Java compiler envi-
ronment. InProceedings of the Third International Confer-
ence on Large-Scale Scientific Computations, Sozopol, Bul-
garia, June 2001.



LUBench Base Footprint Size and Peak Footprint Size Prediction on Blackdown

0

50000

100000

150000

200000

250000

300000

350000

0 200 400 600 800 1000 1200

Problem Size

S
iz

e 
(k

B
)

Actual Peak Heap Size Predicted Peak Heap Size Actual Base Heap Size Predicted Based Heap Size

Figure 14. Base/Peak Memory Footprint Size
Prediction for LUBench on Blackdown 1.4.2

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduc-
tion to Algorithms. Number 0-262-03141-8. The MIT Press,
1990.

[6] L. Eeckhout, A. Georges, and K. D. Bosschere. How java
programs interact with virtual machines at the microarchitec-
tural level. InOOPSLA ’03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pages 169–186, New
York, NY, USA, 2003. ACM Press.

[7] I. T. Foster. The anatomy of the grid: Enabling scalable vir-
tual organizations. InEuro-Par ’01: Proceedings of the 7th
International Euro-Par Conference Manchester on Parallel
Processing, pages 1–4, London, UK, 2001. Springer-Verlag.

[8] H. Gautama and A. J. C. van Gemund. Static performance
prediction of data-dependent programs. InWOSP ’00: Pro-
ceedings of the 2nd international workshop on Software and
performance, pages 216–226, New York, NY, USA, 2000.
ACM Press.

[9] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. T. Stasko,
J. Vetter, and N. Mallavarupu. Falcon: On-line monitoring
and steering of large-scale parallel programs. InProceedings
of the 5th Symposium of the Frontiers of Massively Parallel
Computing, McLean, VA,, pages 422–429, 1995.

[10] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and
H. Alme. A general predictive performance model for wave-
front algorithms on clusters of smps. InICPP ’00: Proceed-
ings of the Proceedings of the 2000 International Conference
on Parallel Processing, page 219, Washington, DC, USA,
2000. IEEE Computer Society.

[11] C.-H. A. Hsieh, M. T. Conte, T. L. Johnson, J. C. Gyllenhaal,
and W.-M. W. Hwu. A study of the cache and branch per-
formance issues with running java on current hardware plat-
forms. InCOMPCON ’97: Proceedings of the 42nd IEEE
International Computer Conference, page 211, Washington,
DC, USA, 1997. IEEE Computer Society.

[12] M. A. Iverson, F. Ozg̈uner, and L. Potter. Statistical predic-
tion of task execution times through analytic benchmarking

LUBench

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300

Calibration Starting Point

C
P

U
 U

til
iz

at
io

n 
P

er
ce

nt
ag

e

Predicted Actual Frequency Based

Figure 15. LUBench Load Balance

LUBench PoU Test

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

Problem Size

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Windows, Max Heap Size = 128M Windows, Max Heap Size = 512M
Blackdown, Max Heap Size = 128M Blackdown, Max Heap Size = 512M

Figure 16. LUBench PoU Test

for scheduling in a heterogeneous environment.IEEE Trans.
Comput., 48(12):1374–1379, 1999.

[13] D. Kerbyson, J. Harper, A. Craig, and G. Nudd. Pace: A
toolset to investigate and predict performance in parallel sys-
tems, 1996.

[14] D. Kerbyson, E. Papaefstathiou, J. Harper, S. Perry, and
G. Nudd. Is predictive tracing too late for hpc users, 1998.

[15] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson. Scheduling strategies
for mapping application workflows onto the grid. InIEEE
International Symposium on High Performance Distributed
Computing, 2005.

[16] G. Marin and J. Mellor-Crummey. Cross-architecture per-
formance predictions for scientific applications using para-
meterized models. InSIGMETRICS 2004/PERFORMANCE
2004: Proceedings of the joint international conference on
Measurement and modeling of computer systems, pages 2–
13, New York, NY, USA, 2004. ACM Press.



[17] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The paradyn parallel performance
measurement tool.IEEE Computer, 28(11):37–46, 1995.

[18] V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim reference
manual.http://www-ece.rice.edu/∼rsim.

[19] A. S. Rajan. A study of cache performance in java virtual
machines, May 2002.

[20] D. Reed, R. Aydt, T. Madhyastha, R. Noe, K. Shields, and
B. Schwartz. An overview of the pablo performance analysis
environment, 1992.

[21] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A.
Wong, J.-L. Baer, B. N. Bershad, and H. M. Levy. The
structure and performance of interpreters.SIGPLAN Not.,
31(9):150–159, 1996.

[22] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Character-
izing the memory behavior of java workloads: a structured
view and opportunities for optimizations. InSIGMETRICS
’01: Proceedings of the 2001 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of com-
puter systems, pages 194–205, New York, NY, USA, 2001.
ACM Press.

[23] A. Snavely, L. Carrington, and N. Wolter. Modeling appli-
cation performance by convolving machine signatures with
application profiles, 2001.

[24] D. Sundaram-Stukel and M. K. Vernon. Predictive analysis
of a wavefront application using loggp. InPPoPP ’99: Pro-
ceedings of the seventh ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 141–150,
New York, NY, USA, 1999. ACM Press.

[25] B. Venners. Inside the JAVA 2 Virtual Machine. Number
0-07-135093-4. McGraw-Hill, second edition edition, 1999.

[26] K.-Y. Wang. Precise compile-time performance predic-
tion for superscalar-based computers. InSIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pages 73–84, 1994.


